Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400670, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227900

RESUMO

The icosahedral Au135+ core is a recurrent building block in ligand-protected gold clusters involving an 8-cluster electron 1S21P6 electronic shell. Such a prototypical structure enables a spherical aromatic behavior as given by long-range magnetic shielding. Recently, the Au20(tBu3P)8 cluster featuring a contrasting cuboctahedral core with formally neutral gold atoms appears as a novel core architecture with the potential to be considered as another potential building block towards functional nanostructures. Here, we explore the ligand-core interaction and spherical aromatic characteristics of Au20(tBu3P)8, in order to provide a direct connection to classical icosahedral spherical aromatic compounds, now involving a cuboctahedral core structure. Such characteristics suggest rationalization of their robustness in terms of certain electron counts, enabling a shielding cone property in ligand-protected metallic clusters, which favors bridging organic and inorganic planar/spherical aromatic species towards the unification of the aromaticity concept and designing guidelines for further achievements.

2.
Chemphyschem ; 25(18): e202400183, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38831496

RESUMO

Ligand-protected gold clusters remain potential building blocks for envisaged molecular materials. The archetypal Au38(SR)24 cluster can be viewed as a robust template for the fusion of two Au25(SR)18 - cluster units, retaining a bi-icosahedral Au23 core. Via electrochemical properties, the overall charge state can be selectively tuned, enabling the access of 14 valence electron (ve) species featuring a single intercluster bond and nearby charge from -1 to +3, achieving related species bearing 15- to 11-ve with variable intercluster bond orders. Here, we explore the characteristics of intermediate intercluster bond orders in order to provide insights into the plausible electron communication between the constituent building blocks, with Au38(SR)24, as a representative template. Our results denote a small structural variation along -1 to +3 charge states, provided by the core-protecting ligand interaction, which is enhanced towards more oxidized species. The remaining unpaired electron from intermediate intercluster bond orders of 1.5 for Au38(SR)24 1-, 1.5 for Au38(SR)24 1+, and 2.5 for Au38(SR)24 3+, holds delocalized characteristics between the building block units, favoring electron communication for conductive and cooperative cluster aggregates. Such features are relevant for the formation of molecular electronic device applications, favoring the rationalization prior to engaging in explorative synthesis of larger ligand-protected cluster aggregates.

3.
Chemphyschem ; 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29697900

RESUMO

Exploring the versatility of atomically precise clusters is a relevant issue in the design of functional nanostructures. Superatomic clusters offer an ideal framework to gain further understanding of the different distinctive size-dependent physical and chemical properties. Here, we propose [Au12 (SR)6 ]2- as a minimal 8-electron superatom related to the prototypical [Au25 (SR)18 ]- cluster, depicting half of its core-mass (2.3 kDa vs 5.0 kDa). The [Au12 (SMe)6 ]2- cluster fulfills a 1S2 1P6 electronic configuration, with a distorted tetrahedral Au8 core further viewed as an SP3 -hybridized superatom. The distinctive optical properties show a blue-shift for the first relevant 1P→1D transition, in comparison to [Au25 (SR)18 ]- . In addition, chiroptical activity is observed, denoting intrinsic core chirality. We expect that our results can shed light into the variation of the molecular properties according to the size-dependent properties, and serve as guidelines for further experimental exploration of minimal or ultrasmall nanoclusters.

4.
Chemphyschem ; 18(1): 87-92, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27813329

RESUMO

Two novel clusters were proposed according to the superatom model involving a favorable inclusion of Se and Te into a Au12 cage leading to [Au11 E]3- clusters. Such structures retain a hollow gold-based icosahedron with spherical aromatic character, according to the 18-valence electron rule. Interestingly, it is shown that despite the favorable electronic structure and aromatic behavior, the titled structure is further found to be a local minimum in the potential surface, which exhibits a planar isomer as a plausible candidate for the lowest-energy structure. The proposed strategy employed to vary the electron count of the cage is useful for the further design of novel spherical aromatic superatoms and ligand-protected clusters, for which the main variation is generated directly in the surface of the cluster, in addition to the extensive formation of endohedral clusters with different heteroatoms.

5.
Chemphyschem ; 17(20): 3204-3208, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27550772

RESUMO

Recently, it has been shown that the superatom concept is intimately connected to relevant tools of great chemical significance, such as the Lewis structure model and the VSEPR theory, which has been employed to understand hybridized and dimeric-like molecules. This suggests a potential rational construction of superatomic clusters mimicking more complex structures. Here, we extend another well-employed concept to the superatomic clusters, to construct a novel Au42 isomer with resemblance to cyclic aromatic molecules. It is shown that the Hückel (4n+2)π rule is ready to be applied, predicting aromatic behavior latterly supported by the favorable evaluation of the induced shielding cone formation. The D6 h isomer of Au42 described here exhibits inherent characteristics mimicking aromatic hydrocarbon rings, displaying π-superatomic orbitals and related properties. This new cluster is the first member of the superatomic clusters family to exhibit an aromatic π-electron system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA