Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.504
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125235, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368181

RESUMO

In recent years, terahertz (THz) technology has received widespread attention and has been leveraged to make breakthroughs in the field of bio-detection. However, studies on its application in mixtures have not yet been extensively conducted. Traditional one-dimensional (1D) spectral feature extraction methods are inefficient in terms of sensitivity and overall performance owing to spectral overlapping and distortions of a mixture. Thus, we adopted the Gramian angular field (GAF) method to map THz 1D spectra to two-dimensional (2D) images using correlation information between sequences. Image features of hepatocyte mixtures with different ratios were extracted using histogram of oriented gradients (HOGs) and gray level histograms (GLHs). A support vector regression (SVR) model was established for quantitative analysis. The method was more stable and accurate than principal component analysis (PCA) method, and RMSE and R2 values reached 0.072 and 0.932, respectively. This study enriches the algorithms of THz detection by combining the advantages of data upscaling and image processing, which is of great significance for the application of THz technology toward mixed-system detection.

2.
3D Print Addit Manuf ; 11(3): e1196-e1208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39359573

RESUMO

Polymer matrix composite (PMC) materials produced by additive manufacturing are a promising solution with several applications in industry. The presence of defects due to fabrication could undermine the performance of the component structure. PMC performance has been extensively studied using destructive tests, but reliable nondestructive testing (NDT) techniques are essential. In this study, PMC with unidirectional fibers were 3D printed with an adapted conventional fused filament fabrication printer. The matrix material was polylactic acid, and three different reinforcement fibers were used: Kevlar®, carbon, and glass fibers. The samples were 3D printed with artificial defects, to simulate delamination's 0.5 mm thick. Four NDT techniques were explored, benchmarking the inspection of PMC envisaging an automated noncontact imaging inspection for easier result interpretation. Active pulse thermography, air-coupled ultrasounds, continuous wave terahertz, and digital X-ray were the techniques chosen, and a critical comparison is presented, evaluating the performance of each technique in the detection of defects. NDT technique diversity, complementarity, and redundancy improve inspection reliability, as there is not a single inspection technique that can cover all material defects or characteristics.

3.
Talanta ; 281: 126943, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326113

RESUMO

The accurate detection of dehydration processes in hydrated drugs can reveal various intermolecular vibration modes mediated by hydrogen bonds between water molecules and other components, which underpin the further development of pharmaceutical science, food safety and biophysics. Herein, terahertz (THz) technology is utilized to investigate the dehydration state of d(+)-Raffinose pentahydrate (Rf·5H2O), in conjunction with imaging-based point by point scanning data acquisition and barcodes methods, to establish an innovative platform integrated identification, trace detection, and application capabilities. Our study demonstrates that the dehydration process of Rf·5H2O can be dynamically monitored through the evolution of its THz absorption peaks, offering more precise results compared to XRD and Raman spectroscopies. Moreover, the absorbance spectra data collected at each individual pixel is utilized to build visualized THz images, achieving an ultralow minimum content required for detection of 0.032 µg/(50 µm)2. Additionally, we introduce a THz spectra-barcode conversion system that not only ensures efficient electronic recordkeeping but also enhances user readability, thereby facilitating the practical applications of THz technology.

4.
Heliyon ; 10(18): e37575, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309804

RESUMO

A graphene-based 1 × 2 array antenna with circular polarization for terahertz applications is prescribed in this article. Initially, a novel concept of a folded quarter wave impedance transformer is utilized in the design process of a single element for minimizing the overall antenna size. The opposite corners of the patches have been truncated and structural modifications are performed with the insertion of four flower-shaped slots along with an additional circular slot for achieving a much-improved reflection coefficient and better impedance bandwidth. It also shows a much wider 3 dB axial ratio bandwidth, confirming circular polarization due to the suggested modifications in its geometry. Then, an array antenna has been formed to provide better gain. The configured patches are fed by a magic-T power divider to attain the required impedance matching. The results of the CP antenna array have been analyzed using the HFSS and CST simulators. The propounded 1 × 2 array antenna shows circular polarization with a 3 dB AR bandwidth of 205 GHz (2.345-2.55 THz) and wide spectral coverage of 210 GHz (2.345 - 2.555 THz) along with a maximum gain of 8.65 dB and 99.8 % radiation efficiency with a total size of 53.5 × 102 × 1.56 µm3. It could be utilized for high-speed data transmission, material characterization, terahertz spectroscopy, terahertz imaging, etc. applications.

5.
Materials (Basel) ; 17(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274677

RESUMO

In recent years, absorbers related to metamaterials have been heavily investigated. In particular, VO2 materials have received focused attention, and a large number of researchers have aimed at multilayer structures. This paper presents a new concept of a three-layer simple structure with VO2 as the base, silicon dioxide as the dielectric layer, and graphene as the top layer. When VO2 is in the insulated state, the absorber is in the closed state, Δf = 1.18 THz (absorption greater than 0.9); when VO2 is in the metallic state, the absorber is open, Δf = 4.4 THz (absorption greater than 0.9), with ultra-broadband absorption. As a result of the absorption mode conversion, a phenomenon occurs with this absorber, with total transmission and total reflection occurring at 2.4 THz (A = 99.45% or 0.29%) and 6.5 THz (A = 90% or 0.24%) for different modes. Due to this absorption property, the absorber is able to achieve full-transmission and full-absorption transitions at specific frequencies. The device has great potential for applications in terahertz absorption, terahertz switching, and terahertz modulation.

6.
ACS Appl Mater Interfaces ; 16(39): 52092-52103, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39315412

RESUMO

Advanced biosensors must exhibit high sensitivity, reliability, and convenience, making them suitable for detecting trace samples in biological or medical applications. Currently, biometric identification is the predominant method in clinical practice, but it is complex and time-consuming. In this study, we propose an optical metasurface utilizing the Fano resonance effect, which exhibits a sharp resonance with a transmittance of 32% at 0.65 THz. The resonance dip has a narrow bandwidth of 0.07 THz and a high Q-factor of 42. This resonance arises from the coupling of bright and dark modes, underpinned by the electromagnetic mechanism of Fano resonance. We integrated the metasurface into a microfluidic platform and fabricated low-temperature gallium arsenide photoconductive antennas (LT-GaAs-PCAs) on both sides of the microfluidics to efficiently generate and detect THz waves, significantly reducing the system's volume. The biosensor's detection limits for Escherichia coli (E. coli) and cefamandole nafate are 5 × 103 cells/mL and 5 µg/mL, respectively. Experimentally, when E. coli and cefamandole nafate solutions were sequentially injected into the microfluidic chip, a blue shift in the spectrum was observed. The sensor measured a 95.2% killing rate of E. coli by 40 µg/mL cefamandole nafate solution, with only a 3% deviation from biological experiments. Additionally, a timed killing experiment using 40 µg/mL cefamandole nafate on E. coli revealed a 93.7% killing rate within 3 min. This research presents a THz microfluidic biosensor with rapid detection, high sensitivity, and enhanced portability and integration, offering a promising approach for biomedical research, including antibiotic efficacy assessment and bacterial concentration monitoring.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Gálio , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Escherichia coli/efeitos dos fármacos , Gálio/química , Dispositivos Lab-On-A-Chip , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Arsenicais/química , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação
7.
ACS Appl Mater Interfaces ; 16(40): 54731-54741, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39320964

RESUMO

Terahertz absorbers play a crucial role in terahertz detectors, radar stealth, electromagnetic shielding, and other fields. However, the design and fabrication of flexible terahertz broadband absorbers remain a challenge at present. Here, we demonstrated a terahertz broadband absorber based on a copper composite film (CCF) consisting of a copper foam and an organic silica gel doped with Fe3O4 powder. The CCF can be fabricated by the infiltration method. The influence of the thickness and the pore size of the copper foam and the mass fraction of doped Fe3O4 powder on the absorption bandwidth were investigated. When the thickness of the CCF is 1.5 mm, the pore size of the copper foam is 95 pores per inch (ppi), and the mass fraction of Fe3O4 is 1%; a broadband absorption is achieved in the range of 0.11-3.5 THz. It is noted that the mass fraction of Fe3O4 has a significant impact on the absorption bandwidth. In addition, the thickness of the CCF and the pore size of the copper foam also have an impact on the absorption. The impedance matching theory is introduced to understand the mechanism of broadband absorption. This flexible broadband absorber has potential application in terahertz stealth, shielding, and the sixth-generation (6G) broadband wireless communication in the future.

8.
Biosensors (Basel) ; 14(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39329815

RESUMO

Terahertz (THZ) spectroscopy has emerged as a superior label-free sensing technology in the detection, identification, and quantification of biomolecules in various biological samples. However, the limitations in identification and discrimination sensitivity of current methods impede the wider adoption of this technology. In this article, a meticulously designed metasurface is proposed for molecular fingerprint enhancement, consisting of a periodic array of lithium tantalate triangular prism tetramers arranged in a square quartz lattice. The physical mechanism is explained by the finite-difference time-domain (FDTD) method. The metasurface achieves a high quality factor (Q-factor) of 231 and demonstrates excellent THz sensing capabilities with a figure of merit (FoM) of 609. By varying the incident angle of the THz wave, the molecular fingerprint signal is strengthened, enabling the highly sensitive detection of trace amounts of analyte. Consequently, cinnamoylglycine can be detected with a sensitivity limit as low as 1.23 µg·cm-2. This study offers critical insights into the advanced application of THz waves in biomedicine, particularly for the detection of urinary biomarkers in various diseases, including gestational diabetes mellitus (GDM).


Assuntos
Técnicas Biossensoriais , Glicina , Espectroscopia Terahertz , Glicina/análogos & derivados , Humanos , Limite de Detecção
9.
Elife ; 132024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331514

RESUMO

Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7-10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore, developing new interventions for the management of NP is urgent. In this study, we discovered that the high-frequency terahertz stimulation (HFTS) at approximately 36 THz effectively alleviates NP symptoms in mice with spared nerve injury. Computational simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels, facilitating the translocation of potassium ions. In vivo and in vitro results demonstrate that HFTS reduces the excitability of pyramidal neurons in the anterior cingulate cortex likely through enhancing the voltage-gated K+ and also the leak K+ conductance. This research presents a novel optical intervention strategy with terahertz waves for the treatment of NP and holds promising applications in other nervous system diseases.


Up to 1 in 10 people are estimated to experience neuropathic pain, a particularly challenging form of chronic pain where nerve damage causes extreme sensitivity to everyday stimuli. Current treatments often rely on painkiller drugs that can lead to serious side effects as well as dependency issues. New and effective interventions are therefore necessary. One radically different approach is the use of 'terahertz' waves, a type of electromagnetic radiation that has the ability to affect the chemical bonds holding molecules together. In fact, previous research has shown that specific frequencies of terahertz waves can modify the activity of certain proteins. With this technique, it may therefore be possible to disrupt voltage-dependent potassium channels, a type of proteins which help to regulate nerve cell activity and is a possible target for pain therapy. To explore this approach, Peng, Wang, Tan et al. investigated whether high-frequency terahertz stimulation that targets potassium ion channels could reduce neuropathic pain in mice. The animals, which had undergone surgery recreating nerve damage, were implanted with a device that allowed the delivery of terahertz waves into a brain region vital for regulating pain sensations. Experiments showed that delivering 36 terahertz radiations changed important ion channel properties (such as how easily they would allow ions to pass through), decreasing neuron activity and raising the pain threshold of the mice. This finding indicates that, with further development, terahertz frequency stimulation could become a new, non-drug method to manage neuropathic pain. Additional research will be needed to see if terahertz waves could also be applied to other neurological disorders influenced by ion channel activity.


Assuntos
Giro do Cíngulo , Neuralgia , Células Piramidais , Animais , Neuralgia/terapia , Camundongos , Giro do Cíngulo/fisiopatologia , Masculino , Modelos Animais de Doenças , Canal de Potássio Kv1.2/metabolismo , Camundongos Endogâmicos C57BL
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125183, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39340950

RESUMO

Terahertz spectroscopy is an emerging rapid detection method that can be used to detect and analyze food quality issues. However, models developed based on various spectral characteristics of terahertz have shown different performances in food identification. Therefore, we preliminarily analyzed the effect of terahertz spectral characteristics on the identification and quantification of collagen powder adulterated with food powders (plant protein powder, corn starch, wheat flour) with the use of random forest (RF), linear discriminant analysis (LDA), and partial least squares regression (PLSR), and determined the spectral characteristics suitable for identification and quantitative analysis. Then, the selected spectral characteristics data were preprocessed using baseline correction (BC), gaussian filter (GF), moving average (MA), and savitzky-golay (SG). Feature variables were extracted from preprocessed spectral characteristics data using genetic algorithm (GA), random forest (RF), and least angle regression (LAR). The study indicated that the BC-GA-LDA classification model based on the absorption coefficient spectra achieved an accuracy of 96.96% in identifying adulterated collagen powder. Additionally, the GA-PLSR model developed based on the power spectra demonstrated excellent performance in predicting adulteration levels, with the coefficient of determination (Rp2) values ranging from 0.93 to 0.99. The results showed that the rational selection of terahertz spectral characteristics is highly feasible for the accurate detection of collagen powder adulteration.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125205, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39348741

RESUMO

The traditional detection of impurities in wheat has difficulties such as low precision, time-consuming, and cumbersome, therefore, it is important to study the method of rapid and accurate detection of impurities in wheat for correctly assessing the quality grade of wheat. Terahertz (THz) technology has many superior properties such as transient, broadband, low-energy, and penetrating, which can realize rapid and nondestructive detection of wheat quality. In this study, a classification and recognition algorithm AHA-RetinaNet-X for wheat impurity terahertz images based on RetinaNet and Artificial hummingbird algorithm (AHA) is proposed.A THz three-dimensional tomography imaging system is used to image wheat and its impurities, and two THz image datasets, respectively the wheat and impurity dataset for verifying the classification effect of wheat and impurities and the impurity dataset for verifying the classification effect of impurities. The experimental results show that the AHA-RetinaNet-X model outperforms other detection and classification models in terms of accuracy, F1-score, precision, recall, and specificity, and is able to achieve 96.1%, 94.9%, 95.2%, 95.8%, 95.5%, 95.3%, and 93.3% for the wheat and impurity dataset and the impurity dataset, respectively, 95.6%, 96.3%, and 95.2%, and the mAP value of AHA-RetinaNet-X is also higher than the other models and can reach 92.1%. The combination of THz imaging technology and AHA-RetinaNet-X can realize the classification and identification of wheat and impurities, which provides a new method for the non-contact rapid nondestructive detection and identification of wheat and impurities, and also provides a reference for the research of the identification and detection methods of other substances.

12.
Micromachines (Basel) ; 15(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39337743

RESUMO

To address the requirement of functioning as a transmit/receive isolation device in terahertz transceiver systems, in this paper, we present two high-isolation multi-branch waveguide directional couplers operating at a center frequency of 510 GHz. One is a high-performance five-branch directional coupler, and the other is a new type of three-branch waveguide coupler with lower processing difficulty. Both couplers were fabricated using low-cost CNC milling technologies. The performance of these couplers was verified through measurement results, demonstrating high isolation at the center frequency.

