Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(18)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262056

RESUMO

In this work, we conducted an analysis of 4H-SiC epitaxial layer grown on two distinct 4H-SiC substrates (both 6 inches in diameter) using non-invasive techniques such as micro-Raman spectroscopy, steady-state absorption spectroscopy and time-resolved photoluminescence spectroscopy. We have shown that despite the doping homogeneity, confirmed by micro-Raman and steady-state absorption spectroscopy, the carrier lifetime, assessed by monitoring the excitonic band at 3.2 eV by time-resolved photoluminescence spectroscopy, depends on the position on the wafer. This variability is attributed to the presence of defects, such as impurities or point defects, which are not uniformly distributed on the epitaxial layer and that, in addition to extended defects, affect the charge carrier recombination. Additionally, it is found that interactions with the underlying substrate could contribute to these effects as evidenced in regions of the substrate characterized by differences of doping.

2.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067570

RESUMO

In this study, the insertion of different monodentate co-ligands on Pt(II) complexes bearing a monoanionic C^N*N luminophore as a tridentate chelator was achieved beyond the previously reported chlorido- ([PtCl(L)]) and cyanido-decorated ([PtCN(L)]) analogues. To investigate the impact of the auxiliary ligand on the photophysical properties, we introduced a neutral carbonyl-ligand and observed a lower photoluminescence quantum yield (ΦL) than with a cyanido moiety. However, the direct substitution of the chlorido co-ligand by a NO-related derivative was not successful. Interestingly, the attempted reduction of the successfully inserted nitrito-N-ligand in [PtNO2(L)] resulted in the oxidation of the Pt(II)-center to Pt(IV), as demonstrated by X-ray diffractometry. For comparison, the trifluoroacetato Pt(II) and chlorido Pt(IV) complexes ([PtTFA(L)] and [PtCl3(L)], respectively) were also synthesized. The photophysical characterization revealed similar photoluminescence profiles for all complexes, indicating a weak effect of the co-ligand on the excited state; in fact, all complexes display emission from metal-perturbed ligand-centered states (even the Pt(IV) species). Nonetheless, longer excited state lifetimes (τav) suggest a reduced thermally-activated radiationless deactivation via metal-centered states upon exchange of the chlorido units for other monodentate entities, yet without significantly improving the overall ΦL at room temperature. The irreversible oxidation waves (measured via cyclic voltammetry) mostly stem from the Pt(II)-center; the co-ligand-related drop of these potentials correlates with the increasing σ-donating capacities of the ancillary ligand. In summary, an enhanced π-acceptor capacity does not necessarily improve the ΦL and can even impair radiative rates by compromising the perturbative participation of the metal center on the emissive triplet state; in addition, strong σ-donor abilities improve the phosphorescence efficiencies by hampering the thermal population of dissociative electronic configurations related to the participation of antibonding d*-orbitals at the metal center.

3.
Materials (Basel) ; 16(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37512335

RESUMO

Due to its high carrier mobility and electron transmission, the phenyl-C61-butyric acid methyl ester (PC61BM) is usually used as an electron transport layer (ETL) in perovskite solar cell (PSC) configurations. However, PC61BM films suffer from poor coverage on perovskite active layers because of their low solubility and weak adhesive ability. In this work, to overcome the above-mentioned shortcomings, 30 nm thick PC61BM ETLs with different concentrations were modeled. Using a 30 nm thick PC61BM ETL with a concentration of 50 mg/mL, the obtained performance values of the PSCs were as follows: an open-circuit voltage (Voc) of 0.87 V, a short-circuit current density (Jsc) of 20.44 mA/cm2, a fill factor (FF) of 70.52%, and a power conversion efficiency (PCE) of 12.54%. However, undesired fine cracks present on the PC61BM surface degraded the performance of the resulting PSCs. To further improve performance, multiple different thicknesses of ZnO interface layers were deposited on the PC61BM ETLs to release the fine cracks using a thermal evaporator. In addition to the pavement of fine cracks, the ZnO interface layer could also function as a hole-blocking layer due to its larger highest occupied molecular orbital (HOMO) energy level. Consequently, the PCE was improved to 14.62% by inserting a 20 nm thick ZnO interface layer in the PSCs.

4.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432153

RESUMO

In a series of Pt(II) complexes [Pt(dba)(L)] containing the very rigid, dianionic, bis-cyclometalating, tridentate C^N^C2− heterocyclic ligand dba2− (H2dba = dibenzo[c,h]acridine), the coligand (ancillary ligand) L = dmso, PPh3, CNtBu and Me2Imd (N,N'-dimethylimidazolydene) was varied in order to improve its luminescence properties. Beginning with the previously reported dmso complex, we synthesized the PPh3, CNtBu and Me2Imd derivatives and characterized them by elemental analysis, 1H (and 31P) NMR spectroscopy and MS. Cyclic voltammetry showed partially reversible reduction waves ranging between −1.89 and −2.10 V and increasing along the series Me2Imd < dmso ≈ PPh3 < CNtBu. With irreversible oxidation waves ranging between 0.55 (L = Me2Imd) and 1.00 V (dmso), the electrochemical gaps range between 2.65 and 2.91 eV while increasing along the series Me2Imd < CNtBu < PPh3 < dmso. All four complexes show in part vibrationally structured long-wavelength absorption bands peaking at around 530 nm. TD-DFT calculated spectra agree quite well with the experimental spectra, with only a slight redshift. The photoluminescence spectra of all four compounds are very similar. In fluid solution at 298 K, they show broad, only partially structured bands, with maxima at around 590 nm, while in frozen glassy matrices at 77 K, slightly blue-shifted (~580 nm) bands with clear vibronic progressions were found. The photoluminescence quantum yields ΦL ranged between 0.04 and 0.24, at 298 K, and between 0.80 and 0.90 at 77 K. The lifetimes τ at 298 K ranged between 60 and 14040 ns in Ar-purged solutions and increased from 17 to 43 µs at 77 K. The TD-DFT calculated emission spectra are in excellent agreement with the experimental findings. In terms of high ΦL and long τ, the dmso and PPh3 complexes outperform the CNtBu and Me2Imd derivatives. This is remarkable in view of the higher ligand strength of Me2Imd, compared with all other coligands, as concluded from the electrochemical data.

5.
Materials (Basel) ; 13(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899342

RESUMO

Room-temperature phosphorescent (RTP) materials have been attracting tremendous interest, owing to their unique material characteristics and potential applications for state-of-the-art optoelectronic devices. Recently, we reported the synthesis and fundamental photophysical properties of new RTP materials based on benzil, i.e., fluorinated monobenzil derivative and fluorinated and non-fluorinated bisbenzil derivative analogues [Yamada, S. et al., Beilstein J. Org. Chem. 2020, 16, 1154-1162.]. To deeply understand their RTP properties, we investigated the excited-state dynamics and photostability of the derivatives by means of time-resolved and steady-state photoluminescence spectroscopies. For these derivatives, clear RTP emissions with lifetimes on the microsecond timescale were identified. Among them, the monobenzil derivative was found to be the most efficient RTP material, showing both the longest lifetime and highest amplitude RTP emission. Time-resolved photoluminescence spectra, measured at 77 K, and density functional theory calculations revealed the existence of a second excited triplet state in the vicinity of the first excited singlet state for the monobenzil derivative, indicative of the presence of a fast intersystem crossing pathway. The correlation between the excited state dynamics, emission properties, and conformational flexibility of the three derivatives is discussed.

6.
ACS Nano ; 14(5): 5855-5861, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298081

RESUMO

Lead-free halide double perovskites have emerged as a nontoxic alternative to the heavily researched lead-based halide perovskites. However, their optical properties and the initial charge carrier relaxation processes are under debate. In this study, we apply time-resolved photoluminescence and differential transmission spectroscopy to investigate the photoexcited charge carrier dynamics within the indirect band structure of Cs2AgBiBr6 nanocrystals. Interestingly, we observe a high energetic emission stemming from the direct band gap, besides the previously reported emission from the indirect band gap transition. We attribute this emission to the radiative recombination of direct bound excitons. This emission maximum redshifts nearly 1 eV within 10 ps due to electron intervalley scattering, which leads to a transfer of direct to indirect bound excitons. We conclude that these direct bound excitons possess a giant oscillator strength causing not only a pronounced absorption peak at the optical band gap energy but also luminescence to occur at the direct band gap transition in spite of the prevailing intervalley scattering process. These results expand the understanding of the optical properties and the charge carrier relaxation in double perovskites, thus, facilitating the further development of optoelectronic devices harnessing lead-free perovskites.

7.
Front Chem ; 8: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175310

RESUMO

Beyond their applications in organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence (TADF) materials can also make good photonic markers. Time-gated measurement of their delayed emission enables "background-free" imaging in, for example, biological systems, because no naturally-occurring compounds exhibit such long-lived emission. Attaching a strongly-absorbing antenna, such as a phenylene ethynylene oligomer, to the TADF core would be of interest to increase their brightness as photonic markers. With this motivation, we study a sequence of TADF-oligomer conjugates with oligomers of varying length and show that, even when the absorption of the oligomer is almost resonant with the charge-transfer absorption of the TADF core, the antenna transfers energy to the TADF core. We study this series of compounds with time resolved emission and transient absorption spectroscopy and find that the delayed fluorescence is essentially turned-off for the longer antennae. Interestingly, we find that the turn-off of the delayed fluorescence is not caused by quenching of the TADF charge-transfer triplet state due to triplet energy transfer of the lower-lying triplet state to the antenna, but must be associated with a decrease in the reverse intersystem crossing rate. These results are of relevance for the further development of TADF "dyes" and also, in the broader context, for understanding the dynamics of TADF molecules in the vicinity of energy donors/acceptors (i.e., in fluorescent OLEDs wherein TADF molecules are used as an assistant dopant).

8.
Nano Lett ; 18(3): 2074-2080, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29464960

RESUMO

Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

9.
ACS Appl Mater Interfaces ; 9(14): 12547-12555, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28319374

RESUMO

Phosphor-converted light emitting diodes (pcLEDs) produce white light through the use of phosphors that convert blue light emitted from the LED chip into green and red wavelengths. Understanding the mechanisms of degradation of the emission spectra and quantum yields of the phosphors used in pcLEDs is of critical importance to fully realize the potential of solid-state lighting as an energy efficient technology. Toward this end, time-resolved photoluminescence spectroscopy was used to identify the mechanistic origins of enhanced stability and luminescence efficiency that can be obtained from a series of carbidonitride red phosphors with varying degrees of substitutional carbon. The increasing substitution of carbon and oxygen in nitrogen positions of the carbidonitride phosphor (Sr2Si5N8-[(4x/3)+z]CxO3z/2:Eu2+) systematically changed the dimensions of the crystalline lattice. These structural changes caused a red shift and broadening of the emission spectra of the phosphors due to faster energy transfer from higher to lower energy emission sites. Surprisingly, in spite of broadening of the emission spectra, the quantum yield was maintained or increased with carbon substitution. Aging phosphors with lowered carbon content under conditions that accurately reflected thermal and optical stresses found in functioning pcLED packages led to spectral changes that were dependent on substitutional carbon content. Importantly, phosphors that contained optimal amounts of carbon and oxygen possessed luminescence spectra and quantum yields that did not undergo changes associated with aging and therefore provided a more stable color point for superior control of the emission properties of pcLED packages. These findings provide insights to guide continued development of phosphors for efficient and stable solid-state lighting materials and devices.

10.
Nanomaterials (Basel) ; 6(2)2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28344289

RESUMO

Developing solid state materials capable of generating homogeneous white light in an energy efficient and resource-sustainable way is central to the design of new and improved devices for various lighting applications. Most currently-used phosphors depend on strategically important rare earth elements, and rely on a multicomponent approach, which produces sub-optimal quality white light. Here, we report the design and preparation of a colloidal white-light emitting nanocrystal conjugate. This conjugate is obtained by linking colloidal Ga2O3 and II-VI nanocrystals in the solution phase with a short bifunctional organic molecule (thioglycolic acid). The two types of nanocrystals are electronically coupled by Förster resonance energy transfer owing to the short separation between Ga2O3 (energy donor) and core/shell CdSe/CdS (energy acceptor) nanocrystals, and the spectral overlap between the photoluminescence of the donor and the absorption of the acceptor. Using steady state and time-resolved photoluminescence spectroscopies, we quantified the contribution of the energy transfer to the photoluminescence spectral power distribution and the corresponding chromaticity of this nanocrystal conjugate. Quantitative understanding of this new system allows for tuning of the emission color and the design of quasi-single white light emitting inorganic phosphors without the use of rare-earth elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA