RESUMO
Hydrogels consist of crosslinked hydrophilic polymers from which their mechanical properties can be modulated for a wide variety of applications. In the last decade, many catechol-based bioinspired adhesives have been developed following the strategy of incorporating catechol moieties into polymeric backbones. In this work, in order to further investigate the adhesive properties of hydrogels and their potential advantages, several hydrogels based on poly(2-hydroxyethyl methacrylate-co-acrylamide) with N'N-methylene-bisacrylamide (MBA), without/with L-3,4-dihydroxyphenylalanine (DOPA) as a catecholic crosslinker, were prepared via free radical copolymerization. 2-Hydroxyethyl methacrylate (HEMA) and acrylamide (AAm) were used as comonomers and MBA and DOPA both as crosslinking agents at 0.1, 0.3, and 0.5 mol.-%, respectively. The polymeric hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermal analysis and swelling behavior analysis. Subsequently, the mechanical properties of hydrogels were determined. The elastic properties of the hydrogels were quantified using Young's modulus (stress-strain curves). According to the results herein, the hydrogel with a feed monomer ratio of 1:1 at 0.3 mol.-% of MBA and DOPA displayed the highest rigidity and higher failure shear stress (greater adhesive properties). In addition, the fracture lap shear strength of the biomimetic polymeric hydrogel was eight times higher than the initial one (only containing MBA); however at 0.5 mol.-% MBA/DOPA, it was only two times higher. It is understood that when two polymer surfaces are brought into close contact, physical self-bonding (Van der Waals forces) at the interface may occur in an -OH interaction with wet contacting surfaces. The hydrogels with DOPA provided an enhancement in the flexibility compared to unmodified hydrogels, alongside reduced swelling behavior on the biomimetic hydrogels. This approach expands the possible applications of hydrogels as adhesive materials, in wet conditions, within scaffolds that are commonly used as biomaterials in cartilage tissue engineering.
RESUMO
The drug release behavior of pH-sensitive starch-based hydrogels was systematically studied. Hydrogels were synthesized by copolymerization of acrylic acid (AA) and other acrylate comonomers onto the starch backbone. The hydrophilic agents 2-hydroxy ethyl methacrylate (HEMA), and acrylamide (AAm), as well as the hydrophobic butyl-methacrylate (BMA), were utilized as comonomers. Methylene-bisacrylamide (MBA) was employed as a crosslinking agent. The synthesized hydrogels were loaded with caffeine as a model drug. The effects of the hydrophobic/hydrophilic character of the comonomers and chemical crosslinking on the swelling capacity and the release rate of caffeine were investigated. The use of the crosslinking agent and hydrophobic monomers decreased the swelling capacity of the hydrogels. The release rate of caffeine increased with the presence of a hydrophobic monomer. The fastest release was obtained with the AA/BMA/AAm formulation, and the slowest release was observed with the AA/HEMA/AAm formulation. The transport mechanism was controlled by Fickian diffusion in formulations containing AAm, and controlled by the polymer-relaxation mechanism in formulations containing MBA. Overall, our results showed that the swelling and drug delivery behavior can be tuned by varying the chemical composition of the copolymer formulations. These starch-based hydrogels can be useful as drug delivery devices in many biomedical applications.
RESUMO
Gelatin/chitosan/polyvinyl alcohol hydrogels were fabricated at different polymer ratios using the freeze-drying and sterilized by steam sterilization. The thermal stability, chemical structure, morphology, surface area, mechanical properties, and biocompatibility of hydrogels were evaluated by simultaneous thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, confocal microscopy, adsorption/desorption of nitrogen, rheometry, and 3-4,[5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay (MTT assay), respectively. The samples showed a decomposition onset temperature below 253.3 ± 4.8°C, a semicrystalline nature, and a highly porous structure. Hydrogels reached the maximum water uptake in phosphate-buffered saline after 80 min, showing values from nine to twelve times their dry mass. Also, hydrogels exhibiting a solid-like behavior ranging from 2,567 ± 467 to 48,705 ± 2,453 Pa at 0.1 rad/s (low frequency). The sterilized hydrogels showed low cytotoxicity (cell viability > 70%) to the HT29-MTX-E12 cell line. Sterilized hydrogels by steam sterilization can be good candidates as scaffolds for tissue engineering applications.