13.
Sensors (Basel) ; 24(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39338636

RESUMO

This paper presents a method to enhance extended interaction oscillator (EIO) output power based on a dual-cavity parallel structure (DCPS). This stucture consists of two conventional ladder-line structures in parallel through a connecting structure, which improves the coupling efficiency between the cavities. The dual output power fusion structure employs an H-T type combiner as the output coupler, which can effectively combine the two input waves in phase to further increase the output power. The dispersion characteristics, coupling impedance, and field distribution of the DCPS are investigated through numerical and simulation calculations, and the optimal operating parameters and output structure are obtained by PIC simulation. At an operating voltage of 12.6 kV, current density of 200 A/cm2, and longitudinal magnetic field of 0.5 T, the DCPS EIO exhibits an output power exceeding 600 W at a frequency of 140.6 GHz. This represents a nearly three-fold enhancement compared with the 195 W output of the conventional ladder-line EIO structure. These findings demonstrate the significant improvement in output power and interaction efficiency achieved by the DCPS for the EIO device.

14.
J Photochem Photobiol B ; 259: 113017, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39226855

RESUMO

As terahertz (THz) technology advances, the interaction between THz radiation and the living body, particularly its effects on the immune system, has attracted extensive attention but remains poorly understood. This study firstly elucidated that exposure to 3 THz-FEL radiation markedly suppressed contact hypersensitivity reactions in mice induced by DNFB, as evidenced by a reduction in ear thickness and a discernible recovery in the Th1/Th2 cell balance. 3 THz irradiation led to cellular stress in the irradiated skin locale, increasing the levels of IL-4 and IL-10 and modulating the activity and migration of dendritic cells and mast cells. Furthermore, THz irradiation precipitated a rapid alteration in the skin lipidome, altering several categories of bioactive lipids. These findings offer new insights into the immunomodulatory effects of THz radiation on living organisms and the potential underlying mechanisms, with implications for the development of therapeutic approaches in managing skin allergic diseases.


Assuntos
Interleucina-4 , Mastócitos , Pele , Radiação Terahertz , Animais , Camundongos , Mastócitos/efeitos da radiação , Mastócitos/imunologia , Pele/efeitos da radiação , Interleucina-4/metabolismo , Células Dendríticas/efeitos da radiação , Células Dendríticas/imunologia , Interleucina-10/metabolismo , Dermatite de Contato/imunologia , Dermatite de Contato/etiologia , Camundongos Endogâmicos BALB C , Dinitrofluorbenzeno , Feminino , Células Th2/efeitos da radiação , Células Th2/imunologia , Células Th1/efeitos da radiação , Células Th1/imunologia
15.
Small ; : e2405859, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286888

RESUMO

Copper Sulfide (CuS) semiconductors have garnered interest, but the effect of transition metal doping on charge carrier kinetics and bandgap remains unclear. In this study, the interactions between dopant atoms (Nickel, Cobalt, and Manganese) and the CuS lattice using spectroscopy and electrochemical analysis are explored. The findings show that sp-d exchange interactions between band electrons and the dopant ions, which replace Cu2+, are key to altering the material's properties. Specifically, these interactions result in a reduced bandgap by shifting the conduction and valence band edges and increasing carrier concentration. It is observed that undoped CuS nanoflowers exhibit a carrier lifetime of 2.16 ns, whereas Mn-doped CuS shows an extended lifetime of 2.62 ns. This increase is attributed to longer carrier scattering times (84 ± 5 fs for Mn-CuS compared to 53 ± 14 fs for CuS) and slower trapping (∼1.5 ps) with prolonged de-trapping (∼100 ps) rates. These dopant-induced energy levels enhance mobility and carrier lifetime by reducing recombination rates. This study highlights the potential of doped CuS as cathode materials for sodium-ion batteries and emphasizes the applicability of metal sulfides in energy solutions.

16.
Foods ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39272595

RESUMO

The variety and content of high-quality proteins in sunflower seeds are higher than those in other cereals. However, sunflower seeds can suffer from abnormalities, such as breakage and deformity, during planting and harvesting, which hinder the development of the sunflower seed industry. Traditional methods such as manual sensory and machine sorting are highly subjective and cannot detect the internal characteristics of sunflower seeds. The development of spectral imaging technology has facilitated the application of terahertz waves in the quality inspection of sunflower seeds, owing to its advantages of non-destructive penetration and fast imaging. This paper proposes a novel terahertz image classification model, MobileViT-E, which is trained and validated on a self-constructed dataset of sunflower seeds. The results show that the overall recognition accuracy of the proposed model can reach 96.30%, which is 4.85%, 3%, 7.84% and 1.86% higher than those of the ResNet-50, EfficientNeT, MobileOne and MobileViT models, respectively. At the same time, the performance indices such as the recognition accuracy, the recall and the F1-score values are also effectively improved. Therefore, the MobileViT-E model proposed in this study can improve the classification and identification of normal, damaged and deformed sunflower seeds, and provide technical support for the non-destructive detection of sunflower seed quality.

17.
Neurosci Bull ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231899

RESUMO

In neurons and myocytes, selective ion channels in the plasma membrane play a pivotal role in transducing chemical or sensory stimuli into electrical signals, underpinning neural and cardiac functionality. Recent advancements in biomedical research have increasingly spotlighted the interaction between ion channels and electromagnetic fields, especially terahertz (THz) radiation. This review synthesizes current findings on the impact of THz radiation, known for its deep penetration and non-ionizing properties, on ion channel kinetics and membrane fluid dynamics. It is organized into three parts: the biophysical effects of THz exposure on cells, the specific modulation of ion channels by THz radiation, and the potential pathophysiological consequences of THz exposure. Understanding the biophysical mechanisms underlying these effects could lead to new therapeutic strategies for diseases.

18.
Small ; : e2402668, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235584

RESUMO

Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.

19.
Adv Mater ; 36(40): e2406526, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39152935

RESUMO

Terahertz absorbers are crucial to the cutting-edge techniques in the next-generation wireless communications, imaging, sensing, and radar stealth, as they fundamentally determine the performance of detectors and cloaking capabilities. It has long been a pressing task to find absorbers with customizable performance that can adapt to various environments with low cost and great flexibility. Here, perfect absorption empowered by bound states in the continuum (BICs) is demonstrated, allowing for the tailoring of absorption coefficient, bandwidth, and field of view. The one-port absorbers are interpreted using temporal coupled-mode theory highlighting the dominant role of BICs in the far-field radiation properties. Through a thorough investigation of BICs from the perspective of lattice symmetry, the radiation features of three BIC modes are unraveled using both multipolar and topological analysis. The versatile radiation capabilities of BICs provide ample freedom to meet specific requirements of absorbers, including tunable bandwidth, stable performance in a large field of view, and multiband absorption using a thin and flexible film without extreme geometric demands. These findings offer a systematic approach to developing optoelectronic devices and demonstrate the significant potential of BICs for optical and photonic applications, which will stimulate further studies on terahertz photonics and metasurfaces.

20.
Sci Rep ; 14(1): 18501, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122828

RESUMO

Terahertz (THz) wireless communication is a promising technology that will enable ultra-high data rates, and very low latency for future wireless communications. Intelligent Reconfigurable Surfaces (IRS) aiding Unmanned Aerial Vehicle (UAV) are two essential technologies that play a pivotal role in balancing the demands of Sixth-Generation (6G) wireless networks. In practical scenarios, mission completion time and energy consumption serve as crucial benchmarks for assessing the efficiency of UAV-IRS enabled THz communication. Achieving swift mission completion requires UAV-IRS to fly at maximum speed above the ground users it serves. However, this results in higher energy consumption. To address the challenge, this paper studies UAV-IRS trajectory planning problems in THz networks. The problem is formulated as an optimization problem aiming to minimize UAVs-IRS mission completion time by optimizing the UAV-IRS trajectory, considering the energy consumption constraint for UAVs-IRS. The proposed optimization algorithm, with low complexity, is well-suited for applications in THz communication networks. This problem is a non-convex, optimization problem that is NP-hard and presents challenges for conventional optimization techniques. To overcome this, we proposed a Deep Q-Network (DQN) reinforcement learning algorithm to enhance performance. Simulation results show that our proposed algorithm achieves performance compared to benchmark schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA