Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Food Microbiol ; 426: 110926, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39368122

RESUMO

This study aims to evaluate the effect of high-pressure processing (HPP) (500 and 600 MPa for 3 min and 5 min) on the microbial changes of Murrah buffalo milk in comparison to heat treatment (72 °C for 15 s of holding time) during refrigerated storage of 28 days. The results indicated that the total plate count (TPC) of raw milk at day 0 was 5.5 ± 0.6 log10 CFU/mL. At day 0, heat treatment lowered TPC to 3.9 ± 0.6, while HPP treatment was in the range of 4.1 ± 0.3 to 4.8 ± 0.6 log10 CFU/mL. Similarly, lowered yeast and mold count and lactic acid bacteria were noted in heat- and HPP-treated milk samples compared to the control sample during refrigerated storage. There were no Staphylococcus aureus and Escherichia coli detected in heat and HPP-treated samples. Heat or HPP treatment at 600 MPa for 5 min significantly extended the shelf-life of Murrah buffalo milk for three weeks at the refrigerated storage. In addition, HPP treatment did not alter the pH, lightness (L* value), protein, or fat content of Murrah buffalo milk during refrigerated storage. Hence HPP at 600 MPa for 5 min could be a suitable alternative to conventional heat treatment.

2.
Foods ; 13(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39272493

RESUMO

The aim of this study was to simulate microwave heating characteristics to investigate the lipid quality in rainbow trout, including the impact of the heating rate, maximum temperature, and thermal processing level on the extent of lipid oxidation and on the fatty acid extraction coefficient. Increasing F0 from 3 to 6 min improved fatty acid retention at high heating rates but led to a decrease in the measured results at low heating rates. Elevated thermal processing levels and maximum temperatures were observed to intensify the oxidation. At F0 = 3 min, an increase in maximum temperature led to an increase in the total lipid extraction coefficient but a decrease in the fatty acid extraction coefficient. However, an increase in maximum temperature resulted in a decrease in both extraction coefficients when F0 was 6 min. The coefficient spectra of fatty acid extraction obtained from the microwave and traditional heat treatments showed nonparallel trends, confirming the presence of non-thermal effects during microwave thermal processing. In conclusion, compared to conventional heat treatment methods, microwave processing has significant potential for enhancing the lipid quality of ready-to-eat rainbow trout products and effectively reducing production costs.

3.
Foods ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063266

RESUMO

One of the most difficult issues in the juice industry is to manufacture juices where processing processes minimise the impact on the native characteristics of the fruits. In this study, high-pressure technology was used on whole apple fruits in order to evaluate the effect on the juice production. Two varieties, cv. Limoncella and cv. Pink Lady, were considered. Preliminarily, the fruits were subjected to different pressures, and histological as well as pomological measurements were taken in order to identify the best treatment condition, which was established to be 600 MPa for 3 min. Juice samples were then characterised by measuring the colour, viscosity, total antioxidant capacity (TAC), and total phenolic content (TPC). The storage colour stability of the juices for both varieties showed not significant L* values between the untreated and pre-treated fruits. Juices obtained from pre-treated fruits had a viscosity significantly higher than that obtained from untreated ones. Interestingly, the TPC of high-pressure processing (HPP) pre-treated juice resulted in being significantly higher compared to the untreated ones. The HPP pre-treatment can be considered as a commercial application to modulate some quality standards for apple juice production.

4.
Food Chem ; 456: 140038, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38876069

RESUMO

Food-packaging-processing interactions define packaging materials' performance properties and product quality. This study evaluated the effect of ohmic heating (OH) processing and different food simulants on the properties of four multilayer flexible packaging materials (PETmet/PE, PETmet/PP, PET/Al/PE, and PET/Al/PA/PP). OH treatment was applied to the sealed packages containing the food simulants using a voltage gradient of 3.7 V/cm at a frequency of 20 kHz, resulting in a thermal process of at 80 °C for 1 min. The structure and performance of the different packages were then evaluated. The materials did not show changes in chemical groups nor thermal properties. However, the simulant-packaging-processing interaction resulted in changes in crystallinity, morphology, mechanical and barrier properties (water and oxygen), especially for metallized films in contact with acidic food simulants. The results indicate that although OH resulted in changes in packaging materials, these materials can be used under the conditions applied in this study.


Assuntos
Embalagem de Alimentos , Temperatura Alta , Embalagem de Alimentos/instrumentação
5.
Food Res Int ; 182: 114149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519161

RESUMO

The effects of cysteine (Cys), glutathione (GSH) and cystine (GCys) on sulfides and meaty aroma were studied based on concentration monitoring and metabolomics. In multi-component models, Cys and GSH demonstrated a greater capacity to decrease dimethyl trisulfide (DMTS) levels and increase the proportion of 2-methyl-3-furanthiol (MFT), compared with GCys. Moreover, no discernible difference between Cys and GSH in dynamic profiles of volatiles to further analyze the synergistic effect of both. Results of single factor experiment and optimization revealed that the optimal thermal processing was a second-order thermal procedure. Aroma profiles revealed that the addition of Cys and GSH mixture increased the meaty intensity during the optimal thermal processing. Metabolomics based on Encyclopedia of Genes and Genomes pathway annotation confirmed that Cys and GSH significantly affected the degradation of methionine and thiamine in amino acid and protein metabolic pathways, resulting in various amounts of DMTS and MFT. Research on effect and potentially metabolic mechanisms revealed that the combination of Cys and GSH at ratio of 3:7 had higher and more effective control capacity for free radical reaction of sulfides than either one alone during second-order thermal processing, which would lay theoretical foundation for the development of high-quality thermal process products.


Assuntos
Cisteína , Odorantes , Cisteína/metabolismo , Glutationa/metabolismo , Cistina , Sulfetos
6.
Materials (Basel) ; 17(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38399104

RESUMO

One of the most promising solutions to slow down CO2 emissions is the use of photocatalysis to produce hydrogen as a clean fuel. However, the efficiency of the photocatalysts is not at the desired level, and they usually need precious metal co-catalysts for reactions. In this study, to achieve efficient photocatalytic hydrogen production, a high-entropy oxide was synthesized by a mechano-thermal method. The synthesized high-entropy oxide had a bandgap of 2.45 eV, which coincided with both UV and visible light regions. The material could successfully produce hydrogen from water under light, but the main difference to conventional photocatalysts was that the photocatalysis proceeded without a co-catalyst addition. Hydrogen production increased with increasing time, and at the end of the 3 h period, 134.76 µmol/m2 h of hydrogen was produced. These findings not only introduce a new method for producing high-entropy photocatalysts but also confirm the high potential of high-entropy photocatalysts for hydrogen production without the need for precious metal co-catalysts.

7.
J Agric Food Chem ; 72(1): 647-656, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38115213

RESUMO

Until now, no effective method has been found to monitor the Maillard reaction process for complex protein hydrolysates. Dynamic changes in the concentration of α-dicarbonyl compounds, fluorescence intensity, and browning degree were investigated during the Maillard reaction of corn protein hydrolysates. When the fluorescence intensity reached the peak, deoxyosones would continue to be increased by ARP's degradation. However, the reaction node with the highest fluorescence intensity coincided with the turning point of the browning reaction, and the subsequent browning rate remarkably increased. Therefore, the change in fluorescence intensity could be used to monitor the degradation of ARP and the formation of browning melanoidin at different stages of the Maillard reaction of complex systems, thus effectively indicating the process of the Maillard reaction. When Maillard reaction intermediates (MRIs) with maximum fluorescent compounds were heated, the most abundant pyrazines were subsequently achieved. However, furan compounds would be progressively increased during the thermal process of MRIs with continuously enhanced browning.


Assuntos
Reação de Maillard , Xilose , Zea mays , Hidrolisados de Proteína , Temperatura Alta
8.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959942

RESUMO

Edible films based on fruit and vegetable purees combined with different food-grade biopolymeric binding agents (e.g., pectin, gelatin, starch, sodium alginate) are recognized as interesting packaging materials that benefit from the physical, mechanical, and barrier properties of biopolymers as well as the sensory and nutritional properties of purees. In the current contribution, edible antioxidant films based on pear juice and pregelatinized cassava starch were developed. In particular, the suitability of using pregelatinized cassava starch for the non-thermal production of these novel edible films was evaluated. In addition, the effects on the films' properties derived from the use of pear juice instead of the complete puree, from the content of juice used, and from the carbohydrate composition associated with the ripening of pears were all studied. The produced films were characterized in terms of their total polyphenol content, water sensitivity, and water barrier, optical, mechanical and antioxidant properties. Results showed that the use of pear juice leads to films with enhanced transparency compared with puree-based films, and that juice concentration and carbohydrate composition associated with the degree of fruit ripeness strongly govern the films' properties. Furthermore, the addition of pregelatinized cassava starch at room temperature discloses a significant and favorable impact on the cohesiveness, lightness, water resistance, and adhesiveness of the pear-juice-based films, which is mainly attributed to the effective interactions established between the starch macromolecules and the juice components.

9.
Nanotechnology ; 34(49)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37607535

RESUMO

Due to the advantages of high porosity, excellent conductivity, and tunable morphology, carbonized metal-organic framework (C-MOF) is expected to become an ideal material for constructing high-performance flexible pressure sensor. Herein, to achieving the suitable morphology of C-MOF for piezoresistive sensors, a rapid thermal process (RTP) was used for carbonization of NiCo-MOF, and the petal-shaped NiCo alloy nanoparticles/nanoporous carbon composites (NiCo-NPCs) were obtained. Compared with NiCo-NPCs carbonized by common thermal process (CTP), NiCo-NPCs carbonized by RTP exhibit a modified morphology with smaller particle size and larger most frequent pore diameter. Due to the modified morphology, the piezoresistive sensor with RTP-carbonized NiCo-NPCs has a high sensitivity of 62.13 kPa-1at 0-3 kPa, which is 3.46 times higher than that of the sensor with CTP-carbonized NiCo-NPCs. Meanwhile, the sensor shows an ultra-wide range of 1000 kPa, excellent cycle stability (>4000 cycles), and fast response/recovery time of 25/44 ms. Furthermore, the application of the sensor in dynamic loading test, airflow monitoring, voice recognition, and gesture detection demonstrates its great application prospects. In short, this work investigates the application of carbonized NiCo-MOFs in flexible pressure sensors, and provides a new strategy to improve the performance of piezoresistive sensors with porous carbon derived from MOFs.

10.
Plants (Basel) ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570934

RESUMO

The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers.

11.
Food Sci Technol Int ; : 10820132231193988, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553972

RESUMO

Ultrasonication is one of the non-thermal physical methods that can be used on foods and when used in synergy with temperature (thermosonication), this technique proves to be more effective, thus reducing the duration and intensity of heat treatment and the consequent damage to the foods. This work aimed to use the technique of ultrasonication and thermosonication in the processing of jalapeno pepper sauces in comparison with pasteurization. Two types of sauces were produced, one with pre-cooking (a) and the other without cooking (b), and the influence of time and temperature was analyzed by applying ultrasonication and thermosonication. Times of 15 and 30 min and temperatures of 25 and 65 °C were used. Both treatments stood out for their effectiveness when compared to the traditional method (pasteurization 65 °C and 30 min). The results demonstrate that, in general, the sauces are good sources of phenolic compounds (141.83 ± 0.10 mg gallic acid equivalent/100 g), flavonoids (50.40 ± 0.30 mg quercetin equivalent/100 g) and carotenoids (2.39 ± 0.07 mg ß-carotene/100 g). The sauces had an increase in carotenoids by about 25% (thermosonicated at 15 and 30 min and pre-cooked) and in antioxidant activity (ferric reducing antioxidant power) with about 12% and 13% (thermosonicated at 30 min with and without cooking, respectively) in relation to control (pasteurization). On comparing thermosonication with ultrasound process total phenolics had improved by around 14% and flavonoids by 55%. At the first time, capsantin, capsaicin, dihydrocapsaicin, and nordihydrocapsaicin were identified by ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). Finally, as both treatments demonstrate efficiency (thermosonication at 15 and 30 min), the use of 15 min is indicated as feasible by the reduced process time and in preventing the loss of bioactive compounds in the sauces when compared to the pasteurization treatment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37444119

RESUMO

Acrylamide, a thermal process contaminant, is generated in carbohydrate-rich foods processed at high temperatures (above 120 °C). Since acrylamide indicates a human health concern, the acrylamide contents of various foods and the dietary exposure of the population to acrylamide are very well investigated. Commonly consumed foods in the daily diet of individuals such as bakery products, potato products and coffee are major dietary sources of acrylamide. In recent years, dietary exposure levels of the population and mitigation measures for reducing acrylamide in different food products have gained importance to decrease the public's exposure to acrylamide. Since the complete elimination of acrylamide in foods is not possible, various mitigation measures to reduce acrylamide to levels as low as reasonably achievable have been developed and applied in the food industry. Mitigation strategies should be applied according to the different product categories during agricultural production, formulation, processing and final consumer preparation stages. The aim of this review is to evaluate formulation and processing strategies to reduce acrylamide in various cereal-based food products and to discuss the applicability of mitigation measures in the food industry by taking into consideration the organoleptic properties, nutritional value, cost and regulations in the light of current knowledge.


Assuntos
Acrilamida , Grão Comestível , Humanos , Acrilamida/análise , Grão Comestível/química , Análise de Alimentos , Dieta , Indústria de Processamento de Alimentos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
13.
Food Chem ; 426: 136649, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352714

RESUMO

Changes in flavor quality of thermal process flavorings with beef-like odor (TPFB) affected sensory properties upon storage. The changes in sensory quality and odorants of TPFB stored at 50 ℃ for 168 days were evaluated using sensomics approach. The aroma profiles of TPFB gradually changed from stronger meaty notes to stronger burnt and soybean paste-like notes during storage. Forty-two quantified odor-active compounds with flavor dilution ≥ 27 were assessed using the odor activity value concept. Correlation analysis indicated that a decreasing trend of meaty note was closely associated with 5-methyl furfural, dimethyl disulfide, dimethyl trisulfide, furfuryl methyl sulfide and furfuryl thioacetate, which all enriched with time. Omission and addition tests showed that dimethyl disulfide, dimethyl trisulfide and furfuryl thioacetate with the concentration increasing considerably reduced the intensity of meaty note, particularly for dimethyl trisulfide. Therefore, the formation of dimethyl trisulfide should be limited to produce high-quality TPFB during storage.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Bovinos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Técnicas de Diluição do Indicador , Aromatizantes/análise
14.
Food Chem ; 426: 136616, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354580

RESUMO

The influences of frozen-then-chilled storage of minced pork on the formation of advanced glycation end-products (AGEs) including Nε-carboxymethyllysine and Nε-carboxyethyllysine, and their corresponding α-dicarbonyl precursors (α-DPs; glyoxal and methylglyoxal) during storage and subsequent heating were investigated in comparison with chilled storage. During cold storage, the levels of AGEs, trichloroacetic acid-soluble peptides, and Schiff bases in minced pork continuously increased while α-DPs decreased. The 30 min heating (100 °C) resulted in 64-560% increase of AGEs in pork, corresponding with an increase of Schiff bases and decreases of α-DPs. Compared to the chilled storage, the frozen-then-chilled storage led to no significant difference (P > 0.05) on the levels of AGEs and α-DPs in raw or heat-treated pork, implying that the formation and thawing of ice crystals in pork during the frozen-then-chilled storage had minor to no effects on the formation of AGEs and their α-DPs.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Carne Vermelha/análise , Reação de Maillard , Bases de Schiff , Calefação , Produtos Finais de Glicação Avançada/química
15.
Food Chem ; 418: 136034, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37003199

