Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998324

RESUMO

In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.

2.
Front Bioeng Biotechnol ; 11: 1257778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799814

RESUMO

Introduction: Thrombogenesis, a major cause of implantable cardiovascular device failure, can be addressed through the use of biodegradable polymers modified with anticoagulating moieties. This study introduces a novel polyester urethane urea (PEUU) functionalized with various anti-platelet deposition molecules for enhanced antiplatelet performance in regenerative cardiovascular devices. Methods: PEUU, synthesized from poly-caprolactone, 1,4-diisocyanatobutane, and putrescine, was chemically oxidized to introduce carboxyl groups, creating PEUU-COOH. This polymer was functionalized in situ with polyethyleneimine, 4-arm polyethylene glycol, seleno-L-cystine, heparin sodium, and fondaparinux. Functionalization was confirmed using Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Bio-compatibility and hemocompatibility were validated through metabolic activity and hemolysis assays. The anti-thrombotic activity was assessed using platelet aggregation, lactate dehydrogenase activation assays, and scanning electron microscopy surface imaging. The whole-blood clotting time quantification assay was employed to evaluate anticoagulation properties. Results: Results demonstrated high biocompatibility and hemocompatibility, with the most potent anti-thrombotic activity observed on pegylated surfaces. However, seleno-L-cystine and fondaparinux exhibited no anti-platelet activity. Discussion: The findings highlight the importance of balancing various factors and addressing challenges associated with different approaches when developing innovative surface modifications for cardiovascular devices.

3.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984232

RESUMO

The technique of surface modification using electrolytic oxidation, called micro-arc oxidation (MAO), has been used in altering the surface properties of titanium alloys for biomedical purposes, enhancing their characteristics as an implant (biocompatibility, corrosion, and wear resistance). The layer formed by the micro-arc oxidation process induces the formation of ceramic oxides, which can improve the corrosion resistance of titanium alloys from the elements in the substrate, enabling the incorporation of bioactive components such as calcium, phosphorus, and magnesium. This study aims to modify the surfaces of Ti-25Ta-10Zr-15Nb (TTZN1) and Ti-25Ta-20Zr-30Nb (TTZN2) alloys via micro-arc oxidation incorporating Ca, P, and Mg elements. The chemical composition results indicated that the MAO treatment was effective in incorporating the elements Ca (9.5 ± 0.4 %atm), P (5.7 ± 0.1 %atm), and Mg (1.1 ± 0.1 %atm), as well as the oxidized layer formed by micropores that increases the surface roughness (1160 nm for the MAO layer of TTZN1, 585 nm for the substrate of TTZN1, 1428 nm for the MAO layer of TTZN2, and 661 nm for the substrate of TTZN2). Regarding the phases formed, the films are amorphous, with low crystallinity (4 and 25% for TTZN2 and TTZN1, respectively). Small amounts of anatase, zirconia, and calcium carbonate were detected in the Ti-25Ta-10Zr-15Nb alloy.

4.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591484

RESUMO

This review addresses the different aspects of the use of titanium and its alloys in the production of dental implants, the most common causes of implant failures and the development of improved surfaces capable of stimulating osseointegration and guaranteeing the long-term success of dental implants. Titanium is the main material for the development of dental implants; despite this, different surface modifications are studied aiming to improve the osseointegration process. Nanoscale modifications and the bioactivation of surfaces with biological molecules can promote faster healing when compared to smooth surfaces. Recent studies have also pointed out that gradual changes in the implant, based on the microenvironment of insertion, are factors that may improve the integration of the implant with soft and bone tissues, preventing infections and osseointegration failures. In this context, the understanding that nanobiotechnological surface modifications in titanium dental implants improve the osseointegration process arouses interest in the development of new strategies, which is a highly relevant factor in the production of improved dental materials.

5.
Braz. dent. j ; Braz. dent. j;21(6): 471-481, 2010. ilus
Artigo em Inglês | LILACS | ID: lil-572292

RESUMO

The biological fixation between the dental implant surfaces and jaw bones should be considered a prerequisite for the long-term success of implant-supported prostheses. In this context, the implant surface modifications gained an important and decisive place in implant research over the last years. As the most investigated topic in, it aided the development of enhanced dental treatment modalities and the expansion of dental implant use. Nowadays, a large number of implant types with a great variety of surface properties and other features are commercially available and have to be treated with caution. Although surface modifications have been shown to enhance osseointegration at early implantation times, for example, the clinician should look for research evidence before selecting a dental implant for a specific use. This paper reviews the literature on dental implant surfaces by assessing in vitro and in vivo studies to show the current perspective of implant development. The review comprises quantitative and qualitative results on the analysis of bone-implant interface using micro and nano implant surface topographies. Furthermore, the perspective of incorporating biomimetic molecules (e.g.: peptides and bone morphogenetic proteins) to the implant surface and their effects on bone formation and remodeling around implants are discussed.


A fixação biológica entre as superfícies de implante e os ossos maxilares deve ser considerada como um pré-requisito para o sucesso em longo prazo de próteses implanto-suportadas. Neste contexto, as modificações nas superfícies de implante ganharam um lugar importante e decisivo na pesquisa em Implantodontia nos últimos anos. Sendo o tópico mais estudado, colaboraram para o melhoramento de modalidades de tratamento dental, assim como para a expansão de uso dos implantes dentais. Hoje, um grande número de diferentes implantes com uma grande variedade de propriedades de superfícies, entre outras características, está comercialmente disponível e isto deve ser tratado com cuidado. Apesar das modificações nas superfícies terem melhorado a osseointegração em tempos precoces de implantação, por exemplo, o clínico deve procurar evidências científicas antes de selecionar um implante dental para uso específico. Este artigo fará uma revisão da literatura sobre superfícies de implantes osseointegráveis, analisando estudos in vitro e in vivo, a fim de mostrar uma perspectiva atual do desenvolvimento dos implantes. Esta abordagem englobará os resultados obtidos com micro e nano topografias, em termos quantitativos e qualitativos, avaliando a interface osso-implante. Além disso, discutirá também as perspectivas da incorporação de substâncias biomiméticas (como peptídeos e proteínas morfogenéticas) à superfície dos implantes e seus efeitos na modulação da neoformação óssea periimplantar.


Assuntos
Animais , Humanos , Implantes Dentários , Osseointegração , Abrasão Dental por Ar , Materiais Biomiméticos , Adesão Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis , Corrosão Dentária , Modelos Animais , Osteoblastos , Gases em Plasma , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA