Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(71): 17081-17090, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32721065

RESUMO

Co- and Ni-based layered hydroxides constitute a unique class of two-dimensional inorganic materials with exceptional chemical diversity, physicochemical properties and outstanding performance as supercapacitors and overall water splitting catalysts. Recently, the occurrence of Co(III) in these phases has been proposed as a key factor that enhance their electrochemical performance. However, the origin of this centers and control over its contents remains as an open question. We employed the Epoxide Route to synthesize a whole set of α-NiCo layered hydroxides. The PXRD and XAS characterization alert about the occurrence of Co(III) as a consequence of the increment in the Ni content. DFT+U simulation suggest that the shortening of the Co-O distance promotes a structural distortion in the Co environments, resulting in a double degeneration in the octahedral Co 3d orbitals. Hence, a strong modification of the electronic properties leaves the system prone to oxidation, by the appearance of Co localized electronic states on the Fermi level. This work combines a microscopic interpretation supported by a multiscale crystallochemical analysis, regarding the so-called synergistic redox behavior of Co and Ni, offering fundamental tools for the controllable design of highly efficient electroactive materials. To the best of our knowledge, this is the first computational-experimental investigation of the electronic and structural details of α-NiCo hydroxides, laying the foundation for the fine tuning of electronic properties in layered hydroxides.

2.
Materials (Basel) ; 13(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143430

RESUMO

Herein, we report the surface functionalization of carbon nano-onions (CNOs) through an amidation reaction that occurs between the oxidized CNOs and 4-(pyren-4-yl)butanehydrazide. Raman and Fourier transform infrared spectroscopy methods were used to confirm the covalent functionalization. The percentage or number of groups in the outer shell was estimated with thermal gravimetric analysis. Finally, the potential applications of the functionalized CNOs as electrode materials in supercapacitors were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. Functionalization increased the specific capacitance by approximately 138% in comparison to that of the pristine CNOs, while acid-mediated oxidation reduced the specific capacitance of the nanomaterial by 24%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA