Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068844

RESUMO

Alzheimer's disease (AD), is a progressive neurodegenerative disorder that involves the deposition of ß-amyloid plaques and the clinical symptoms of confusion, memory loss, and cognitive dysfunction. Despite enormous progress in the field, no curative treatment is available. Therefore, the current study was designed to determine the neuroprotective effects of N-methyl-(2S, 4R)-Trans-4-hydroxy-L-proline (NMP) obtained from Sideroxylon obtusifolium, a Brazilian folk medicine with anti-inflammatory and anti-oxidative properties. Here, for the first time, we explored the neuroprotective role of NMP in the Aß1-42-injected mouse model of AD. After acclimatization, a single intracerebroventricular injection of Aß1-42 (5 µL/5 min/mouse) in C57BL/6N mice induced significant amyloidogenesis, reactive gliosis, oxidative stress, neuroinflammation, and synaptic and memory deficits. However, an intraperitoneal injection of NMP at a dose of (50 mg/kg/day) for three consecutive weeks remarkably decreased beta secretase1 (BACE-1) and Aß, activated the astrocyte and microglia expression level as well as downstream inflammatory mediators such as pNF-ĸB, TNF-α, and IL-1ß. NPM also strongly attenuated oxidative stress, as evaluated by the expression level of NRF2/HO-1, and synaptic failure, by improving the level of both the presynaptic (SNAP-25 and SYN) and postsynaptic (PSD-95 and SNAP-23) regions of the synapses in the cortexes and hippocampi of the Aß1-42-injected mice, contributing to cognitive improvement in AD and improving the behavioral deficits displayed in the Morris water maze and Y-maze. Overall, our data suggest that NMP provides potent multifactorial effects, including the inhibition of amyloid plaques, oxidative stress, neuroinflammation, and cognitive deficits.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias , Placa Amiloide , Camundongos Endogâmicos C57BL , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/metabolismo , Modelos Animais de Doenças
2.
Bioorg Chem ; 141: 106876, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797458

RESUMO

Antimicrobial peptides (AMPs) often display guanidinium functionalities, and hence robust synthetic procedures are needed to facilitate access to analogues with unnatural homologues of arginine (Arg = R). Initially, a resin-bound Arg/Pro-rich fluoren-9-yl-methyloxycarbonyl-protected fragment (Fmoc-RPRPPR) of the AMP oncocin (i.e., VDKPPYLPRPRPPRRIYNR-NH2) was employed in a comparative on-resin assessment of commercial guanidinylation reagents head-to-head with the recently studied bis-Boc-protected triazole-based reagent, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]-carboxamidine, which was synthesized by a chromatography-free procedure. This reagent was found to enable quantitative conversion in solid-phase peptide synthesis (SPPS) of peptides displaying homoarginine (Har) residues and/or an N-terminal guanidinium group. SPPS was used to obtain analogues of the 18-mer oncocin with single as well as multiple Arg → Har modifications. In addition, the effect of replacement of proline (Pro) residues in oncocin was explored by incorporating single or multiple trans-4-hydroxy-l-proline (Hyp) or 4,4-difluoro-l-proline (Dfp) residues, which both affected hydrophobicity. The resulting peptide library was tested against both Gram-negative and Gram-positive bacteria. Analysis of the minimal inhibitory concentrations (MICs) showed that analogues, displaying modifications at positions 4, 5 and 12 (originally Pro residues), had retained or slightly improved antimicrobial activity. Next, an oncocin analogue with two stabilizing l-Arg → d-Arg replacements in the C-terminal part was further modified by triple-replacement of Pro by either Dfp or Hyp in positions 4, 5, and 12. The resulting analogue displaying three Pro → Dfp modifications proved to possess the best activity profile: MICs of 1-2 µg/mL against E. coli and Klebsiella pneumoniae, less than 1% hemolysis at 800 µg/mL, and an IC50 above 1280 µg/mL in HepG2 cells. Thus, incorporation of bis-fluorinated Pro residues appears to constitute a novel tool in structure-activity studies aimed at optimization of Pro-rich AMPs.


Assuntos
Escherichia coli , Homoarginina , Hidroxiprolina/farmacologia , Homoarginina/farmacologia , Guanidina/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Triazóis/farmacologia
3.
Chemosphere ; 311(Pt 1): 136756, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36228731

RESUMO

Lead (Pb2+) is a well-known heavy metal and toxic synthetic industrial pollutant in the ecosystem and causes severe threats to living organisms. It is paramount to develop a sustainable microbial engineering approach to remove synthetic pollutants from the environment. Genetic code engineering is emerging as an important microbial engineering tool in biosciences to biosynthesis congener protein production beyond the canonical set of natural molecules and expand the chemistries of living cells. Here, we prepare cells expressing unnatural amino acid encoded congener proteins for effectively removable toxic synthetic industrial pollutants (Pb2+) with high binding efficiency. Native and the developed congener proteins expressing cells adapted the Langmuir and Sips adsorption model that recommends uniform adsorption with Pb2+ ions. This could be due to a more significant number of functional groups on the protein surface. Fluorescence spectroscopic, field emission scanning electron microscope, X-ray photoelectron spectroscopic analysis, and protein-metal molecular stimulation coordination allowed us to explore the role of hydroxylation on Pb2+ adsorption. The bioreactor filled with immobilized protein-containing active granules showed >90% of lead removal in the contaminated water samples. The desorption of bound Pb2+ from GFP and its variants were studied by varying the pH to reuse the proteins for subsequent usage. We observed that about 70% of the GFP and its variants could be recycled and >75% of fluorescence efficiency could be recovered. Among all the variants, GFPHPDP exhibits high affinity and maintains the reusability efficiency in 7 consecutive cycles. These results suggest that genetic code engineering of cells encoding unnatural amino acids could be a next-generation microbial engineering tool for manipulating and developing the microbial strain's selective and effective removal of synthetic pollutants from the environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Água , Poluentes Ambientais/análise , Ecossistema , Aminoácidos , Chumbo , Adsorção , Cinética , Concentração de Íons de Hidrogênio
4.
Microb Cell Fact ; 21(1): 159, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953819

RESUMO

BACKGROUND: In recent years, there has been a growing demand for microbial production of trans-4-hydroxy-L-proline (t4Hyp), which is a value-added amino acid and has been widely used in the fields of medicine, food, and cosmetics. In this study, a multivariate modular metabolic engineering approach was used to remove the bottleneck in the synthesis pathway of t4Hyp. RESULTS: Escherichia coli t4Hyp synthesis was performed using two modules: a α-ketoglutarate (α-KG) synthesis module (K module) and L-proline synthesis with hydroxylation module (H module). First, α-KG attrition was reduced, and then, L-proline consumption was inhibited. Subsequently, to improve the contribution to proline synthesis with hydroxylation, optimization of gene overexpression, promotor, copy number, and the fusion system was performed. Finally, optimization of the H and K modules was performed in combination to balance metabolic flow. Using the final module H1K4 in a shaking flask culture, 8.80 g/L t4Hyp was produced, which was threefold higher than that produced by the W0 strain. CONCLUSIONS: These strategies demonstrate that a microbial cell factory can be systematically optimized by modular engineering for efficient production of t4Hyp.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxiprolina , Ácidos Cetoglutáricos/metabolismo , Engenharia Metabólica , Prolina/metabolismo
5.
J Biol Chem ; 298(3): 101708, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150746

RESUMO

Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-ß-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-ß-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.


Assuntos
Aminoácido Oxirredutases , Hidroxibutirato Desidrogenase , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Animais , Embrião de Galinha , Escherichia coli/metabolismo , Células HEK293 , Humanos , Hidroxibutirato Desidrogenase/química , Hidroxibutirato Desidrogenase/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Mamíferos/metabolismo , Prolina/análogos & derivados , Prolina/metabolismo , Coelhos , Ratos
6.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4498-4519, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36593190

RESUMO

L-proline (L-Pro) is the only imino acid among the 20 amino acids that constitute biological proteins, and its main hydroxylated product is trans-4-hydroxy-L-proline (T-4-Hyp). Both of them have unique biological activities and play important roles in biomedicine, food and beauty industry. With the in-depth exploration of the functions of L-Pro and T-4-Hyp, the demand for them is gradually increasing. Traditional methods of biological extraction and chemical synthesis are unable to meet the demand of "green, environmental protection and high efficiency". In recent years, synthetic biology has developed rapidly. Through the intensive analysis of the synthetic pathways of L-Pro and T-4-Hyp, microbial cell factories were constructed for large-scale production, which opened a new chapter for the green and efficient production of L-Pro and T-4-Hyp. This paper reviews the application and production methods of L-Pro and T-4-Hyp, the metabolic pathways for microbial synthesis of L-Pro and T-4-Hyp, and the engineering strategies and advances on microbial production of L-Pro and T-4-Hyp, aiming to provide a theoretical basis for the "green bio-manufacturing" of L-Pro and T-4-Hyp and promote their industrial production.


Assuntos
Prolina , Hidroxiprolina
7.
Chinese Journal of Biotechnology ; (12): 4498-4519, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970328

RESUMO

L-proline (L-Pro) is the only imino acid among the 20 amino acids that constitute biological proteins, and its main hydroxylated product is trans-4-hydroxy-L-proline (T-4-Hyp). Both of them have unique biological activities and play important roles in biomedicine, food and beauty industry. With the in-depth exploration of the functions of L-Pro and T-4-Hyp, the demand for them is gradually increasing. Traditional methods of biological extraction and chemical synthesis are unable to meet the demand of "green, environmental protection and high efficiency". In recent years, synthetic biology has developed rapidly. Through the intensive analysis of the synthetic pathways of L-Pro and T-4-Hyp, microbial cell factories were constructed for large-scale production, which opened a new chapter for the green and efficient production of L-Pro and T-4-Hyp. This paper reviews the application and production methods of L-Pro and T-4-Hyp, the metabolic pathways for microbial synthesis of L-Pro and T-4-Hyp, and the engineering strategies and advances on microbial production of L-Pro and T-4-Hyp, aiming to provide a theoretical basis for the "green bio-manufacturing" of L-Pro and T-4-Hyp and promote their industrial production.


Assuntos
Prolina , Hidroxiprolina
8.
Microb Cell Fact ; 20(1): 87, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882914

RESUMO

Trans-4-hydroxy-L-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-L-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-L-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-L-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-L-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-L-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.


Assuntos
Bactérias/metabolismo , Hidroxiprolina/biossíntese , Engenharia Metabólica/métodos
9.
J Biotechnol ; 329: 104-117, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539894

RESUMO

Non-proteinogenic trans-4-hydroxy-l-proline (t4HYP), a crucial naturally occurred amino acid, is present in most organisms. t4HYP is a regio- and stereo-selectively hydroxylated product of l-proline and a valuable building block for pharmaceutically important intermediates/ingredients synthesis. Microbial production of t4HYP has aroused extensive investigations because of its low-cost and environmentally benign features. Herein, we reported metabolic engineering of endogenous l-proline biosynthetic pathway to enhance t4HYP production in trace l-proline-producing Escherichia coli BL21(DE3) (21-S0). The genes responsible for by-product formation from l-proline, pyruvate, acetyl-CoA, and isocitrate in the biosynthetic network of 21-S0 were knocked out to channel the metabolic flux towards l-proline biosynthesis. PdhR was knocked out to remove its negative regulation and aceK was deleted to ensure isocitrate dehydrogenase's activity and to increase NADPH/NADP+ level. The other genes for l-proline biosynthesis were enhanced by integration of strong promoters and 5'-untranslated regions. The resulting engineered E. coli strains 21-S1 ∼ 21-S9 harboring a codon-optimized proline 4-hydroxylase-encoding gene (P4H) were grown and fermented. A titer of 4.82 g/L of t4HYP production in 21-S6 overexpressing P4H was obtained at conical flask level, comparing with the starting 21-S0 (26 mg/L). The present work paves an efficient metabolic engineering way for higher t4HYP production in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Acetilcoenzima A/metabolismo , Proteínas da Membrana Bacteriana Externa , Vias Biossintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Engenharia Metabólica , Prolina/metabolismo
10.
Metab Eng Commun ; 12: e00155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33511031

RESUMO

Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23-55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria.

11.
Lett Appl Microbiol ; 72(1): 53-59, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32955742

RESUMO

A new trans-4-hydroxy-l-proline (trans-Hyp) producing Bacillus cereus HBL-AI, was isolated from the air, which was screened just using l-proline as carbon and energy sources. This strain exhibited 73·4% bioconversion rate from initial l-proline (3 g l-1 ) to trans-Hyp. By sequencing the genome of this bacterium, 6244 coding sequences were obtained. Genome annotation analysis and functional expression were used to identify the proline-4-hydroxylase (BP4H) in HBL-AI. This enzyme belonged to a family of 2-oxoglutarate-related dioxygenases, which required 2-oxoglutarate and O2 as co-substrates for the reaction. Homologous modelling indicated that the enzyme had two monomers and contained conserved motifs, which included a distorted 'jelly roll' ß strand core and the residues (HXDXnH and RXS). The engineering Escherichia coli 3 Δ W3110/pTrc99a-proba-bp4h was constructed using BP4H, which transformed glucose to trans-Hyp in one step with high concentration of 46·2 g l-1 . This strategy provides a green and efficient method for synthesis of trans-Hyp and thus has a great potential in industrial application.


Assuntos
Bacillus cereus/enzimologia , Genoma Bacteriano/genética , Hidroxiprolina/biossíntese , Prolil Hidroxilases/metabolismo , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Ácidos Cetoglutáricos/metabolismo , Anotação de Sequência Molecular , Prolina/metabolismo , Prolil Hidroxilases/genética
12.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545390

RESUMO

The N-methyl-(2S,4R)-trans-4-hydroxy-l-proline-enriched fraction (NMP) from Sideroxylon obtusifolium was evaluated as a neuroprotective agent in the intracerebroventricular (icv) pilocarpine (Pilo) model. To this aim, male mice were subdivided into sham (SO, vehicle), Pilo (300 µg/1 µL icv, followed by the vehicle per os, po) and NMP-treated groups (Pilo 300 µg/1 µL icv, followed by 100 or 200 mg/kg po). The treatments started one day after the Pilo injection and continued for 15 days. The effects of NMP were assessed by characterizing the preservation of cognitive function in both the Y-maze and object recognition tests. The hippocampal cell viability was evaluated by Nissl staining. Additional markers of damage were studied-the glial fibrillary acidic protein (GFAP) and the ionized calcium-binding adaptor molecule 1 (Iba-1) expression using, respectively, immunofluorescence and western blot analyses. We also performed molecular docking experiments revealing that NMP binds to the γ-aminobutyric acid (GABA) transporter 1 (GAT1). GAT1 expression in the hippocampus was also characterized. Pilo induced cognitive deficits, cell damage, increased GFAP, Iba-1, and GAT1 expression in the hippocampus. These alterations were prevented, especially by the higher NMP dose. These data highlight NMP as a promising candidate for the protection of the hippocampus, as shown by the icv Pilo model.


Assuntos
Hipocampo/efeitos dos fármacos , Hidroxiprolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Sapotaceae/química , Estado Epiléptico/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de GABA/química , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Hidroxiprolina/química , Infusões Intraventriculares , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/química , Pilocarpina/administração & dosagem , Pilocarpina/toxicidade , Plantas Medicinais/química , Estado Epiléptico/induzido quimicamente
13.
PeerJ ; 8: e9111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461830

RESUMO

INTRODUCTION: Metabolomics has emerged as a valuable tool to discover novel biomarkers and study the pathophysiology of diabetic nephropathy (DN). However, the effect of postoperative acute kidney injury (AKI) on diabetes mellitus (DM) to chronic DN progression has not been evaluated from the perspective of metabolomics. METHODS: A group of type 2 diabetes mellitus (T2DM) inpatients, who underwent off-pump coronary artery bypass grafting (CABG), were enrolled in our study. According to whether postoperative AKI occurred, patients were grouped in either the AKI group (AKI, n = 44) or the non-AKI group (NAKI, n = 44). Urine samples were collected from these patients before and 24 h after operation. Six patients from the AKI group and six patients from the NAKI group were chosen as the pilot cohort for untargeted metabolomics analysis, with the goal of identifying postoperative AKI-related metabolites. To understand the possible role of these metabolites in the chronic development of renal injury among T2DM patients, trans-4-hydroxy-L-proline and azelaic acid were quantified by targeted metabolomics analysis among 38 NAKI patients, 38 AKI patients, 46 early DN patients (DN-micro group), and 34 overt DN patients (DN-macro group). RESULTS: Untargeted metabolomics screened 61 statistically distinguishable metabolites in postoperative urine samples, compared with preoperative urine samples. Via Venn diagram analysis, nine of 61 were postoperative AKI-related metabolites, including trans-4-hydroxy-L-proline, uridine triphosphate, p-aminobenzoate, caffeic acid, adrenochrome, δ-valerolactam, L-norleucine, 5'-deoxy-5'-(methylthio) adenosine, and azelaic acid. By targeted metabolomics analysis, the level of trans-4-hydroxy-L-proline increased gradually from the NAKI group to the AKI, DN-micro, and DN-macro groups. For azelaic acid, the highest level was found in the NAKI and DN-micro groups, followed by the DN-macro group. The AKI group exhibited the lowest level of azelaic acid. CONCLUSIONS: The detection of urinary trans-4-hydroxy-L-proline after AKI could be treated as an early warning of chronic DN progression and might be linked to renal fibrosis. Urinary azelaic acid can be used to monitor renal function noninvasively in DM and DN patients. Our results identified markers of AKI on DM and the chronic progression of DN. In addition, the progression of DN was associated with AKI-like episodes occurring in DM.

14.
Appl Microbiol Biotechnol ; 104(11): 4771-4779, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291491

RESUMO

Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.


Assuntos
Escherichia coli/enzimologia , Hidroxiprolina/biossíntese , Isomerases de Aminoácido/metabolismo , Biocatálise , Indução Enzimática , Hidroxilação , Isomerismo , Oxigenases de Função Mista/metabolismo
15.
Appl Microbiol Biotechnol ; 103(1): 265-277, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315354

RESUMO

trans-Proline 4-hydroxylases (trans-P4Hs) hydroxylate free L-proline to trans-4-hydroxy-L-proline (trans-4-Hyp) is a valuable chiral synthon for important pharmaceuticals such as carbapenem antibiotics. However, merely few microbial trans-P4Hs have been identified, and trans-4-Hyp fermentations using engineered Escherichia coli strains expressing trans-P4Hs are usually performed at temperatures below 37 °C, which is likely due to poor stability and low activities. In the present study, a new trans-P4H from uncultured bacterium esnapd13 (UbP4H) with potential in the fermentative production of trans-4-Hyp at 37 °C was reported. In order to enhance the activity and thermostability of UbP4H, the replacement of its putative "lid" loop in combination with site-directed mutagenesis was performed. Consequently, four loop hybrids were designed by substituting a loop of UbP4H (A162-K178) with the corresponding sequences of four other known trans-P4Hs, respectively. Among them, UbP4H-Da exhibited a doubled activity when compared to the wild type (81.6 ± 1.9 vs. 40.4 ± 4.6 U/mg) but with reduced thermostability (t1/2, 11 vs. 47 min). Meanwhile, 10 single variants were designed through sequence alignments and folding free energy calculations. Three best point substitutions were respectively combined with UbP4H-Da, resulting in UbP4H-Da-R90G, UbP4H-Da-E112P, and UbP4H-Da-A260P. UbP4H-Da-E112P exhibited a 1.8-fold higher activity (85.2 ± 0.6 vs. 46.6 ± 4.0 U/mg), a 7.6-fold increase in t1/2 (359 vs. 47 min), and a 3 °C rise in Tm (46 vs. 43 °C) when compared to UbP4H. The fed-batch fermentations of trans-4-Hyp at 37 °C using trans-4-Hyp producing chassis cells expressing UbP4H or its variants were evaluated, and a 3.3-fold increase in trans-4-Hyp titer was obtained for UbP4H-Da-E112P (12.9 ± 0.1 vs. 3.9 ± 0.0 g/L for UbP4H). These results demonstrate the potential application of UbP4H-Da-E112P in the industrial production of trans-4-Hyp.


Assuntos
Mutagênese Sítio-Dirigida/métodos , Prolil Hidroxilases/química , Prolil Hidroxilases/metabolismo , Engenharia de Proteínas/métodos , Técnicas de Cultura Celular por Lotes , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Hidroxiprolina/metabolismo , Cinética , Simulação de Dinâmica Molecular , Prolil Hidroxilases/genética
16.
Biotechnol Bioeng ; 116(1): 99-109, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102770

RESUMO

trans-4-Hydroxy- l-proline (Hyp) is an abundant component of mammalian collagen and functions as a chiral synthon for the syntheses of anti-inflammatory drugs in the pharmaceutical industry. Proline 4-hydroxylase (P4H) can catalyze the conversion of l-proline to Hyp; however, it is still challenging for the fermentative production of Hyp from glucose using P4H due to the low yield and productivity. Here, we report the metabolic engineering of Corynebacterium glutamicum for the fermentative production of Hyp by reconstructing tricarboxylic acid (TCA) cycle together with heterologously expressing the p4h gene from Dactylosporangium sp. strain RH1. In silico model-based simulation showed that α-ketoglutarate was redirected from the TCA cycle toward Hyp synthetic pathway driven by P4H when the carbon flux from succinyl-CoA to succinate descended to zero. The interruption of the TCA cycle by the deletion of sucCD-encoding the succinyl-CoA synthetase (SUCOAS) led to a 60% increase in Hyp production and had no obvious impact on the growth rate. Fine-tuning of plasmid-borne ProB* and P4H abundances led to a significant increase in the yield of Hyp on glucose. The final engineered Hyp-7 strain produced up to 21.72 g/L Hyp with a yield of 0.27 mol/mol (Hyp/glucose) and a volumetric productivity of 0.36 g·L -1 ·hr -1 in the shake flask fermentation. To our knowledge, this is the highest yield and productivity achieved by microbial fermentation in a glucose-minimal medium for Hyp production. This strategy provides new insights into engineering C. glutamicum by flux coupling for the fermentative production of Hyp and related products.


Assuntos
Ciclo do Ácido Cítrico/genética , Corynebacterium glutamicum/metabolismo , Hidroxiprolina/metabolismo , Engenharia Metabólica/métodos , Simulação por Computador , Corynebacterium glutamicum/genética , Fermentação , Glucose/metabolismo , Análise do Fluxo Metabólico , Micromonosporaceae/enzimologia , Micromonosporaceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Biosci Bioeng ; 126(4): 470-477, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29805115

RESUMO

trans-4-Hydroxy-l-proline (trans-4Hyp) is widely used as a valuable building block for the organic synthesis of many pharmaceuticals such as carbapenem antibiotics. The major limitation for industrial bioproduction of trans-4Hyp is the low titer and productivity by using the existing trans-proline 4-hydroxylases (trans-P4Hs). Herein, three new trans-P4Hs from Alteromonas mediterranea (AlP4H), Micromonospora sp. CNB394 (MiP4H) and Sorangium cellulosum (ScP4H) were discovered through genome mining and enzymatic determination. These trans-P4Hs were introduced into an l-proline-producing chassis cell, and the recombinant strain overexpressing AlP4H produced the highest concentration of trans-4Hyp (3.57 g/L) from glucose in a shake flask. In a fed-batch fermentation with a 5 L bioreactor, the best strain SEcH (pTc-B74A-alp4h) accumulated 45.83 g/L of trans-4Hyp within 36 h, with the highest productivity (1.27 g/L/h) in trans-4Hyp fermentation from glucose, to the best of our knowledge. This study provides a promising hydroxylase candidate for efficient industrial production of trans-4Hyp.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Hidroxiprolina/biossíntese , Oxigenases de Função Mista/genética , Alteromonas/enzimologia , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Fermentação , Engenharia Metabólica , Micromonospora/enzimologia , Oxigenases de Função Mista/metabolismo , Prolina/metabolismo
18.
Lett Appl Microbiol ; 66(5): 400-408, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29432647

