Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Methods Mol Biol ; 2816: 101-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977592

RESUMO

Members of the Rho family of small monomeric GTPases regulate a plethora of critical cellular functions including gene expression, cell cycle progression, and the dynamic modeling of the actin cytoskeleton. Diversity among Rho family members is derived, in part, from variations in their subcellular distribution. Localization of newly synthesized (naïve) Rho proteins to target subcellular compartments is largely governed by lipid modifications, including posttranslational prenylation. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semiquantitatively evaluate the functional consequence of posttranslational prenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational prenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.


Assuntos
Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Malha Trabecular/citologia , Células Cultivadas , Terpenos/metabolismo , Prenilação de Proteína , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Processamento de Proteína Pós-Traducional
2.
Methods Mol Biol ; 2816: 145-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977596

RESUMO

Clusterin, also known as apolipoprotein J, is an ATP-independent holdase chaperone protein. Clusterin is involved in various functions including protein quality control and lipid transport. Though clusterin is secreted upon stress, the intracellular fate of clusterin after a stress response is not well understood. The protocol described here utilizes clusterin tagged to fluorescent proteins like green fluorescent protein and red fluorescent protein to understand the intracellular fate of clusterin.


Assuntos
Clusterina , Microscopia Confocal , Clusterina/metabolismo , Humanos , Microscopia Confocal/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteína Vermelha Fluorescente , Animais
3.
Methods Mol Biol ; 2816: 175-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977599

RESUMO

The trabecular meshwork (TM) from primary open-angle glaucoma (POAG) cases has been found to contain decreased levels of intracellular plasmalogens. Plasmalogens are a subset of lipids involved in diverse cellular processes such as intracellular signaling, membrane asymmetry, and protein regulation. Proper plasmalogen biosynthesis is regulated by rate-limiting enzyme fatty acyl-CoA reductase (Far1). ATPase phospholipid transporting 8B2 (ATP8B2) is a type IV P-type ATPase responsible for the asymmetric distribution of plasmalogens between the intracellular and extracellular leaflets of the plasma membranes. Here we describe the methodology for extraction and culturing of TM cells from corneal tissue and subsequent downregulation of ATP8B2 using siRNA transfection. Further quantification and downstream effects of ATP8B2 gene knockdown will be analyzed utilizing immunoblotting techniques.


Assuntos
Glaucoma de Ângulo Aberto , Plasmalogênios , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/citologia , Humanos , Plasmalogênios/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , RNA Interferente Pequeno/genética , Regulação para Baixo , Células Cultivadas , Técnicas de Silenciamento de Genes
5.
Artigo em Inglês | MEDLINE | ID: mdl-38881423

RESUMO

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists DIDS and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mOsm but not 285 mOsm hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.

6.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897410

RESUMO

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Assuntos
Glaucoma , Mitocôndrias , NAD , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/tratamento farmacológico , NAD/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Linhagem Celular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Dexametasona/farmacologia , Células Cultivadas
7.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920689

RESUMO

Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor ß (TGFß) in the anterior segment of the eye. Understanding how TGFß affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-ß1 and -ß2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFß-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma.


Assuntos
MicroRNAs , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos
8.
Biomedicines ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927372

RESUMO

To investigate the biological significance of Rho-associated coiled-coil-containing protein kinase (ROCK) 2 in the human trabecular meshwork (HTM), changes in both metabolic phenotype and gene expression patterns against a specific ROCK2 inhibitor KD025 were assessed in planar-cultured HTM cells. A seahorse real-time ATP rate assay revealed that administration of KD025 significantly suppressed glycolytic ATP production rate and increased mitochondrial ATP production rate in HTM cells. RNA sequencing analysis revealed that 380 down-regulated and 602 up-regulated differentially expressed genes (DEGs) were identified in HTM cells treated with KD025 compared with those that were untreated. Gene ontology analysis revealed that DEGs were more frequently related to the plasma membrane, extracellular components and integral cellular components among cellular components, and related to signaling receptor binding and activity and protein heterodimerization activity among molecular functions. Ingenuity Pathway Analysis (IPA) revealed that the detected DEGs were associated with basic cellular biological and physiological properties, including cellular movement, development, growth, proliferation, signaling and interaction, all of which are associated with cellular metabolism. Furthermore, the upstream regulator analysis and causal network analysis estimated IL-6, STAT3, CSTA and S1PR3 as possible regulators. Current findings herein indicate that ROCK2 mediates the IL-6/STAT3-, CSTA- and S1PR3-linked signaling related to basic biological activities such as glycolysis in HTM cells.

9.
FASEB J ; 38(10): e23651, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752537

RESUMO

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Assuntos
Autofagia , Interferon beta , Pressão Intraocular , Malha Trabecular , Autofagia/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Humanos , Animais , Camundongos , Pressão Intraocular/fisiologia , Interferon beta/metabolismo , Masculino , Feminino , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Camundongos Endogâmicos C57BL , Mutação , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Linhagem , Odontodisplasia , Calcificação Vascular , Hipoplasia do Esmalte Dentário , Metacarpo/anormalidades , Osteoporose , Doenças Musculares , Doenças da Aorta , Receptores Imunológicos
10.
Int J Ophthalmol ; 17(5): 963-968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766345

RESUMO

Although selective laser trabeculoplasty (SLT) is a recognized method for the treatment of glaucoma, the exact changes in the target tissue and mechanism for its intraocular pressure lowing effect are still unclear. The purpose of this review is to summarize the potential mechanisms of SLT on trabecular meshwork both in vivo and in vitro, so as to reveal the potential mechanism of SLT. SLT may induce immune or inflammatory response in trabecular meshwork (TM) induced by possible oxidative damage etc, and remodel extracellular matrix. It may also induce monocytes to aggregate in TM tissue, increase Schlemm's canal (SC) cell conductivity, disintegrate cell junction and promote permeability through autocrine and paracrine forms. This provides a theoretical basis for SLT treatment in glaucoma.

11.
Trials ; 25(1): 300, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702810

RESUMO

BACKGROUND: Minimally invasive glaucoma surgery (MIGS) is a new class of surgeries, which combines moderate to high success rates and a high safety profile. Bent Ab interno Needle Goniotomy (BANG) and Gonioscopy-Assisted Transluminal Trabeculotomy (GATT) are two low-cost MIGS procedures that communicate the anterior chamber to Schlemm's canal. Most of the available publications on MIGS are either case series or retrospective studies, with different study protocols. The aim of this manuscript is to describe a randomized clinical trial (RCT) protocol to compare the long-term intraocular pressure (IOP) control and the safety of both procedures in eyes with primary open-angle glaucoma. METHODS: This is a parallel, double-arm, single-masked RCT that includes pseudophakic primary open-angle glaucoma (POAG) eyes. After inclusion criteria, medications will be washed out to verify baseline IOP before surgery. Patients will be randomized to BANG or GATT using a sealed envelope. Follow-up visits will be 1, 7, 15, 30, 60, 90, 180, 330 and 360 days after surgery. On PO330, a new medication washout will be done. The main outcome is the IOP reduction following the procedures. Complimentary evaluation of functional and structural parameters, safety, and quality of life will be done after 30, 90, 180, and 360 days. DISCUSSION: Our study was designed to compare the long-term efficacy and safety of two low-cost MIGS. Most of the published studies on this subject are case series or retrospective cohorts, with different study protocols, which included different types and severities of glaucomas, combined with cataract extraction. Our study only included mild to moderate POAG eyes, with previous successful cataract extraction. Moreover, it provides a standardized protocol that could be replicated in future studies investigating various types of MIGS. This would allow comparison between different techniques in terms of efficacy, safety, and patients' quality of life. TRIAL REGISTRATION: Retrospectively registered at the Registro Brasileiro de Ensaios Clínicos (ReBEC) platform RBR-268ms5y . Registered on July 29, 2023. The study was approved by the Ethics Committee of the University of Campinas, Brazil.


Assuntos
Glaucoma de Ângulo Aberto , Gonioscopia , Pressão Intraocular , Ensaios Clínicos Controlados Aleatórios como Assunto , Trabeculectomia , Humanos , Glaucoma de Ângulo Aberto/cirurgia , Glaucoma de Ângulo Aberto/fisiopatologia , Trabeculectomia/métodos , Trabeculectomia/instrumentação , Resultado do Tratamento , Método Simples-Cego , Masculino , Feminino , Fatores de Tempo , Pessoa de Meia-Idade , Agulhas , Idoso , Adulto
12.
Exp Eye Res ; 244: 109939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789021

RESUMO

Transforming growth factor-ß2 (TGF-ß2) induced fibrogenic changes in human trabecular meshwork (HTM) cells have been implicated in trabecular meshwork (TM) damage and intraocular pressure (IOP) elevation in primary open-angle glaucoma (POAG) patients. Silibinin (SIL) exhibited anti-fibrotic properties in various organs and tissues. This study aimed to assess the effects of SIL on the TGF-ß2-treated HTM cells and to elucidate the underlying mechanisms. Our study found that SIL effectively inhibited HTM cell proliferation, attenuated TGF-ß2-induced cell migration, and mitigated TGF-ß2-induced reorganization of both actin and vimentin filaments. Moreover, SIL suppressed the expressions of fibronectin (FN), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA) in the TGF-ß2-treated HTM cells. RNA sequencing indicated that SIL interfered with the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, extracellular matrix (ECM)-receptor interaction, and focal adhesion in the TGF-ß2-treated HTM cells. Western blotting demonstrated SIL inhibited the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and the downstream PI3K/AKT signaling pathways induced by TGF-ß2, potentially contributing to its inhibitory effects on ECM protein production in the TGF-ß2-treated HTM cells. Our study demonstrated the ability of SIL to inhibit TGF-ß2-induced fibrogenic changes in HTM cells. SIL could be a potential IOP-lowering agent by reducing the fibrotic changes in the TM tissue of POAG patients, which warrants further investigation through additional animal and clinical studies.


Assuntos
Movimento Celular , Proliferação de Células , Janus Quinase 2 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Silibina , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Silibina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Western Blotting , Fibrose , Silimarina/farmacologia , Antioxidantes/farmacologia , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/patologia
13.
Lasers Surg Med ; 56(4): 382-391, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570914

RESUMO

BACKGROUND AND OBJECTIVES: Femtosecond laser trabeculotomy (FLT) creates aqueous humor outflow channels through the trabecular meshwork (TM) and is an emerging noninvasive treatment for open-angle glaucoma. The purpose of this study is to investigate the effect of pulse energy on outflow channel creation during FLT. MATERIALS AND METHODS: An FLT laser (ViaLase Inc.) was used to create outflow channels through the TM (500 µm wide by 200 µm high) in human cadaver eyes using pulse energies of 10, 15, and 20 µJ. Following treatment, tissues were fixed in 4% paraformaldehyde. The channels were imaged using optical coherence tomography (OCT) and assessed as full thickness, partial thickness, or not observable. RESULTS: Pulse energies of 15 and 20 µJ had a 100% success rate in creating full-thickness FLT channels as imaged by OCT. A pulse energy of 10 µJ resulted in no channels (n = 6), a partial-thickness channel (n = 2), and a full-thickness FLT channel (n = 2). There was a statistically significant difference in cutting widths between the 10 and 15 µJ groups (p < 0.0001), as well as between the 10 and 20 µJ groups (p < 0.0001). However, there was no statistically significant difference between the 15 and 20 µJ groups (p = 0.416). CONCLUSIONS: Fifteen microjoules is an adequate pulse energy to reliably create aqueous humor outflow channels during FLT in human cadaver eyes. OCT is a valuable tool when evaluating FLT.


Assuntos
Glaucoma de Ângulo Aberto , Trabeculectomia , Humanos , Trabeculectomia/métodos , Glaucoma de Ângulo Aberto/cirurgia , Pressão Intraocular , Lasers , Cadáver
14.
Acta Biomater ; 180: 206-229, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641184

RESUMO

This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.


Assuntos
Glaucoma , Malha Trabecular , Malha Trabecular/patologia , Humanos , Glaucoma/patologia , Glaucoma/fisiopatologia , Matriz Extracelular/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Fenômenos Biomecânicos
15.
Aging Cell ; : e14160, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566432

RESUMO

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.

16.
Tissue Eng Regen Med ; 21(5): 695-710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642251

RESUMO

BACKGROUND: Various cell culture platforms that could display native environmental cue-mimicking stimuli were developed, and effects of environmental cues on cell behaviors were studied with the cell culture platforms. Likewise, various cell culture platforms mimicking native trabecular meshwork (TM) composed of juxtacanalicular, corneoscleral and uveal meshwork located in internal scleral sulcus were used to study effects of environmental cues and/or drug treatments on TM cells and glaucoma development. Glaucoma is a disease that could cause blindness, and cause of glaucoma is not clearly identified yet. It appears that aqueous humor (AH) outflow resistance increased by damages on pathway of AH outflow can elevate intraocular pressure (IOP). These overall possibly contribute to development of glaucoma. METHODS: For the study of glaucoma, static and dynamic cell culture platforms were developed. Particularly, the dynamic platforms exploiting AH outflow-mimicking perfusion or increased IOP-mimicking increased pressure were used to study how perfusion or increased pressure could affect TM cells. Overall, potential mechanisms of glaucoma development, TM structures and compositions, TM cell culture platform types and researches on TM cells and glaucoma development with the platforms were described in this review. RESULTS AND CONCLUSION: This will be useful to improve researches on TM cells and develop enhanced therapies targeting glaucoma.


Assuntos
Técnicas de Cultura de Células , Glaucoma , Malha Trabecular , Malha Trabecular/citologia , Humanos , Técnicas de Cultura de Células/métodos , Pressão Intraocular , Humor Aquoso , Animais
17.
Exp Eye Res ; 243: 109904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642600

RESUMO

Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.


Assuntos
Humor Aquoso , Sistema Linfático , Humor Aquoso/fisiologia , Humor Aquoso/metabolismo , Humanos , Sistema Linfático/fisiologia , Esclera/irrigação sanguínea , Malha Trabecular/metabolismo , Vasos Linfáticos/fisiologia , Veias/fisiologia , Úvea , Animais , Pressão Intraocular/fisiologia , Linfa/fisiologia , Corpo Ciliar/irrigação sanguínea , Corpo Ciliar/metabolismo
18.
J Physiol Sci ; 74(1): 14, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431563

RESUMO

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the ß1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.


Assuntos
Glaucoma , Pressão Intraocular , Humanos , Malha Trabecular , Humor Aquoso/fisiologia , Ritmo Circadiano/fisiologia , Glucocorticoides
19.
Sci Rep ; 14(1): 6112, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480777

RESUMO

Digital ocular massage has been reported to temporarily lower intraocular pressure (IOP). This could be related to an enhanced aqueous humor outflow; however, the mechanism is not clearly understood. Using anterior segment optical coherence tomography, the Schlemm's canal (SC) and trabecular meshwork (TM) can be imaged and measured. Here, 66 healthy adults underwent digital ocular massage for 10 min in their right eyes. The IOP and dimensions of the SC and TM were measured before and after ocular massage. All subjects demonstrated IOP reduction from 15.7 ± 2.5 mmHg at baseline to 9.6 ± 2.2 mmHg immediately after, and median of 11.6 mmHg 5-min after ocular massage (Friedman's test, p < 0.001). There was significant change in SC area (median 10,063.5 µm2 at baseline to median 10,151.0 µm2 after ocular massage, Wilcoxon test, p = 0.02), and TM thickness (median 149.8 µm at baseline to 144.6 ± 25.3 µm after ocular massage, Wilcoxon test, p = 0.036). One-third of the subjects demonstrated collapse of the SC area (-2 to -52%), while two-thirds showed expansion of the SC area (2 to 168%). There were no significant changes in SC diameter (270.4 ± 84.1 µm vs. 276.5 ± 68.7 µm, paired t-test, p = 0.499), and TM width (733.3 ± 110.1 µm vs. 733.5 ± 111.6 µm, paired t-test, p = 0.988). Eyes with a higher baseline IOP demonstrated a greater IOP reduction (Pearson correlation coefficient r = -0.521, p < 0.001). Eyes with smaller SC area at baseline showed greater SC area expansion (Pearson correlation coefficient = -0.389, p < 0.001). Greater IOP reduction appeared in eyes with greater SC area expansion (Pearson correlation coefficient r = -0.306, p = 0.01). Association between change in IOP and change in TM thickness was not significant (Spearman's ρ = 0.015, p = 0.902). Simple digital ocular massage is an effective method to lower IOP values, and change in the SC area was significantly associated with IOP changes.


Assuntos
Glaucoma , Hipotensão Ocular , Adulto , Humanos , Pressão Intraocular , Canal de Schlemm , Esclera , Tonometria Ocular , Malha Trabecular , Glaucoma/terapia , Tomografia de Coerência Óptica/métodos , Massagem
20.
Biomater Biosyst ; 13: 100091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528909

RESUMO

This review highlights the importance of extracellular matrix (ECM) biomaterials in understanding the biology of human trabecular meshwork (TM) and Schlemm's canal (SC) cells under normal and simulated glaucoma-like conditions. We provide an overview of recent progress in the development and application of state-of-the-art 3D ECM biomaterials including cell-derived ECM, ECM scaffolds, Matrigel, and ECM hydrogels for studies of TM and SC cell (patho)biology. Such bioengineered platforms enable accurate and reliable modeling of tissue-like cell-cell and cell-ECM interactions. They bridge the gap between conventional 2D approaches and in vivo/ex vivo models, and have the potential to aid in the identification of the causal mechanism(s) for outflow dysfunction in ocular hypertensive glaucoma. We discuss each model's benefits and limitations, and close with an outlook on future directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...