RESUMO
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
RESUMO
Most commercial anticancer nanomedicines are administered intravenously. This route is fast and precise as the drug enters directly into the systemic circulation, without undergoing absorption processes. When nanoparticles come into direct contact with the blood, however, they interact with physiological components that can induce colloidal destabilization and/or changes in their original biochemical identity, compromising their ability to selectively accumulate at target sites. In this way, these systems usually lack active targeting, offering limited therapeutic effectiveness. In the literature, there is a paucity of in-depth studies in complex environments to evaluate nanoparticle stability, protein corona formation, hemolytic activity, and targeting capabilities. To address this issue, fluorescent silica nanoparticles (SiO2NPs) are here functionalized with zwitterionic (kinetic stabilizer) and folate groups (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these nanoparticles are not hemolytic. Remarkably, the functionalized SiO2NPs are more internalized by tumor cells than their healthy counterparts. Investigations of this nature play a crucial role in garnering results with greater reliability, allowing the development of nanoparticle-based pharmaceutical drugs that exhibit heightened efficacy and reduced toxicity for medical purposes.
RESUMO
Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.
RESUMO
Millions of people worldwide are affected by leishmaniasis, caused by the Leishmania parasite. Effective treatment is challenging due to the biological complexity of the parasite, drug toxicity, and increasing resistance to conventional drugs. To combat this disease, the development of specific strategies to target and selectively eliminate the parasite is crucial. This Review highlights the importance of amino acids in the developmental stages of Leishmania as a factor determining whether the infection progresses or is suppressed. It also explores the use of peptides as alternatives in parasite control and the development of novel targeted treatments. While these strategies show promise for more effective and targeted treatment, further studies to address the remaining challenges are imperative.
Assuntos
Aminoácidos , Antiprotozoários , Leishmania , Leishmaniose , Peptídeos , Leishmania/efeitos dos fármacos , Aminoácidos/química , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Humanos , Peptídeos/farmacologia , Peptídeos/química , Antiprotozoários/farmacologia , Antiprotozoários/química , AnimaisRESUMO
The nasal administration of therapeutic fluids and vaccines is used to treat allergic rhinitis, sinusitis, congestion, coronaviruses and even Alzheimer's disease. In the latter, the drug must reach the olfactory region, so it finds its way into the central nervous system. Effective administration techniques able to reach the olfactory region are challenging due to the tortuous anatomy of the nasal cavity, and are frequently evaluated in vitro using transparent anatomical models. Here, the liquid distribution inside a 3D printed human nasal cavity is quantified for model fluids resulting from the discharge of a 1-mL syringe with either a spray-generating nozzle, and a straight tip emitting a collimated fluid stream. Experiments using two model fluids with different viscosities suggest that a simple, correctly positioned straight tip attached to a syringe is able to efficiently deliver most of a therapeutic fluid in the human olfactory region in the side-laying position, avoiding the adoption of head-back and head-down positions that can be difficult for patients in the age range typical of Alzheimer's disease. Furthermore, we demonstrate by computer simulations that the conclusion is valid within a wide range of parameters.
Assuntos
Administração Intranasal , Simulação por Computador , Cavidade Nasal , Humanos , Administração Intranasal/métodos , Modelos Anatômicos , Impressão Tridimensional , Viscosidade , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/instrumentaçãoRESUMO
PDZ (PSD-95 [postsynaptic density protein 95]/Dlg [Discs large]/ZO-1 [zonula occludens-1]) domain-containing proteins constitute a large family of scaffolds involved in a wide range of cellular tasks and are mainly studied in polarity functions. Diverse host PDZ proteins can be targeted by viral pathogens that express proteins containing PDZ-binding motifs (PDZbms). Previously, we have identified host PDZ-based interactions with the SARS-CoV-2 E protein (2E) in human monocytes. Here, we deepen the study of these interactions by docking and molecular dynamics analyses to identify the most favorable PDZ-PDZbm interaction of 7 host PDZ proteins with the PDZbm of 2E. In addition, we analyzed changes in the expression of 3 of the PDZ proteins identified as 2E interactors in monocytes (syntenin, ZO-2, and interleukin-16), in human monocyte-derived macrophages and in dendritic cells upon stimulation. Our results suggest that these PDZ proteins may have important functions in professional antigen-presenting cells, and their targeting by the PDZbm of 2E, a central virulence determinant of SARS-CoV-2, supports the hypothesis that such PDZ-dependent interaction in immune cells may constitute a viral evasion mechanism. An inhibitor design based on the PDZbm of 2E in the development of drugs against a variety of diseases is discussed.
Assuntos
Proteínas do Envelope de Coronavírus , Células Dendríticas , Macrófagos , Domínios PDZ , SARS-CoV-2 , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/virologia , SARS-CoV-2/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , COVID-19/metabolismo , COVID-19/virologia , Ligação Proteica , Simulação de Acoplamento Molecular , Simulação de Dinâmica MolecularRESUMO
INTRODUCTION: Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals. METHOD: We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium-99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA. RESULTS: These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF. CONCLUSION: These data validated the ability of active tumor targeting by the as-developed antiCEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.
RESUMO
In recent years, nanocarriers have played an ever-increasing role in clinical and biomedical applications owing to their unique physicochemical properties and surface functionalities. Lately, much effort has been directed towards the development of smart, stimuli-responsive nanocarriers that are capable of releasing their cargos in response to specific stimuli. These intelligent-responsive nanocarriers can be further surface-functionalized so as to achieve active tumor targeting in a sequential manner, which can be simply modulated by the stimuli. By applying this methodological approach, these intelligent-responsive nanocarriers can be directed to different target-specific organs, tissues, or cells and exhibit on-demand controlled drug release that may enhance therapeutic effectiveness and reduce systemic toxicity. Light, an external stimulus, is one of the most promising triggers for use in nanomedicine to stimulate on-demand drug release from nanocarriers. Light-triggered drug release can be achieved through light irradiation at different wavelengths, either in the UV, visible, or even NIR region, depending on the photophysical properties of the photo-responsive molecule embedded in the nanocarrier system, the structural characteristics, and the material composition of the nanocarrier system. In this review, we highlighted the emerging functional role of light in nanocarriers, with an emphasis on light-responsive liposomes and dual-targeted stimuli-responsive liposomes. Moreover, we provided the most up-to-date photo-triggered targeting strategies and mechanisms of light-triggered drug release from liposomes and NIR-responsive nanocarriers. Lastly, we addressed the current challenges, advances, and future perspectives for the deployment of light-responsive liposomes in targeted drug delivery and therapy.
Assuntos
Nanopartículas , Neoplasias , Humanos , Lipossomos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológicoRESUMO
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.
RESUMO
Breast cancer remains a pressing public health issue primarily affecting women. Recent research has spotlighted bioactive peptides derived from laminin-111, implicated in breast tumor development. Remarkably, the sequences IKVAV, YIGSR, and KAFDITYVRLKF from the α1, ß1, and γ1 chains, respectively, have garnered significant attention. This study aims to assess the potential of these radiolabeled peptides as targeting agents for breast cancer. The three peptides were synthesized using the Fmoc strategy, purified via reversed-phase high-performance liquid chromatography (RP-HPLC), and characterized through mass spectrometry. Iodine-131 (131I) radiolabeling was performed using the chloramine T method, exhibiting high radiochemical yield and stability for [131I]I-YIKVAV and [131I]I-YIGSR. Conversely, [131I]I-KAFDITYVRLKF demonstrated low radiochemical yield and stability and was excluded from the biological studies. The lipophilicity of the compounds ranged from - 2.12 to - 1.10. Serum protein binding assay for [131I]I-YIKVAV and [131I]I-YIGSR reached â 48% and â 25%, respectively. Affinity for breast cancer cells was evaluated using MDA-MB-231 and MCF-7 tumor cell lines, indicating the affinity of the radiopeptides with these tumor cells. Ex vivo biodistribution profiles of the radiopeptides were assessed in the MDA-MB-231 breast tumor animal model, revealing tumor tissue accumulation, supported by a high tumor-to-contralateral muscle ratio and autoradiography. These results signify the effective penetration of YIKVAV and YIGSR into tumor tissue. Therefore, the synthesized α1 and ß1 peptide fragments exhibit favorable characteristics as potential breast cancer-targeting agents, promising future exploration as radiopharmaceuticals for breast cancer.
Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Estudos Prospectivos , Distribuição Tecidual , Peptídeos/farmacologia , LamininaRESUMO
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Metabolismo dos Lipídeos , Mama/patologia , Lipídeos , Microambiente TumoralRESUMO
Prostate-specific membrane antigens (PSMAs) are frequently overexpressed in both tumor stromal endothelial cells and malignant cells (stromal/tumor cells) of various cancers. The RGD (Arg-Gly-Asp) peptide sequence can specifically detect integrins involved in tumor angiogenesis. This study aimed to preclinically evaluate the cytotoxicity, biokinetics, dosimetry, and therapeutic efficacy of 225Ac-iPSMA-RGD to determine its potential as an improved radiopharmaceutical for alpha therapy compared with the 225Ac-iPSMA and 225Ac-RGD monomers. HEHA-HYNIC-iPSMA-RGD (iPSMA-RGD) was synthesized and characterized by FT-IR, UV-vis, and UPLC mass spectroscopy. The cytotoxicity of 225Ac-iPSMA-RGD was assessed in HCT116 colorectal cancer cells. Biodistribution, biokinetics, and therapeutic efficacy were evaluated in nude mice with induced HCT116 tumors. In vitro results showed increased DNA double-strand breaks through ROS generation, cell apoptosis, and death in HCT116 cells treated with 225Ac-iPSMA-RGD. The results also demonstrated in vivo cytotoxicity in cancer cells after treatment with 225Ac-iPSMA-RGD and biokinetic and dosimetric properties suitable for alpha therapy, delivering ablative radiation doses up to 237 Gy/3.7 kBq to HCT116 tumors in mice. Given the phenotype of HCT116 cancer cells, the results of this study warrant further dosimetric and clinical studies to determine the potential of 225Ac-iPSMA-RGD in the treatment of colorectal cancer.
Assuntos
Neoplasias Colorretais , Neoplasias da Próstata , Neoplasias de Tecidos Moles , Humanos , Masculino , Animais , Camundongos , Integrinas/metabolismo , Distribuição Tecidual , Camundongos Nus , Espectroscopia de Infravermelho com Transformada de Fourier , Células Endoteliais/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular TumoralRESUMO
BACKGROUND: Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS: In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION: For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.
RESUMO
BACKGROUND: mTORC2 is a critical regulator of cytoskeleton organization, cell proliferation, and cancer cell survival. Activated mTORC2 induces maximal activation of Akt by phosphorylation of Ser-473, but regulation of Akt activity and signaling crosstalk upon growth factor stimulation are still unclear. RESULTS: We identified that NUAK1 regulates growth factor-dependent activation of Akt by two mechanisms. NUAK1 interacts with mTORC2 components and regulates mTORC2-dependent activation of Akt by controlling lysosome positioning and mTOR association with this organelle. A second mechanism involves NUAK1 directly phosphorylating Akt at Ser-473. The effect of NUAK1 correlated with a growth factor-dependent activation of specific Akt substrates. NUAK1 induced the Akt-dependent phosphorylation of FOXO1/3a (Thr-24/Thr-32) but not of TSC2 (Thr-1462). According to a subcellular compartmentalization that could explain NUAK1's differential effect on the Akt substrates, we found that NUAK1 is associated with early endosomes but not with plasma membrane, late endosomes, or lysosomes. NUAK1 was required for the Akt/FOXO1/3a axis, regulating p21CIP1, p27KIP1, and FoxM1 expression and cancer cell survival upon EGFR stimulation. Pharmacological inhibition of NUAK1 potentiated the cell death effect induced by Akt or mTOR pharmacological blockage. Analysis of human tissue data revealed that NUAK1 expression positively correlates with EGFR expression and Akt Ser-473 phosphorylation in several human cancers. CONCLUSIONS: Our results showed that NUAK1 kinase controls mTOR subcellular localization and induces Akt phosphorylation, demonstrating that NUAK1 regulates the growth factor-dependent activation of Akt signaling. Therefore, targeting NUAK1, or co-targeting it with Akt or mTOR inhibitors, may be effective in cancers with hyperactivated Akt signaling.
RESUMO
Combining antiviral drugs with different mechanisms of action can help prevent the development of resistance by attacking the infectious agent through multiple pathways. Additionally, by using faster and more economical screening methods, effective synergistic drug candidates can be rapidly identified, facilitating faster paths to clinical testing. In this work, a rapid method was standardized to identify possible synergisms from drug combinations. We analyzed the possible reduction in the antiviral effective concentration of drugs already approved by the FDA, such as ivermectin (IVM), ribavirin (RIBA), and acyclovir (ACV) against Zika virus (ZIKV), Chikungunya virus (CHIKV), and herpes virus type 2 (HHV-2). Essential oils (EOs) were also included in the study since they have been reported for more than a couple of decades to have broad-spectrum antiviral activity. We also continued studying the antiviral properties of one of our patented molecules with broad-spectrum antiviral activity, the ferruginol analog 18-(phthalimid-2-yl)ferruginol (phthFGL), which presented an IC99 of 25.6 µM for the three types of virus. In general, the combination of IVM, phthFGL, and oregano EO showed the greatest synergism potential against CHIKV, ZIKV, and HHV-2. For instance, this combination achieved reductions in the IC99 value of each component up to ~8-, ~27-, and ~12-fold for CHIKV, respectively. The ternary combination of RIBA, phthFGL, and oregano EO was slightly more efficient than the binary combination RIBA/phthFGL but much less efficient than IVM, phthFGL, and oregano EO, which indicates that IVM could contribute more to the differentiation of cell targets (for example via the inhibition of the host heterodimeric importin IMP α/ß1 complex) than ribavirin. Statistical analysis showed significant differences among the combination groups tested, especially in the HHV-2 and CHIKV models, with p = 0.0098. Additionally, phthFGL showed a good pharmacokinetic profile that should encourage future optimization studies.
RESUMO
Glioblastoma multiforme is the most common and aggressive malignant tumor that affects the central nervous system, with high mortality and low survival. Glioblastoma multiforme treatment includes resection tumor surgery, followed by radiotherapy and chemotherapy adjuvants. However, the drugs used in chemotherapy present some limitations, such as the difficulty of crossing the bloodbrain barrier and resisting the cellular mechanisms of drug efflux. The use of polymeric nanoparticles has proven to be an effective alternative to circumvent such limitations, as it allows the exploration of a range of polymeric structures that can be modified in order to control the biodistribution and cytotoxic effect of the drug delivery systems. Nanoparticles are nanometric in size and allow the incorporation of targeting ligands on their surface, favoring the transposition of the blood-brain barrier and the delivery of the drug to specific sites, increasing the selectivity and safety of chemotherapy. The present review has described the characteristics of chitosan, poly(vinyl alcohol), poly(lactic-coglycolic acid), poly(ethylene glycol), poly(ß-amino ester), and poly(ε-caprolactone), which are some of the most commonly used polymers in the manufacture of nanoparticles for the treatment of glioblastoma multiforme. In addition, some of the main targeting ligands used in these nanosystems are presented, such as transferrin, chlorotoxin, albumin, epidermal growth factor, and epidermal growth factor receptor blockers, explored for the active targeting of antiglioblastoma agents.
RESUMO
Dendritic cells are central to the development of immunity, as they are specialized in initiating antigen-specific immune responses. In this review, we briefly present the existing knowledge on dendritic cell biology and how their division in different dendritic cell subsets may impact the development of immune responses. In addition, we explore the use of chimeric monoclonal antibodies that bind to dendritic cell surface receptors, with an emphasis on the C-type lectin family of endocytic receptors, to deliver antigens directly to these cells. Promising preclinical studies have shown that it is possible to modulate the development of immune responses to different pathogens when monoclonal antibodies fused to pathogen-derived antigens are used to deliver the antigen to different subsets of dendritic cells. This approach can be used to improve the efficacy of vaccines against different pathogens.