Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.280
Filtrar
1.
Sci Rep ; 14(1): 15193, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956145

RESUMO

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Assuntos
Temperatura Baixa , Aves Canoras , Animais , Regiões Árticas , Aves Canoras/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Cruzamento , Reprodução/fisiologia , Feminino , Masculino , Temperatura
2.
Eur J Appl Physiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985305

RESUMO

PURPOSE: The current study investigated whether sustained mild dehydration affects thermoregulatory function and cognitive performance during prolonged exercise. METHODS: Twelve young adults performed a test consisting of three sets of 20-min exercise with 2-min intervals under euhydrated (control, CON) and mildly dehydrated conditions (MDEH) at an ambient temperature of 30 °C and 60% relative humidity. MDEH was established by restricting water intake for 24 h, resulting in urine specific gravity of ≥ 1.020. Heart rate (HR), mean arterial blood pressure (MAP), skin blood flow (SkBF), sweat rate (SR) on the chest and forearm, and ear canal and mean skin surface temperatures (Tear and mean Tskin, respectively) were continuously recorded. For each exercise set, thermal and humid sensations and thermal discomfort were assessed using visual analog scales (VAS), and the rating of perceived exertion (RPE) was estimated. Cognitive performance on the Go/No-Go (easy) and incongruent Stroop (difficult) tasks was assessed before and after the test. RESULTS: No differences were observed in HR, MAP, SkBF, SR, Tear, and mean Tskin between the CON and MDEH. Thermal and humidity sensations, thermal discomfort, and RPE were higher in MDEH than in CON. Moreover, response time to the Stroop task was prolonged in MDEH. CONCLUSION: These findings suggest that sustained mild dehydration does not affect autonomic thermoregulation during exercise. Augmented thermal perception and perceived exertion, which are necessary for behavioral thermoregulation, were noted; however, cognitive function may be attenuated under MDEH.

3.
Proc Biol Sci ; 291(2026): 20241137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981525

RESUMO

Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.


Assuntos
Quirópteros , Torpor , Animais , Quirópteros/fisiologia , Torpor/fisiologia , Masculino , Metabolismo Energético , Telemetria , Temperatura Corporal , Estações do Ano , Austrália do Sul
4.
Biol Open ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989667

RESUMO

This research provides an in-depth exploration into the triggers and corresponding autonomic responses of piloerection, a phenomenon prevalent across various species. In non-human species, piloerection occurs in reaction to a variety of environmental changes, including social interactions and temperature shifts. However, its understanding in humans has been confined to emotional contexts. This is problematic because it reflects solely upon subjective experience rather than an objective response to the environment. Further, given our shared evolutionary paths, piloerection should function similarly in humans and other animals. I observed 1,198 piloerection episodes from eight participants while simultaneously recording multiple autonomic and body temperature indices, finding that piloerection in humans can be elicited by thermal, tactile, and audio-visual stimuli with equal effectiveness. The data also revealed variations in cardiac reactivity measures: audio-visual piloerection was associated with greater sympathetic arousal, while tactile piloerection was linked to greater parasympathetic arousal. Despite prevailing notions of piloerection as a vestigial response in humans, it does respond to decreases in skin temperature and is associated with a rise in skin temperature during episodes. This research underscores that piloerection in humans is not purely vestigial, nor is it solely an affective response to emotional stimuli. Rather, it is best understood as a reflexive response to environmental changes, suggesting a shared functional similarity with other species.

6.
Animal ; 18(7): 101209, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38905777

RESUMO

Dairy cows may suffer thermal stress during the colder seasons especially due to their open-air housing systems. Free water temperature (FWT) and feed temperature (FT) are dependent on ambient temperature (AT) and can be critical for maintaining body and reticulorumen temperature (RT) in cold conditions. The objective of this study was to determine the effects of FWT and FT on RT fluctuations, and of AT on RT and drinking and eating behaviors in late-lactation cows during cold exposure. Data were collected from 16 multiparous lactating cows for four 6-d periods during the autumn and winter seasons. The cows (224 ± 36 days in milk; mean ± SD) had an average milk yield (MY) of 24.8 ± 4.97 kg/d and RT of 38.84 ± 0.163 °C. Daily average AT ranged from 4.38 to 17.25 °C. The effects of the temperature and amount of the ingested water or feed on RT change and recovery time, and the effect of the daily AT on RT, feed and water intake, and drinking, eating, and rumination behaviors were analyzed using the generalized additive mixed model framework. Reticulorumen temperature change and recovery time were affected by FWT (+0.0596 °C/°C and -1.27 min/°C, respectively), but not by FT. The amount of the ingested free water and feed affected RT change (-0.108 °C/kg drink size and -0.150 °C/kg meal size, respectively), and RT recovery time (+2.13 min/kg drink size and + 3.71 min/kg meal size, respectively). Colder AT decreased RT by 0.0151 °C/°C between 9.91 and 17.25 °C AT. Cows increased DM intake (DMI) by 0.365 kg/d per 1 °C drop in AT below 10.63 °C, but with no increase in MY. In fact, MY:DMI decreased by 0.0106/°C as AT dropped from 17.25 to 4.38 °C. Free water intake (FWI) was reduced by 0.0856 FWI:DMI/°C as AT decreased from 17.25 to 8.27 °C. Cold exposure influenced animal behavior with fewer drink and meal bouts (-0.432 and -0.290 bouts/d, respectively), larger drink sizes (+0.100 kg/bout), and shorter rumination time (-5.31 min/d) per 1 °C decrease in AT from 17.25 °C to 8.77, 12.53, 4.38, and 10.32 °C, respectively. In conclusion, exposure to low AT increased feed intake, reduced water intake, and changes in eating, drinking and rumination behaviors of dairy cows in late lactation. Additionally, the consequences of cold exposure on cows may be aggravated by ingestion of feed and free water at temperatures lower than the body, potentially impacting feed efficiency due to the extra energetic cost of thermoregulation.

7.
J Therm Biol ; 123: 103896, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38906048

RESUMO

Athletes with tetraplegia may experience marked hyperthermia while exercising under environmental heat stress due to their limited ability to dissipate heat through evaporative means. This study investigated the effectiveness of two external cooling strategies (i.e., spraying water onto the body surface or using a cooling vest) on physiological and perceptual variables in tetraplegic athletes during and after an aerobic exercise session in a hot environment. Nine male wheelchair rugby players performed an incremental test to determine their maximum aerobic power output. After that, they were subjected to three experimental trials in a counter-balanced order: control (CON, no body cooling), cooling vest (CV), and water spraying (WS). During these trials, they performed 30 min of a submaximal exercise (at 65% of their maximum aerobic power) inside an environmental chamber set to maintain the dry-bulb temperature at 32 °C. The following variables were recorded at regular intervals during the exercise and for an additional 30 min following the exertion (i.e., post-exercise recovery) with the participants also exposed to 32 °C: body core temperature (TCORE), skin temperature (TSKIN), heart rate (HR), rating of perceived exertion (RPE), thermal comfort (TC), and thermal sensation (TS). While exercising in CON conditions, the tetraplegic athletes had the expected increases in TCORE, TSKIN, HR, RPE, and TC and TS scores. HR, TC, and TS decreased gradually toward pre-exercise values after the exercise, whereas TCORE and TSKIN remained stable at higher values. Using a cooling vest decreased the temperature measured only on the chest and reduced the scores of RPE, TC, and TS during and after exercise but did not influence the other physiological responses of the tetraplegic athletes. In contrast, spraying water onto the athletes' body surface attenuated the exercise-induced increase in TSKIN, led to lower HR values during recovery, and was also associated with better perception during and after exercise. We conclude that water spraying is more effective than the cooling vest in attenuating physiological strain induced by exercise-heat stress. However, although both external cooling strategies do not influence exercise hyperthermia, they improve the athletes' thermal perception and reduce perceived exertion.

8.
J Sci Med Sport ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38906729

RESUMO

OBJECTIVES: The primary aim was to explore the impact of exertional-heat stress (EHS) promoted exercise-associated bacteraemia. A secondary aim was to examine if an amino acid beverage (AAB) intervention may mitigate exercise-associated bacteraemia. DESIGN: Counterbalanced randomised control trial. METHODS: Twenty endurance trained male participants completed two randomised EHS trials. On one occasion, participants consumed a 237 mL AAB twice daily for 7 days prior, immediately before and every 20 min during EHS (2 h running at 60 % V̇O2max in 35 °C). On the other occasion, a water volume control (CON) equivalent was consumed. Whole blood samples were collected pre- and immediately post-EHS, and were analysed for plasma DNA concentration by fluorometer quantification after microbial extraction, and bacterial relative abundance by next generation 16s rRNA gene sequencing. RESULTS: Increased concentration of microbial DNA in plasma pre- to post-EHS was observed on CON (pre-EHS 0.014 ng/µL, post-EHS 0.039 ng/µL) (p < 0.001) and AAB (pre-EHS 0.015 ng/µL, post-EHS 0.031 ng/µL) (p < 0.001). The magnitude of change from pre- to post-exercise on AAB was 40 % lower, but no significant difference was observed versus CON (p = 0.455). Predominant bacterial groups identified included: phyla-Proteobacteria (88.0 %), family-Burkholderiaceae (59.1 %), and genus-Curvibacter (58.6 %). No significant variation in absolute and relative change in α-diversity and relative abundance for phyla, family, and genus bacterial groups was observed in AAB versus CON. CONCLUSIONS: The increased presence of microbial-bacterial DNA in systemic circulation in response to EHS appears positive in all participants. An amino acid beverage supplementation period prior to and consumption during EHS did not provide significant attenuation of EHS-associated bacteraemia.

9.
J Therm Biol ; 123: 103889, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38897001

RESUMO

In ectothermic vertebrates, behavioral fever, where an individual actively seeks warmer areas, seems to be a primary response to pathogens. This is considered a broad and evolutionarily conserved response among vertebrates. Recent population declines in amphibians are associated with an increase of infectious disease driven largely by climate change, habitat degradation, and pollution. Immediate action through research is required to better understand and inform conservation efforts. The literature available, does not provide unifying concepts that can guide adequate experimental protocols and interpretation of data, especially when studying animals in the field. The aim of this review is to promote common understanding of terminology and facilitating improved comprehension and application of key concepts about the occurrence of both sickness behavior or behavioral fever in ectothermic vertebrates. We start with a conceptual synthesis of sickness behavior and behavioral fever, with examples in different taxa. Through this discussion we present possible paths to standardize terminology, starting from original use in endothermic tetrapods which was expanded to ectothermic vertebrates, particularly amphibians and reptiles. This conceptual expansion from humans (endothermic vertebrates) and then to ectothermic counterparts, gravitates around the concept of 'normality'. Thus, following this discussion, we highlight caveats with experimental protocols and state the need of a reference value considered normal (RVCN), which is different from experimental control and make recommendations regarding experimental procedures and stress the value of detailed documentation of behavioral responses. We also propose some future directions that could enhance interaction among disciplines, emphasizing relationships at different levels of biological organization. This is crucial given the increasing convergence of fields such as thermal physiology, immunology, and animal behavior due to emerging diseases and other global crises impacting biodiversity.

10.
J Anim Sci Biotechnol ; 15(1): 75, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831417

RESUMO

Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation (TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM  is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.

11.
Cureus ; 16(5): e59634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38832150

RESUMO

Background Despite evidence suggesting improved outcomes in neonates with hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH), data on the impact of temperature variability during cooling and its association with clinical outcomes remain limited. Objective To compare the efficacy and ease of use of two different cooling systems, the Arctic Sun (Medivance, Inc., Louisville, CO) vs. the Blanketrol III (Gentherm Medical, Cincinnati, OH) on achieving TH, temperature variability, and clinical outcomes in neonates with HIE undergoing TH. Methods This study was conducted at the Baylor Scott and White Medical Center's Level IV NICU. The study employed a retrospective cohort design, comparing infants treated with the Arctic Sun device (from December 2020 to August 2021) to a historical cohort treated with the Blanketrol system (from January 2017 to November 2020). Both groups were evaluated for clinical characteristics, patients' outcomes, and ease of use of the cooling devices. Ease of use was assessed through a self-developed survey administered to NICU nurses. Core body temperatures throughout the cooling course were documented at four-hour intervals, including induction, maintenance, and rewarming phases. Results Twenty-two infants were cooled using the Arctic Sun system, and 44 infants were cooled with the Blanketrol device. Median birth weight and gestational age were comparable. There were no significant differences in one-minute and five-minute appearance, pulse, grimace, activity, and respiration (APGAR) scores. The Arctic Sun group had a significantly higher rate of maternal morbidities, including diabetes and placental abruption. Although the median temperature achieved with both devices was 33.5°C, temperature variability was significantly greater with the Blanketrol device (p = 0.03). Thrombocytopenia rates were statistically different between the groups (9% in Arctic Sun vs. 38% in Blanketrol, p = 0.001). Although the Blanketrol group had higher rates of disseminated intravascular coagulation (48% vs. 37%), hypercalcemia (23% vs. 5%), and subcutaneous fat necrosis (7% vs. 5%), these differences were not statistically significant. A nurses' survey on ease of use revealed a strong preference for the Arctic Sun cooling system. Over 85% of nurses found it easier to learn and set up and required less manual intervention than the Blanketrol device. Conclusions Gel adhesive pad-based TH is a potentially superior modality to traditional water-circulating cooling devices. These pads offer advantages in user-friendliness, improved temperature control precision, and potentially reduced adverse event profiles.

12.
Temperature (Austin) ; 11(2): 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846527

RESUMO

This study compared the effects of precooling via whole-body immersion in 25°C CO2-enriched water (CO2WI), 25°C unenriched water (WI) or no cooling (CON) on 10-km cycling time trial (TT) performance. After 30 min of precooling (CO2WI, CON, WI) in a randomized, crossover manner, 11 male cyclists/triathletes completed 30-min submaximal cycling (65%VO2peak), followed by 10-km TT in the heat (35°C, 65% relative humidity). Average power output and performance time during TT were similar between conditions (p = 0.387 to 0.833). Decreases in core temperature (Tcore) were greater in CO2WI (-0.54 ± 0.25°C) than in CON (-0.32 ± 0.09°C) and WI (-0.29 ± 0.20°C, p = 0.011 to 0.022). Lower Tcore in CO2WI versus CON was observed at 15th min of exercise (p = 0.050). Skin temperature was lower in CO2WI and WI than in CON during the exercise (p < 0.001 to 0.031). Only CO2WI (1029 ± 305 mL) decreased whole-body sweat loss compared with CON (1304 ± 246 mL, p = 0.029). Muscle oxygenation by near-infrared spectroscopy (NIRS), thermal sensation, and thermal comfort were lower in CO2WI and WI versus CON only during precooling (p < 0.001 to 0.041). NIRS-derived blood volume was significantly lower in CO2WI and WI versus CON during exercise (p < 0.001 to 0.022). Heart rate (p = 0.998) and rating of perceived exertion (p = 0.924) did not differ between conditions throughout the experiment. These results suggested that CO2WI maybe more effective than WI for enhanced core body cooling and minimized sweat losses.

13.
Temperature (Austin) ; 11(2): 170-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846526

RESUMO

Military missions are conducted in a multitude of environments including heat and may involve walking under load following severe exertion, the metabolic demands of which may have nutritional implications for fueling and recovery planning. Ten males equipped a military pack loaded to 30% of their body mass and walked in 20°C/40% relative humidity (RH) (TEMP) or 37°C/20% RH (HOT) either continuously (CW) for 90 min at the first ventilatory threshold or mixed walking (MW) with unloaded running intervals above the second ventilatory threshold between min 35 and 55 of the 90 min bout. Pulmonary gas, thermoregulatory, and cardiovascular variables were analyzed following running intervals. Final rectal temperature (MW: p < 0.001, g = 3.81, CW: p < 0.001, g = 4.04), oxygen uptake, cardiovascular strain, and energy expenditure were higher during HOT trials (p ≤ 0.05) regardless of exercise type. Both HOT trials elicited higher final carbohydrate oxidation (CHOox) than TEMP CW at min 90 (HOT MW: p < 0.001, g = 1.45, HOT CW: p = 0.009, g = 0.67) and HOT MW CHOox exceeded TEMP MW at min 80 and 90 (p = 0.049, g = 0.60 and p = 0.024, g = 0.73, respectively). There were no within-environment differences in substrate oxidation indicating that severe exertion work cycles did not produce a carryover effect during subsequent loaded walking. The rate of CHOox during 90 minutes of load carriage in the heat appears to be primarily affected by accumulated thermal load.

14.
Temperature (Austin) ; 11(2): 137-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846524

RESUMO

Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher V ˙ O2 in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min-1.kg-1) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min-1) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O2 saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.

15.
World J Pediatr ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864998

RESUMO

BACKGROUND: Although not universal, active care is being offered to infants weighing < 500 g at birth, referred to as ultra-low birth weight (ULBW) infants appropriate for gestational age. These infants have the greatest risk of dying or developing major morbidities. ULBW infants face challenges related to fluid and heat loss as well as skin injury in the initial days of life from extreme anatomical and physiological immaturity of the skin. Although there is an emerging literature on the outcomes of ULBW infants, there is a paucity of evidence to inform practice guidelines for delivering optimal care to this cohort of infants. DATA SOURCES: A comprehensive review of the literature was performed using the PubMed and Embase databases. Searched keywords included "thermoregulation or body temperature regulation", "incubator humidity", "skin care", "infant, extremely low birth weight" and "ultra-low birth weight infants". RESULTS: Evidences for thermoregulation, incubator humidity, and skincare practices are available for preterm infants weighing < 1500 g at birth but not specifically for ULBW infants. Studies on thermoregulation, incubator humidity, or skincare practices had a small sample size and did not include a sub-group analysis for ULBW infants. Current practice recommendations in ULBW infants are adopted from research in very and/or extremely low birth weight infants. CONCLUSIONS: This narrative review focuses on challenges in thermoregulation, incubator humidity, and skincare practices in ULBW infants, highlights current research gaps and suggests potential developments for informing practices for improving health outcomes in ULBW infants. Video abstract (MP4 1,49,115 kb).

16.
J Therm Biol ; 122: 103864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38852487

RESUMO

When amphibians thermoregulate, they face a fundamental trade-off between the ability to maintain activity and an increased rate of dehydration at higher temperatures. Canopy coverage affects both the thermal and hydric conditions of the environment and can therefore influence amphibian thermoregulation. Frogs require proper conditions to thermoregulate to successfully grow, survive, and reproduce. But while we know how canopy and environmental variables typically affect operative temperature, less is known about effects on amphibian water loss rates. In this study, we measure the effect of canopy coverage on the conditions available for thermoregulation at a breeding pond of the California red-legged frog, Rana draytonii. We use agar frog models to estimate the thermal and hydric capacities frogs would experience in locations with different canopy coverage and microhabitats. At each site, we deployed models under four microhabitat treatments: wet/sun, wet/shade, dry/sun, and dry/shade. We modeled how environmental variables affected operative temperature and evaporative water loss from agar frogs. We found positive effects of air temperature, the sun treatment, and reduced canopy cover on operative temperature, and negative direct or indirect effects of these variables on evaporative water loss, consistent with the hypothesized trade-off between thermoregulatory behavior to increase temperature and the increased desiccation risk due to higher water loss. Additionally, our results indicate that the availability of wet microhabitats can allow frogs to reduce water loss, potentially mitigating the risk of desiccation when thermoregulating to achieve higher operative temperatures. Our findings suggest, that with access to proper microhabitats, amphibians can mitigate the fundamental trade-off and receive benefits of thermoregulating at high temperatures.


Assuntos
Regulação da Temperatura Corporal , Ecossistema , Animais , Ranidae/fisiologia , Perda Insensível de Água , Temperatura , Modelos Biológicos
17.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853754

RESUMO

Scholander-Irving curves describe the relationship between ambient temperature and metabolic rate and are fundamental to understanding the energetic demands of homeothermy. However, Scholander-Irving curves are typically measured in dry air, which is not representative of the humidity many organisms experience in nature. Consequently, it is unclear (1) whether Scholander-Irving curves (especially below thermoneutrality) are altered by humidity, given the effects of humidity on thermal properties of air, and (2) whether physiological responses associated with Scholander-Irving curves in the lab reflect organismal performance in humid field conditions. We used laboratory experiments and biophysical models to test the effects of humidity on the thermoregulatory physiology of tree swallows (Tachycineta bicolor). We also tested whether physiological responses measured under lab conditions were correlated with field body temperatures and nestling provisioning rates. We found that humidity reduced rates of evaporative water loss but did not have large effects on body temperature or metabolic rate, suggesting that swallows can decouple evaporative cooling, body temperature and metabolic rate. Although the effect of humidity on metabolic rate in the lab was small, our biophysical models indicated that energetic costs of thermoregulation were ∼8% greater in simulations that used metabolic rates from birds in humid compared with dry conditions. Finally, we found mixed evidence that physiological responses measured in the lab under humid or dry conditions were associated with body temperature and nest provisioning rates in the field. Our results help clarify the effect of humidity on endotherm thermoregulation, which may help forecast organismal responses to environmental change.


Assuntos
Regulação da Temperatura Corporal , Umidade , Andorinhas , Animais , Regulação da Temperatura Corporal/fisiologia , Andorinhas/fisiologia , Metabolismo Basal/fisiologia , Modelos Biológicos , Metabolismo Energético , Comportamento de Nidação/fisiologia , Masculino , Temperatura Corporal/fisiologia
18.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826104

RESUMO

Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.


Assuntos
Temperatura Corporal , Plumas , Muda , Spheniscidae , Animais , Spheniscidae/fisiologia , Muda/fisiologia , Plumas/fisiologia , Regulação da Temperatura Corporal/fisiologia , Masculino , Feminino
19.
Plant Biol (Stuttg) ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838092

RESUMO

The floral microenvironment impacts gametophyte viability and plant-pollinator interactions. Plants employ mechanisms to modify floral temperature, including thermogenesis, absorption of solar radiation, and evaporative cooling. Whether floral thermoregulation impacts reproductive fitness, and how floral morphological variation mediates thermoregulatory capacity are poorly understood. We measured temperature of the floral microenvironment in the field and tested for thermogenesis in the lab in early spring flowering Hexastylis arifolia (Aristolochiaceae). We evaluated whether thermoregulatory capacity was associated with floral morphological variation. Finally, we experimentally determined the thermal optimum and tolerance of pollen to assess whether thermoregulation may ameliorate thermal stress to pollen. Pollen germination was optimal near 21 °C, with a 50% tolerance breadth of ~18 °C. In laboratory conditions, flowers exhibited thermogenesis of 1.5-4.8 °C for short intervals within a conserved timeframe (08:00-09:00 h). In the field, temperature inside the floral tube often deviated from ambient - floral interiors were up to 4 °C above ambient when it was cold, but some fell nearly 10 °C below ambient during peak heat. Flowers with smaller openings were cooler and more thermally stable than those with larger openings during peak heat. Thermoregulation maintained a floral microenvironment within the thermal tolerance breadth of pollen. Results suggest that H. arifolia flowers have a stronger capacity to cool than to warm, and that narrower floral openings create a distinct floral microenvironment, enhancing floral cooling effects. While deviation of floral temperature from ambient conditions maintains a suitable environment for pollen and suggests an adaptive role of thermoregulation, we discuss adaptive and nonadaptive mechanisms underlying floral warming and cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...