RESUMO
In this study, thermoplastic starch (TPS) biofilms were developed using starch isolated from the seeds of Melicoccus bijugatus (huaya) and reinforced with bentonite clays at concentrations of 1%, 3%, and 5% by weight. Novelty of this research lies in utilizing a non-conventional starch source and enhancing properties of TPS through clay reinforcement. FTIR analysis verified bentonite's nature of clays, while SEM analysis provided insights into morphology and agglomeration behavior. Key findings include a notable increase in biofilm thickness and elastic modulus with higher clay content. Specifically, tensile strength of biofilms improved from 2.5 MPa for pure TPS to 5.0 MPa with 5% clay reinforcement. The elastic modulus increased from 25 MPa (TPS) to 60 MPa (5% clay). Thermal stability also showed enhancement, with initial degradation temperature increasing from 110 °C for pure TPS to 130 °C for TPS with 5% clay. Water vapor permeability (WVP) tests demonstrated a decrease in WVP values from 4.11 × 10-10 g m-1 s-1 Pa-1 for pure TPS to 2.09 × 10-10 g m-1 s-1·Pa-1 for TPS with 5% clay, indicating a significant barrier effect due to clay dispersion. These results suggest that biofilms based on huaya starch and reinforced with bentonite clay have considerable potential for sustainable food packaging applications, offering enhanced mechanical and barrier properties.
RESUMO
Currently, petroleum-derived plastics are widely used despite the disadvantage of their long degradation time. Natural polymers, however, can be used as alternatives to overcome this obstacle, particularly cornstarch. The tensile properties of cornstarch films can be improved by adding plant-derived nanofibers. Sisal (Agave sisalana), a very common low-cost species in Brazil, can be used to obtain plant nanofibers. The goal of this study was to obtain sisal nanofibers using low concentrations of sulfuric acid to produce thermoplastic starch nanocomposite films. The films were produced by a casting technique using commercial corn starch, glycerol, and sisal nanofibers, accomplished by acid hydrolysis. The effects of glycerol and sisal nanofiber content on the tensile mechanical properties of the nanocomposites were investigated. Transmission electron microscopy findings demonstrated that the lowest concentration of sulfuric acid produced fibers with nanometric dimensions related to the concentrations used. X-ray diffraction revealed that the untreated fibers and fibers subjected to acid hydrolysis exhibited a crystallinity index of 61.06 and 84.44%, respectively. When the glycerol and nanofiber contents were 28 and 1%, respectively, the tensile stress and elongation were 8.02 MPa and 3.4%. In general, nanocomposites reinforced with sisal nanofibers showed lower tensile stress and higher elongation than matrices without nanofibers did. These results were attributed to the inefficient dispersion of the nanofibers in the polymer matrix. Our findings demonstrate the potential of corn starch nanocomposite films in the packaging industry.
RESUMO
When the cocoa pod husk (CPH) is used and processed, two types of flour were obtained and can be differentiated by particle size, fine flour (FFCH), and coarse flour (CFCH) and can be used as a possible reinforcement for the development of bio-based composite materials. Each flour was obtained from chopping, drying by forced convection, milling by blades, and sieving using the 100 mesh/bottom according to the Tyler series. Their physicochemical, thermal, and structural characterization made it possible to identify the lower presence of lignin and higher proportions of cellulose and pectin in FFCH. Based on the properties identified in FFCH, it was included in the processing of thermoplastic starch (TPS) from the plantain pulp (Musa paradisiaca) and its respective bio-based composite material using plantain peel short fiber (PPSF) as a reinforcing agent using the following sequence of processing techniques: extrusion, internal mixing, and compression molding. The influence of FFCH contributed to the increase in ultimate tensile strength (7.59 MPa) and higher matrix-reinforcement interaction when obtaining the freshly processed composite material (day 0) when compared to the bio-based composite material with higher FCP content (30%) in the absence of FFCH. As for the disadvantages of FFCH, reduced thermal stability (323.57 to 300.47 °C) and losses in ultimate tensile strength (0.73 MPa) and modulus of elasticity (142.53 to 26.17 MPa) during storage progress were identified. In the case of TPS, the strengthening action of FFCH was not evident. Finally, the use of CFCH was not considered for the elaboration of the bio-based composite material because it reached a higher lignin content than FFCH, which was expected to decrease its affinity with the TPS matrix, resulting in lower mechanical properties in the material.
RESUMO
The incorporation of different amounts of Gum Arabic (GA) in thermoplastic starch (TPS) obtained by extrusion and subsequent thermocompression has been studied. The sheets have been characterized by means of XRD, FTIR, TGA, moisture content, SEM, mechanical properties, antimicrobial activity and biodegradability via composting. The FTIR analysis of the sheets shows the presence of ester groups, while the TGA shows the presence of new processes and a residue much higher than expected is obtained. No changes in crystallinity are observed by XRD. The inclusion of GA confers antimicrobial properties to thermoplastic starch against the Gram + and Gram - bacteria studied even at the smaller concentrations. For a low GA content (0.5 and 1 g GA/100 g TPS) a homogeneous material is observed by SEM, as well as an important increase in tensile strength, modulus and deformation at break, which are very interesting properties facing the applicability of this material in single use plastics which are in contact with food or other consumable goods. At higher contents of GA, hollows and cracks appear in the material, compromising the mechanical properties. In all cases, the inclusion of GA delays the biodegradation process in soil, which can be related to its antibacterial capacity and especially in case of GA concentrations of 2 and 5 g/100 g of TPS with lower humidity of these TPS sheets.
RESUMO
In this study, the influence of the incorporation of eucalyptus (EO), tea tree (TT) and rosemary (RO) essential oils and Chiriyuyo extract (CE) on the structure and properties of thermoplastic starch (TPS) obtained from potato starch, glycerin and water was evaluated. All oils and the extract were used at a concentration of 0.5 g/100 g of TPS, while for TT, the effect of the concentration was also studied. The mixtures obtained were processed by extrusion and thermocompression molding. The sheets were characterized by XRD, FTIR, TGA, SEM and analyses of their mechanical properties, antimicrobial characteristics and biodegradability. The results show that the use of small concentrations of the oils in 70TPS does not induce changes in the TPS structure according to the results of XRD, FTIR and TGA, with each essential oil and CE affecting the mechanical properties unevenly, although in all cases, antimicrobial activity was obtained, and the biodegradability of TPS in soil was not modified. An increase in the concentration of TT in 60TPS causes marked changes in the crystallinity of TPS, providing a greater modulus with a higher concentration of TT. Regardless of the amount of TT, all sheets maintain antimicrobial characteristics, and their biodegradation in soil is delayed with a higher oil content.
RESUMO
The degradability of the biocomposite produced from a binary mixture of thermoplastic banana starch (TPS) and polycaprolactone (PCL) reinforced with fique fibers (Fs) was evaluated in three different environments (soil, compost, water). An experimental design with two factors (soil and compost) and three levels (5, 10, and 20 cm) was used, with additional tests for a third aqueous environment (water from the lake of the Universidad del Valle) at a depth of 20 cm. The biocomposite was prepared from the implementation of a twin-screw extrusion process of the binary mixture TPS/PCL and fique fibers (54, 36, and 10% composition, respectively), followed by hot compression molding, and after that, generating ASTM D638 type V specimens using a stainless-steel die. The specimens were dried and buried according to the experimental design, for a total experimental time of 90 days, and removing samples every 30 days. After 90 days, all samples showed signs of degradation, where the best results were obtained in the compost at a depth of 20 cm (34 ± 4% mass loss and a decrease in tensile strength of 77.3%, which indicates that the material lost mechanical properties). TPS was the fastest disappearing component and promoted the degradation of the composite material as it disappeared. Finally, the aqueous media presented the lowest degradation results, losing only 20% of its initial mass after 90 days of the experiment, being the least effective environment in which the biocomposite can end up.
RESUMO
Starch is a biodegradable biopolymer, a sustainable material that can replace conventional petrochemical-based plastics. However, starch has some limitations, as it must be processed by heating and treated mechanically with a plasticizer to become thermoplastic starch (TPS). Different variables such as mixing speeds, amount, and kind of plasticizers play a vital role in preparing TPS by melting. Despite this, the properties of the TPS are not comparable with those of traditional plastics. To overcome this limitation, microcellulose or nanocellulose is added to TPS by melt mixing, including the extrusion and internal mixing process, which enables large-scale production. This review aims to compile several studies that evaluate the effect of plasticizers, as well as the relevance of incorporating different cellulosic fillers of different dimensions on the properties of TPS obtained by melt mixing. Potential applications of these materials in food packaging, biomedical applications, and other opportunities are also described.
Assuntos
Celulose , Plastificantes , Amido , PlásticosRESUMO
Thermoplastic biofilms were developed from achira starch, chitosan and nanoclays using the solvent-casting method. To obtain the filmogenic solutions, different sonication times (0, 10, 20 and 30 min) were considered in order to evaluate the incidence of this parameter on the chemical and physico-mechanical properties of the bionanocomposite films. The chemical analysis using FTIR spectroscopy showed strong intermolecular interactions between the components with increasing sonication times. The results for tensile strength and elongation were satisfactory for films with 20 min of sonication with increases of 154% and 161%, respectively. Morphological analysis showed greater homogeneity, while thermal analysis showed that sonication favoured the plasticization process and thus, the production of homogeneous materials. The water absorption and wettability tests showed less hydrophilic materials allowing these new materials to be considered for use as coatings or packaging for the food sector.
RESUMO
Thermoplastic starch (TPS) has emerged as an essential alternative to produce environmentally friendly packaging; however, retrogradation is a disadvantage that affects its shelf life. This study analyzed the co-plasticizing effect of isosorbide on the mechanical, thermal, physicochemical, and microstructural properties and the retrogradation of films obtained by blown film extrusion from thermoplasticized starch with mixtures of glycerol and isosorbide in different ratios (3:0, 2:1, 1:2, and 0:3, respectively). The results showed that the higher concentration of isosorbide significantly increased the tensile strength; however, it reduced the elongation. Retrogradation modeled using the Avrami equation showed that the presence of isosorbide reduced the retrogradation rate (k) and modified the recrystallization mechanism (n). The relative crystallinity in the plasticized TPS films was reduced to 89%, and the adsorption significantly decreased. Isosorbide was very important in reducing the retrogradation of TPS. The best performance was obtained with the 2:1 ratio of glycerol/isosorbide due to the synergistic effect between the plasticizers. The results would allow tuning the properties of TPS films by combining glycerol/isosorbide in different ratios, which enables the design of materials tailored to potential application requirements.
RESUMO
Abstract The form of drug administration affects the success of treatment, since it can influence adherence of the patient to the therapy. The use of orodispersible films has emerged as a way to overcome some drawbacks of conventional methods of drug delivery, especially for patients experiencing difficulty in swallowing. These films are prepared using a matrix that incorporates the drug and contains other substances that confer the properties of the system. The present work describes the use of thermoplastic starch as a carrier for the model drug diclofenac, including film preparation and testing of its orodispersible potential. Preparation of the film employed a microwave oven to gelatinize and plasticize corn starch, with incorporation of the model drug, followed by solvent-casting. The samples were characterized using mechanical tests, analyses of water uptake and water content, and Fourier transform infrared spectroscopy. The results indicated that the film presented promising properties as an alternative system for oral drug administration, with good incorporation and distribution of the drug in the matrix. The material displayed satisfactory mechanical properties, which are crucial for this type of material, due to the need for oral administration and handling before use.
Assuntos
Amido/agonistas , Diclofenaco/análise , Preparações Farmacêuticas/administração & dosagem , Espectroscopia de Infravermelho com Transformada de Fourier/métodosRESUMO
Ulomoides dermestoides (UL) are macroinvertebrates insects belonging to Tenebrionidae Coleopteran family. They were used to hasten, in five days, the biodegradation-mineralization of thermoplastic starch (TPS)-poly(lactic acid) (PLA) films, otherwise biodegradable under composting conditions. After the contact of TPS-PLA film with UL for five days, TPS was metabolized and PLA was hydrolysed, as evidenced by decreasing of hydroxyl and carbonyl group peaks intensity by FTIR spectra, increasing of 13% of PLA crystallinity by DSC thermograms, reduction of PLA and TPS thermal stability by TGA analysis; faecal residues evidenced two glass transition temperature Tg, at 33 °C and 57 °C, associated with depolymerized TPS and PLA, respectively. SEM micrographs highlighted consumption of TPS-PLA surface, while GPC analysis showed a decrease in PLA concentration by 20% during contact by UL. Mineralization tests evidenced UL boosted effect on TPS biodigestion-biodegradation (80%) and PLA biodisintegration (50%), envisaging a challenging perspective for end-life management of bioplastics in environmental conditions.
Assuntos
Poliésteres/metabolismo , Amido/metabolismo , Tenebrio/metabolismo , Animais , Biodegradação Ambiental , Varredura Diferencial de Calorimetria , Fezes/química , Temperatura , TermogravimetriaRESUMO
This research focused on the development of biomaterials based on cassava starch and corn starch and on the effect of the incorporation of polycaprolactone (PCL) on the thermal and thermomechanical properties of the blends. The results indicated partial compatibility in the blends, especially with cassava starch at a content of 20 wt% as reflected by the maintenance of tensile strength and elongation. In addition, the changes in the crystal quality of PCL and the displacement of the absorption bands of the carbonyl groups of PCL in the infrared (989-1000 cm-1), attributed to the formation of hydrogen bonds between these groups and the hydroxyl groups of starches, were also associated with compatibility. It was observed that the crystallinity of PLC in the presence of cassava and corn starch was 38% and 62%, respectively; a crystallinity greater than that of PCL was related to an improved nucleation at the interface. Based on these properties, the blends are expected to be functional for the manufacture of short-term use products by conventional thermoplastic processing methods.
RESUMO
Starch is a biopolymer with enormous potential for generating new biodegradable packages due to its easy availability and low cost. However, due to its weak functional properties, limitation of its interaction with some hydroxyl groups and evaluation of blends with other polymers are necessary in order to improve its performance. Glycerol-plasticized acetylated corn starch films were developed using the casting method, and the impact of incorporating chitosan (TPS:CH) in various proportions (75:25, 50:50, and 25:75 v/v) was studied in the present research. The effect of chitosan ratios on the physical, mechanical, water-vapor barrier, and thermal properties of the film was studied. Chitosan-protonated amino groups promoted the formation of intermolecular bonds, improving tensile strength, thermal stability, hydrophobicity, water adsorption capacity, and the gas barrier of starch films. The results show that the film composed of TPS25-CH75 proved to be the best barrier to water vapor; thus, these composite films are excellent choices for developing biodegradable packaging for the food industry.
RESUMO
The development of bio-based materials has been a consequence of the environmental awareness generated over time. The versatility of native starch is a promising starting point for manufacturing environmentally friendly materials. This work aims to compile information on the advancements in research on thermoplastic starch (TPS) nanocomposites after the addition of mainly these four nanofillers: natural montmorillonite (MMT), organically modified montmorillonite (O-MMT), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). The analyzed properties of nanocomposites were mechanical, barrier, optical, and degradability. The most important results were that as the nanofiller increases, the TPS modulus and strength increase; however, the elongation decreases. Furthermore, the barrier properties indicate that that the incorporation of nanofillers confers superior hydrophobicity. However, the optical properties (transparency and luminosity) are mostly reduced, and the color variation is more evident with the addition of these fillers. The biodegradability rate increases with these nanocompounds, as demonstrated by the study of the method of burial in the soil. The results of this compilation show that the compatibility, proper dispersion, and distribution of nanofiller through the TPS matrix are critical factors in overcoming the limitations of starch when extending the applications of these biomaterials. TPS nanocomposites are materials with great potential for improvement. Exploring new sources of starch and natural nano-reinforcement could lead to a genuinely eco-friendly material that can replace traditional polymers in applications such as packaging.
RESUMO
The Musaceae family has significant potential as a source of lignocellulosic fibres and starch from the plant's bunches and pseudostems. These materials, which have traditionally been considered waste, can be used to produce fully bio-based composites to replace petroleum-derived synthetic plastics in some sectors such as packaging, the automotive industry, and implants. The fibres extracted from Musaceae have mechanical, thermal, and physicochemical properties that allow them to compete with other natural fibres such as sisal, henequen, fique, and jute, among others, which are currently used in the preparation of bio-based composites. Despite the potential use of Musaceae residues, there are currently not many records related to bio-based composites' developments using starches, flours, and lignocellulosic fibres from banana and plantain pseudostems. In this sense, the present study focusses on the description of the Musaceae components and the review of experimental reports where both lignocellulosic fibre from banana pseudostem and flour and starch are used with different biodegradable and non-biodegradable matrices, specifying the types of surface modification, the processing techniques used, and the applications achieved.
RESUMO
The effects of incorporating polycaprolactone (PCL) in three binary blends with cassava thermoplastic starch (TPS) at TPS/PCL ratios of 60/40, 50/50, and 40/60 were studied. TPS previously obtained by single-screw extrusion was manually mixed with PCL and then transformed by extrusion. The results' analysis focused mainly on monitoring the retrogradation phenomenon in TPS for different storage times at two relative humidities (29% and 54%) and constant temperature (25 °C). With the plasticization of the starch, a predominantly amorphous mass was generated, as evidenced by the scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) results. The results suggested that two opposite processes coexisted simultaneously: retrogradation, which stiffened the material, and plasticization, which softened it, with the latter mechanism predominating at short times and reversing at longer times. With the incorporation of PCL, immiscible blends were obtained in which TPS was the dispersed phase; the mechanical properties improved with the amount of PCL added. The properties of the binary blends as a function of time showed a trend similar to that observed for TPS alone; this finding indicated that the TPS/PCL interactions were not strong enough to affect the structural changes in the TPS, which continued to occur regardless of the PCL content. Finally, it was found that for the binary blend, the relative humidity during storage was more significant to the retrogradation phenomenon than the amount of PCL.
RESUMO
The aim of this paper is to evaluate the physicochemical and microbiological properties of active thermoplastic starch-based materials. The extract obtained from grape cane waste was used as a source of stilbene bioactive components to enhance the functional properties of thermoplastic starch (TPS). The biomaterials were prepared by the compression molding technique and subjected to mechanical, thermal, antioxidant, and microbiological tests. The results showed that the addition of grape cane extract up to 15 wt% (TPS/WE15) did not significantly influence the thermal stability of obtained biomaterials, whereas mechanical resistance decreased. On the other side, among all tested pathogens, thermoplastic starch based materials showed antifungal activity toward Botrytis cinerea and antimicrobial activity toward Staphylococcus aureus, suggesting potential application in food packaging as an active biomaterial layer.
Assuntos
Embalagem de Alimentos , Extratos Vegetais/química , Plásticos/química , Amido/química , Temperatura , Vitis/química , Antioxidantes/análise , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Amido/farmacologia , TermogravimetriaRESUMO
The interaction between gum rosin and gum rosin derivatives with Mater-Bi type bioplastic, a biodegradable and compostable commercial bioplastic, were studied. Gum rosin and two pentaerythritol esters of gum rosin (Lurefor 125 resin and Unik Tack P100 resin) were assessed as sustainable compatibilizers for the components of Mater-Bi® NF 866 polymeric matrix. To study the influence of each additive in the polymeric matrix, each gum rosin-based additive was compounded in 15 wt % by melt-extrusion and further injection molding process. Then, the mechanical properties were assessed, and the tensile properties and impact resistance were determined. Microscopic analyses were carried out by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atomic force microscopy with nanomechanical assessment (AFM-QNM). The oxygen barrier and wettability properties were also assayed. The study revealed that the commercial thermoplastic starch is mainly composed of three phases: A polybutylene adipate-co-terephthalate (PBAT) phase, an amorphous phase of thermoplastic starch (TPSa), and a semi-crystalline phase of thermoplastic starch (TPSc). The poor miscibility among the components of the Mater-Bi type bioplastic was confirmed. Finally, the formulations with the gum rosin and its derivatives showed an improvement of the miscibility and the solubility of the components depending on the additive used.
RESUMO
Herein we describe the interaction of starch, urea, and melamine (C3N6H6) in composite materials for use as controlled-release plant fertilizer. Slow-release fertilizers are important in minimizing nutrient losses due to run-off, leaching, and other factors. Urea is an effective plasticizer for starch and is an important nitrogen fertilizer throughout the world. Melamine also has high nitrogen content and could be combined with urea-starch composites to provide enhanced controlled-release fertilizer. This study reports the structural interaction and the performance gain of melamine addition to starch-urea composites. Composites were characterized by spectroscopic techniques (FT-Raman and 13C NMR) detailing the interaction between melamine, urea, and starch. These interactions helped facilitate extrusion processing by lowering viscosity and processing temperatures suggesting an enhanced starch plasticizing effect of starch-urea-melamine composites. Further research into the co-plasticization of starch by urea and melamine could be exploited for improved controlled-release fertilizer products. Further research into the co-plasticization of starch by urea and melamine could be exploited for improved controlled-release fertilizer products.
Assuntos
Fertilizantes/análise , Plastificantes/química , Amido/química , Triazinas/química , Ureia/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Análise Espectral Raman , Amido/ultraestrutura , Difração de Raios XRESUMO
The modification of achira starch a thermoplastic biopolymer is shown. Glycerol and sorbitol, common plasticizers, were used in the molten state with organic acids such as oleic acid and lactic acid obtaining thermodynamically more stable products. The proportion of starch:plasticizer was 70:30, and the acid agent was added in portions from 3%, 6%, and 9% by weight. These mixtures were obtained in a torque rheometer for 10 min at 130 °C. The lactic acid managed to efficiently promote the gelatinization process by increasing the available polar sites towards the surface of the material; as a result, there were lower values in the contact angle, these results were corroborated with the analysis performed by differential scanning calorimetry and X-ray diffraction. The results derived from oscillatory rheological analysis had a viscous behavior in the thermoplastic starch samples and with the presence of acids; this behavior favors the transitions from viscous to elastic. The mixture of sorbitol or glycerol with lactic acid promoted lower values of the loss module, the storage module, and the complex viscosity, which means lower residual energy in the transition of the viscous state to the elastic state; this allows the compounds to be scaled to conventional polymer transformation processes.