RESUMO

Epigallocatechin-3-gallate (EGCG) exhibits excellent cross-linking effects of myofibrillar proteins, it is prone to self-aggregation, causing excessive cross-linking and moisture loss of gels, which limits its application as a food additive in surimi products. Here, through combination γ-cyclodextrin and EGCG into one inclusion complex, we achieved proper usage of EGCG in shrimp surimi products: elevating both water holding capability and texture properties (hardness, chewiness and resilience). Moreover, the mechanism behind excellent performance was elucidated: as texture modifiers, the complexes improved gel network integrity through intermolecular interactions and moderated disulfide bonds; and as water retainer agents, the complexes promoted transformation of nitrogen in proteins towards the form of protonated amino, facilitating the occurrence of hydration. Furthermore, the inclusion complexes brought a higher phenolic retention within products in contrast with direct addition of EGCG. This work may propose novel insights for the usage of polyphenols as additives in surimi-based products.


Assuntos
gama-Ciclodextrinas , Aditivos Alimentares , Géis/química , Produtos Pesqueiros/análise , Água , Proteínas de Peixes/química , Manipulação de Alimentos
16.
Food Res Int ; 167: 112636, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087231

RESUMO

In this study, we compared the heat tolerance parameter (D65℃) values of Salmonella enterica serovar Enteritidis PT 30 (S. Enteritidis ) heat adapted at different degrees (at 42 ℃ for 20-180 min) and cultivated using two methods. The treated group with the highest D65℃ value (LP-42 ℃-60 min) and the untreated groups (Control-TSB and Control-TSA) were subjected to transcriptome analysis. Heat-adaptation increased the D65℃ values of S. Enteritidis by 24.5-60.8%. The D65℃ values of the LP-42 ℃-60 min group (1.85 ± 0.13 min, 7.7% higher) was comparable to that of the Control-TSA. A total of 483 up- and 443 downregulated genes of S. enteritidis were identified in the LP-42 ℃-60 min group (log2fold change > 1, adjusted p-value < 0.05). Among these genes, 5 co-expressed and 15 differentially expressed genes in the LP-42 ℃-60 min and Control-TSA grops possibly contributed to the high D65℃ values of S. Enteritidis . The Rpo regulon was involved in the heat adaptation of S. Enteritidis , as evidenced by the significant upregulation of rpoS, rpoN, and rpoE. KEGG enrichment pathways, such as biosynthesis of secondary metabolites, tricarboxylic acid, and ribosomes were identified and mapped to reveal the molecular mechanisms of S. enteritidis during heat adaptation. This study quantified the enhanced heat tolerance of S. Enteritidis heat adapted at different degrees of heat-adaptation. The results of this study may serve as a basis for elucidating the molecular mechanisms underlying the enhanced heat tolerance at the transcriptome level.


Assuntos
Salmonella enterica , Termotolerância , Salmonella enteritidis/genética , Salmonella enterica/genética , Termotolerância/genética , Temperatura Alta , Perfilação da Expressão Gênica
17.
J Agric Food Chem ; 71(10): 4346-4357, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880130

RESUMO

The Amadori compound of glucose and glycyl-l-glutamine (Gly-Gln-ARP) was prepared and characterized by UPLC-MS/MS and NMR. Gly-Gln-ARP could be thermally degraded into Gly-Gln and other secondary reaction products like glycyl-l-glutamic acid and its ARP via deamidation. The thermal processing temperature exerted a tremendous influence on the flavor formation of ARP. Furans were mainly formed at 100 °C, while an elevated temperature of 120 °C facilitated the massive accumulation of α-dicarbonyl compounds through the retro-aldolization of deoxyglucosone, and then increased the formation of pyrazines. The extra-added amino acids further promoted the formation of pyrazines at 120 °C, especially Glu, Lys, and His, further increasing the total concentration of pyrazines to 457 ± 6.26, 563 ± 65.5, and 411 ± 59.2 µg/L, respectively, exceeding the pure heated control at 140 °C (296 ± 6.67 µg/L). The total concentration of furans was enhanced to (20.7 × 103) ± 8.17 µg/L by extra-added Gln. Different increasing effects were observed on the type and flavor intensity of formed pyrazines and furans from different extra-added amino acids.


Assuntos
Aminoácidos , Pirazinas , Temperatura , Furanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácido Glutâmico/química , Reação de Maillard
18.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927208

RESUMO

Laser food processing has the breath-taking potential to revolutionize the industry in many aspects. Among the different laser configurations, CO2 laser has received special attention due to its relative high efficiency in power generation, its high-power output and its laser beam wavelength, infrared, which is strongly absorbed by water, the main component of food materials. Over the last 50 years, different uses of CO2 laser for processing foods have been proposed so far, including cooking, broiling and browning, selective laser sintering, marking, microperforation for improving downstream mass transfer operations (e.g. infusion, diffusion, marinating, salting, drying, extraction), cutting and peeling, and microbial surface decontamination. The present work is a review of the state of the art of the use of CO2 laser for food processing that covers the main characteristics and mechanisms of this technology, as well as the most important published results regarding its applications in the agri-food sector, highlighting the main challenges to bring out its full potential in the coming years.

19.
J Phys Condens Matter ; 35(15)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36731175

RESUMO

A novel thermal rejuvenation treatment facility for Zr-based bulk metallic glass (BMG) was developed, consisting of a rapid heating and indirect liquid nitrogen quenching process. The re-introduction of free volume into thermally rejuvenated BMG results in more disordered state. The rejuvenation improves ductility, implying that the re-introduced free volume aids in the recovery of the shear transformation zone (STZ) site and volume. Actually, it is confirmed that relaxation significantly reduces STZ volume; however, it is recovered by thermal rejuvenation. Molecular dynamics simulations also indicate that rejuvenation enhances homogeneous deformation. The current findings indicate that the thermal rejuvenation method is extremely effective for recovering or improving the ductility of metallic glass that has been lost due to relaxation.

20.
Environ Technol ; 44(7): 948-960, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34605748

RESUMO

The resultant residues after thermal processes can be reused in the form of activated carbon (AC) production or used for soil amelioration. However, the economic and energy optimisation of the waste revaluation process is necessary for the prediction of technology requirements, investment boundaries and cost-benefit analysis. Mass, energy and cost estimation of the entire process were systematically executed relative to equipment sizing and type of product, as major factors in the evaluation. The economic analysis and process optimisation were quantified and evaluated with the Aspen Plus economy and an SPSS statistical tool for economic analysis. Simulation results were concomitant with economic analysis to determine the approximate annualised return on investment, profitability index and payback period, using optimised variables in the process. The four processes examined: process scenario 1-4 (pyrolysis, gasification, combustion and combined) have 16, 17, 14 and 17.2% return on investment for the 8.5, 8.2, 9.8 and 8-year payback period, respectively. The results provide a technology assessment and economic guide for investors and policymakers among others. This work is also useful for researchers in achieving the goal of efficient biomass utilisation. Palm waste ash as a potential alternative to chemical fertiliser, especially for the treatment of ultisol and acidic soils, were evaluated and it was confirmed that it is a good alternative to typical inorganic fertiliser. Finally, the results indicate that using such wastes in the AC market is a viable business option, though with high initial capital investment even though palm waste ash can be produced locally.


Assuntos
Carvão Vegetal , Fertilizantes , Análise Custo-Benefício , Agricultura , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA