Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931466

RESUMO

Biological matrices are typically used in forensic toxicological or pharmacological analysis: mainly blood, vitreous humor or urine. However, there are many cases in which crimes are a consequence of drug intoxication or drug abuse and they are not closed because over the months or years the samples become altered or decomposed. A dried blood stains test (DBS-MS) has recently been proposed to be used in drug toxicology when blood is found at a crime scene. This test could help an investigator to reveal what a person had consumed before the perpetration of the crime. In order to check the possibilities of this test, we analyzed several dried blood stains located on a cotton fabric. Therefore, the aim of this study was to determine if the analysis of a dried blood spot located on a cotton fabric could be an alternate source of obtaining toxicological results, particularly regarding benzodiazepines. We splashed blood stains on cotton fabric with different concentrations of the following benzodiazepines: alprazolam, bromazepam, clonazepam, diazepam and lorazepam, which were dried for 96 h and subsequently quantified by high-performance liquid chromatography coupled mass spectrometry (HPLC-MS). Our results show that it is possible to identify several benzodiazepines contained in a cotton fabric blood stain; consequently, this method may add another sample option to the toxicological analysis of biological vestiges found at a crime scene.

2.
Sci Total Environ ; 945: 173966, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897457

RESUMO

Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.

3.
Ecotoxicol Environ Saf ; 280: 116568, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850693

RESUMO

Due to increasing anthropogenic perturbation and water eutrophication, cyanobacterial blooms (CYBs) have become a global ecological and environmental problem. Toxic CYBs and elevated pH are considered to be the two key stressors associated with eutrophication in natural waters, particularly in the event of CO2 depletion induced by dense blooms. However, previous research has been focused on investigating the impacts of toxic CYBs or pH changes in isolation, whereas the interactive effects of such stressors on edible bivalves that inhabit CYB waters still lack information. In this study, the combined effects of toxic Microcystis aeruginosa and pH shifts on the antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea were explored. The results showed that the activity of antioxidant enzymes was significantly impacted by the interactive effects between toxic M. aeruginosa exposure and time course, yet pH shifts showed no significant effects on the activities of these antioxidant enzymes, implying that the antioxidant response in C. fluminea was mainly triggered by toxic M. aeruginosa exposure. Toxic M. aeruginosa also induced an increased production of reactive oxygen species and malondialdehyde in treated clams, particularly under high pH settings. The elevated lysosomal enzyme activity helped C. fluminea defend against toxic M. aeruginosa exposure under high pH conditions. The principal component analysis (PCA) and the integrated biomarker response (IBR) results suggested that the treated clams were subjected to the elevated toxicity of toxic M. aeruginosa in conditions of high pH. The heat shock proteins-related genes might be triggered to resist the oxidative damage in treated clams. Moreover, the upregulation of TNF and casp8 genes indicated the potential activation of the caspase8-mediated apoptotic pathway through TNF receptor interaction, potentially resulting in apoptosis. The TUNEL assay results further confirmed that apoptosis appeared in treated clams. These findings improve our understanding of the combined toxicological effects of harmful algae and pH shifts on bivalves, which will provide insights into a comprehensive ecological risk assessment of toxic CYBs to edible bivalve species.


Assuntos
Antioxidantes , Apoptose , Corbicula , Microcystis , Animais , Concentração de Íons de Hidrogênio , Corbicula/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/metabolismo , Água Doce , Espécies Reativas de Oxigênio/metabolismo , Eutrofização , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo
4.
Ecotoxicol Environ Saf ; 278: 116426, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718727

RESUMO

The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.


Assuntos
Ecossistema , Microplásticos , Plásticos , Poluentes Químicos da Água , Animais , Humanos , Organismos Aquáticos/efeitos dos fármacos , Bioacumulação , Monitoramento Ambiental , Cadeia Alimentar , Microplásticos/toxicidade , Nanopartículas/toxicidade , Plásticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/toxicidade
5.
Chemosphere ; 358: 142065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636916

RESUMO

Sulfoxaflor is a widely used fourth-generation neonicotinoid pesticide, which has been detected in biological and environmental samples. Sulfoxaflor can potentially be exposed to humans via the food chain, thus understanding its toxic effects and enantioselective bioaccumulation is crucial. In this study, toxicokinetics, bioaccumulation, tissue distribution and enantiomeric profiles of sulfoxaflor in rats were investigated through single oral exposure and 28-days continuous exposure experiment. Sulfoxaflor mainly accumulated in liver and kidney, and the (-)-2R,3R-sulfoxaflor and (-)-2S,3R-sulfoxaflor had higher enrichment than their enantiomers in rats. The toxicological effects were evaluated after 28-days exposure. Slight inflammation in liver and kidney were observed by histopathology. Sphingolipid, amino acid, and vitamin B6 metabolism pathways were significantly disturbed in metabonomics analysis. These toxicities were in compliance with dose-dependent effects. These results improve understanding of enantioselective bioaccumulation and the potential health risk of sulfoxaflor.


Assuntos
Fígado , Compostos de Enxofre , Animais , Ratos , Compostos de Enxofre/toxicidade , Compostos de Enxofre/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Estereoisomerismo , Rim/metabolismo , Rim/efeitos dos fármacos , Bioacumulação , Piridinas/toxicidade , Piridinas/metabolismo , Distribuição Tecidual , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Ratos Sprague-Dawley , Inseticidas/toxicidade , Praguicidas/toxicidade , Praguicidas/metabolismo
6.
Front Pharmacol ; 15: 1388747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638866

RESUMO

Siraitia grosvenorii (Swingle) C. Jeffrey (S. grosvenorii), a perennial indigenous liana from the Cucurbitaceae family, has historically played a significant role in southern China's traditional remedies for various ailments. Its dual classification by the Chinese Ministry of Health for both medicinal and food utility underscores its has the potential of versatile applications. Recent research has shed light on the chemical composition, pharmacological effects, and toxicity of S. grosvenorii. Its active ingredients include triterpenoids, flavonoids, amino acids, volatile oils, polysaccharides, minerals, vitamins, and other microconstituents. Apart from being a natural sweetener, S. grosvenorii has been found to have numerous pharmacological effects, including alleviating cough and phlegm, preventing dental caries, exerting anti-inflammatory and anti-allergic effects, anti-aging and anti-oxidative, hypoglycemic, lipid-lowering, anti-depression, anti-fatigue, anti-schizophrenic, anti-Parkinson, anti-fibrotic, and anti-tumor activities. Despite its versatile potential, there is still a lack of systematic research on S. grosvenorii to date. This paper aims to address this gap by providing an overview of the main active components, pharmacological efficacy, toxicity, current status of development and application, development dilemmas, and strategies for intensive exploitation and utilization of S. grosvenorii. This paper aims to serve as a guide for researchers and practitioners committed to exploiting the biological resources of S. grosvenorii and further exploring its interdisciplinary potential.

7.
Sci Total Environ ; 924: 171472, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458459

RESUMO

Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.


Assuntos
Microplásticos , Praguicidas , Humanos , Idoso , Microplásticos/toxicidade , Microplásticos/química , Plásticos/química , Praguicidas/toxicidade , Praguicidas/química , Agricultura , Solo , Adsorção
8.
Curr Res Toxicol ; 6: 100157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420185

RESUMO

Thallium (Tl) is one of the most toxic metals and its historic use in homicides has led it to be known as "the poisoner's poison." This review summarizes the methods for identifying Tl and determining its concentrations in biological samples in recently reported poisoning cases, as well as the toxicokinetics, toxicological effects, toxicity mechanisms, and detoxication methods of Tl. Recent findings regarding Tl neurotoxicological pathways and toxicological effects of Tl during pregnancy are also presented. Confirmation of elevated Tl concentrations in blood, urine, or hair is indispensable for diagnosing Tl poisoning. The kidneys show the highest Tl concentration within 24 h after ingestion, while the brain shows the highest concentration thereafter. Tl has a very slow excretion rate due to its large distribution volume. Following acute exposure, gastrointestinal symptoms are observed at an early stage, and neurological dysfunction is observed later: Tl causes the most severe damage in the central nervous system. Alopecia and Mees' lines in the nails are observed within 1 month after Tl poisoning. The toxicological mechanism of Tl is considered to be interference of vital potassium-dependent processes with Tl+ because its ionic radius is similar to that of K+, as well as inhibition of enzyme reactions by the binding of Tl to -SH groups, which disturbs vital metabolic processes. Tl toxicity is also related to reactive oxygen species generation and mitochondrial dysfunction. Prussian blue is the most effective antidote, and metallothionein alone or in combination with Prussian blue was recently reported to have cytoprotective effects after Tl exposure. Because Tl poisoning cases are still reported, early determination of Tl in biological samples and treatment with an antidote are essential.

9.
J Hazard Mater ; 468: 133808, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387177

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that pose a threat to the biodiversity of the Beiluo River, a polluted watercourse on the Loess Plateau impacted by diverse human activities. However, the occurrence, spatial distribution, and substitution characteristics of PFASs in this region remain unclear. This study aimed to unravel PFAS distribution patterns and their impact on the aquatic ecosystems of the Beiluo River Basin. The total PFAS concentration in the area ranged from 16.64-35.70 ng/L, with predominantly perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), collectively contributing 94%. The Mantel test revealed threats to aquatic communities from both legacy long-chain (perfluorooctanoic acid and sodium perfluorooctane sulfonic acid) and emerging (6:2 fluorotelomer sulfonic acid, 2-Perfluorohexyl ethanoic acid, and hexafluoropropylene oxide dimer acid (Gen-X)) PFSAs. The canonical correspondence analysis ordination indicated that trace quantities of emerging PFASs, specifically 2-Perfluorohexyl ethanoic acid and hexafluoropropylene oxide dimer acid (Gen-X), significantly influenced geographical variations in aquatic communities. In conclusion, this study underscores the importance of comprehensively exploring the ecological implications and potential risks associated with PFASs in the Beiluo River Basin.


Assuntos
Ácidos Alcanossulfônicos , Polímeros de Fluorcarboneto , Fluorocarbonos , Heptanoatos , Propionatos , Poluentes Químicos da Água , Humanos , Rios , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Fluorocarbonos/análise , China , Ácidos Alcanossulfônicos/análise , Água/análise
10.
Huan Jing Ke Xue ; 45(1): 459-469, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216495

RESUMO

Microplastic pollution is not only an environmental problem but also a social problem. Many studies have been conducted on the sources, abundance, and distribution of microplastics in the environment, but an understanding of human exposure levels and potential health risks remains very limited. Based on the bibliometric methods, the present review systematically summarized the exposure pathways of microplastics in humans, and then the characteristics and potential adverse impacts on human health were expounded upon. Available literature showed that microplastics in human bodies were mainly concentrated on sizes smaller than 50 µm, and polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) were the main polymers. Microplastics in environments entered human bodies mainly through food and respiratory pathways, then accumulated in lung and gastrointestinal tissues. Most importantly, small-sized microplastics could distribute in tissues and organs via the circulatory system. The results from lab-based toxicological experiments showed that microplastics not only posed threats to cell membrane integrity, immune stress, gut microbiota, and energy metabolism but also had potentially adverse impacts on the reproductive system. To further understand the health risks of microplastic pollution, it is necessary to promote research on the toxicological effects of microplastics as well as the inner mechanisms and also to establish risk assessment frameworks for evaluating microplastic pollution. These works are crucial to preventing the risks of microplastic pollution with scientific evidence.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/efeitos adversos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluição Ambiental
11.
Biol Trace Elem Res ; 202(1): 9-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36976450

RESUMO

Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a sunscreen, antibacterial agent, dietary supplement, food additive, and semiconductor material. This review summarizes the biological fate following various exposure routes, toxicological effects, and toxicity mechanism of ZnO NPs in mammals. Furthermore, an approach to reduce the toxicity and biomedical applications of ZnO NPs are discussed. ZnO NPs are mainly absorbed as Zn2+ and partially as particles. Regardless of exposure route, elevated Zn concentration in the liver, kidney, lungs, and spleen are observed following ZnO NP exposure, and these are the target organs for ZnO NPs. The liver is the main organ responsible for ZnO NP metabolism and the NPs are mainly excreted in feces and partly in urine. ZnO NPs induce liver damage (oral, intraperitoneal, intravenous, and intratracheal exposure), kidney damage (oral, intraperitoneal, and intravenous exposure) and lung injury (airway exposure). Reactive oxygen species (ROS) generation and induction of oxidative stress may be a major toxicological mechanism for ZnO NPs. ROS are generated by both excess Zn ion release and the particulate effect resulting from the semiconductor or electronic properties of ZnO NPs. ZnO NP toxicity can be reduced by coating their surface with silica, which prevents Zn2+ release and ROS generation. Due to their superior characteristics, ZnO NPs are expected to be used for biomedical applications, such as bioimaging, drug delivery, and anticancer agents, and surface coatings and modification will expand the biomedical applications of ZnO NPs further.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Toxicocinética , Distribuição Tecidual , Nanopartículas/toxicidade , Mamíferos/metabolismo
12.
Environ Sci Technol ; 58(1): 231-241, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128904

RESUMO

Despite the extensive global consumption of architectural paint, the toxicological effects of aged exterior paint particles on terrestrial biota remain largely uncharacterized. Herein, we assessed the toxic effect of aged paint particles on soil environments using the nematode Caenorhabditis elegans (C. elegans) as a test organism. Various types of paint particles were generated by fragmentation and sequential sieving (500-1000, 250-500, 100-250, 50-100, 20-50 µm) of paint coatings collected from two old residential areas. The paint particles exerted different levels of toxicity, as indicated by a reduction in the number of C. elegans offspring, depending on their size, color, and layer structure. These physical characteristics were found to be closely associated with the chemical heterogeneity of additives present in the paint particles. Since the paint particle sizes were larger than what C. elegans typically consume, we attributed the toxicity to leachable additives present in the paint particles. To assess the toxicity of these leachable additives, we performed sequential washings of the paint particles with distilled water and ethanol. Ethanol washing of the paint particles significantly reduced the soil toxicity of the hydrophobic additives, indicating their potential environmental risk. Liquid chromatography-mass spectrometry analysis of the ethanol leachate revealed the presence of alkyl amines, which exhibited a high correlation with the toxicity of the paint particles. Further toxicity testing using an alkyl amine standard demonstrated that a paint particle concentration of 1.2% in soil could significantly reduce the number of C. elegans offspring. Our findings provide insights into the potential hazards posed by aged paint particles and their leachable additives in the terrestrial environment.


Assuntos
Caenorhabditis elegans , Solo , Animais , Solo/química , Ecossistema , Pintura , Etanol/farmacologia
13.
Environ Int ; 181: 108294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37935082

RESUMO

Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Animais , Humanos , Exposição Ambiental/efeitos adversos , Medição de Risco
14.
Int J Environ Health Res ; : 1-12, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37797207

RESUMO

The exposure of humans and animals to environmental compounds is rarely restricted to a single chemical. Cadmium (Cd) and lead (Pb) are two heavy metals known to be the most toxic. Deleterious effects of each metal alone are well documented. Unfortunately, very few studies were conducted to determine their combined effect. Four groups of Wistar rats were treated intravenously for 15 days. The control group received physiological saline solution; groups 2 and 3 were treated with Cd chloride and lead acetate, respectively ; and the treatment group 4 received a combined treatment of Cd and Pb . A significant decrease was recorded for hematological parameters , with an increase in white blood cells and an inhibition in δ-ALAD level. Cell injury in the livers and kidneys was clearly shown by the significant elevation of the biochemical markers. Cd and Pb induced oxidative stress and had adverse health effects at lower exposure levels than previously thought.

15.
Environ Sci Pollut Res Int ; 30(54): 114739-114755, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37906331

RESUMO

Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Adsorção , Bibliometria , Lagos
16.
Recent Adv Food Nutr Agric ; 14(2): 84-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787150

RESUMO

Vernonia is a woody shrub of the family Asteraceae. Over 1500 species are distributed in tropical and subtropical regions of Africa and Asia. There are more than 54 species known to possess similar morphological features with the characteristic bitter taste. The pharmacological properties of different parts like seeds, leaves, and roots are well documented in folk medicine. They are rich in biologically active constituents such as alkaloids, phenolics, flavonoids, terpenoids, steroid tannins, and carotenoids having broad therapeutic activities like antiinflammatory, hypoglycemic, hyperlipidemia, antimicrobial, antitumor, antioxidative, antiproliferative, antihypertensive, hepatoprotective, etc. The present study summarizes and discusses the phytochemical profile, pharmacological properties, and toxicological effects of the Vernonia plant.


Assuntos
Alcaloides , Vernonia , Vernonia/química , Extratos Vegetais/farmacologia , Medicina Tradicional , Alcaloides/análise , Folhas de Planta/química
17.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764524

RESUMO

Di-isononyl phthalates are chemicals that are widely used as plasticizers. Humans are extensively exposed to these compounds by dietary intake, through inhalation and skin absorption. Sulfotransferases (SULTs) are enzymes responsible for the detoxification and elimination of numerous endogenous and exogenous molecules from the body. Consequently, SULTs are involved in regulating the biological activity of various hormones and neurotransmitters. The present study considers a computational approach to predict the toxicological potential of the metabolites of di-isononyl phthalate. Furthermore, molecular docking was considered to evaluate the inhibitory potential of these metabolites against the members of family 1 of SULTs. The metabolites of di-isononyl phthalate reveal a potency to cause liver damage and to inhibit receptors activated by peroxisome proliferators. These metabolites are also usually able to inhibit the activity of the members of family 1 of SULTs, except for SULT1A3 and SULT1B1. The outcomes of this study are important for an enhanced understanding of the risk of human exposure to di-isononyl phthalates.


Assuntos
Ácidos Ftálicos , Sulfotransferases , Humanos , Simulação de Acoplamento Molecular , Ácidos Ftálicos/toxicidade , Plastificantes
18.
Curr Res Toxicol ; 5: 100120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744206

RESUMO

Phytanic acid (PA: 3,7,11,15-tetramethylhexadecanoic acid) is an important biometabolite of the chlorophyll-derived diterpenoid phytol. Its biological sources (occurrence) and ADME (absorption, distribution, metabolism, and elimination) profile are well-discussed in the literature. Cumulative literature suggests that PA has beneficial as well as harmful biological roles in humans and other animals. This study aimed to sketch a brief summary of PA's beneficial and harmful pharmacological effects in test systems on the basis of existing literature reports. Literature findings propose that PA has anti-inflammatory and immunomodulatory, antidiabetic, anti-obesity, anticancer, and oocyte maturation effects. Although a high plasma PA-level mediated SLS remains controversial, it is evident to link it with Refsum's disease and other peroxisomal enzyme deficiency diseases in humans, including RCDP and LD; ZHDA and Alzheimer's disease; progressive ataxia and dysarthria; and an increased risk of some lymphomas such as LBL, FL, and NHL. PA exerts toxic effects on different kinds of cells, including neuronal, cardiac, and renal cells, through diverse pathways such as oxidative stress, mitochondrial disturbance, apoptosis, disruption of Na+/K+-ATPase activity, Ca2+ homeostasis, alteration of AChE and MAO activities, etc. PA is considered a cardiac biomarker in humans. In conclusion, PA may be one of the most important biometabolites in humans.

19.
Front Microbiol ; 14: 1227951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744917

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy.

20.
J Hazard Mater ; 459: 132046, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467609

RESUMO

The present study aimed to comprehensively evaluate the toxicological effects of microplastics (MPs) on cultivated soil quality. Based on improved G1 evaluation method, we first constructed a grading evaluation system comprising of the indicators of toxicological effects of cultivated soil quality under MPs exposure, while focusing on types of MPs that had significant/non-significant toxicity effects. Furthermore, we verified reliability of screening results of significance-links at each level, using several data processing methods. Then, using natural breakpoint classification method, a priority control checklist of toxicological effects of 18 types of MPs on cultivated soil was developed to determine the types of MPs having significant toxicity risks and cultivated soil quality links significantly affected by the toxicity of MPs exposure. Finally, quantum-mechanics/molecular-mechanics (QM/MM) methods were used to carry out the differential toxicity mechanism analysis. The results showed that MPs with higher non-polar surface area may lead to stronger toxicity effect to the cultivated soil quality. Notably, the MPs that have abundant binding sites enhance the binding affinity, and less polar MPs bind more strongly to the non-polar amino acids of target receptors. Our study provides a new theoretical perspective for multi-dimensional analysis toxicological effects of different MPs exposure on cultivated soil quality.


Assuntos
Microplásticos , Plásticos , Microplásticos/toxicidade , Plásticos/toxicidade , Solo , Lista de Checagem , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...