RESUMO

Trans-4-Hydroxy-l-proline (trans-Hyp) is a valuable chiral building block for the synthesis of pharmaceutical intermediates. Bioconversion of l-proline using recombinant strain with proline-4-hydroxylase (P4H) is a preferred biocatalytic process in the economical production of trans-Hyp. In this study, a recombinant E. coli overexpressing hydroxylase (P4H), γ-glutamyl kinase and glutamate-semialdehyde dehydrogenase (ProBA) genes were constructed by knocking out the key genes in the metabolism. These key genes contained putA encoding proline dehydrogenase (PutA) in the l-proline metabolism and other catalytic enzyme genes, sucAB encoding α-ketoglutarate dehydrogenase (SucAB), aceAK encoding isocitratelyase (AceA) and isocitrate dehydrogenase kinase/phosphatase (AceK) in the TCA cycle. This recombinant strain coupled the synthetic pathway of trans-Hyp with TCA cycle of the host strain. It inhibited the consumption of l-proline completely and promoted the accumulation of 2-oxoglutarate (2-OG) as a co-substrate, which realized the highest conversion of glucose to trans-Hyp. A fed-batch strategy was designed, capable of producing 31·0 g l-1 trans-Hyp from glucose. It provided a theoretical basis for commercial conversion of glucose to trans-Hyp. SIGNIFICANCE AND IMPACT OF THE STUDY: Trans-4-Hydroxy-l-proline (trans-Hyp) is a valuable chiral building block for the synthesis of pharmaceutical intermediates. Unsatisfactory microbial bioconversion resulted in a low yield of trans-Hyp. In this study, we blocked the unwanted blunting pathways of host strain and make the cell growth couple with the trans-Hyp synthesis from glucose. Finally, a recombinant Escherichia coli with short-cut and efficient trans-Hyp biosynthetic pathway was obtained. It provided a theoretical basis for commercial production of trans-Hyp.


Assuntos
Escherichia coli , Glucose/metabolismo , Hidroxiprolina/biossíntese , Engenharia Metabólica/métodos , Prolina/metabolismo , Biocatálise , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato-5-Semialdeído Desidrogenase/genética , Glutamato-5-Semialdeído Desidrogenase/metabolismo , Hidroxiprolina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo
19.
Biosci Biotechnol Biochem ; 82(1): 110-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29191113

RESUMO

The hypO gene from Sinorhizobium meliloti, located within the trans-4-hydroxy-L-proline metabolic gene cluster, was first successfully expressed in the host Pseudomonas putida. Purified HypO protein functioned as a FAD-containing cis-4-hydroxy-D-proline dehydrogenase with a homomeric structure. In contrast to other known enzymes, significant activity for D-proline was found, confirming a previously proposed potential involvement in D-proline metabolism.


Assuntos
Prolina Oxidase/genética , Sinorhizobium meliloti , Sinorhizobium/enzimologia , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Família Multigênica , Prolina Oxidase/metabolismo , Sinorhizobium/genética
20.
Front Microbiol ; 8: 2054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104571

RESUMO

Halobacillus halophilus, a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halophilus, was accumulated in response to high NaCl salinity, suggesting that Hyp may be an important compatible solute in H. halophilus. Candidate genes encoding proline 4-hydroxylase (PH-4), which hydroxylates L-proline to generate Hyp, were retrieved from the genome of H. halophilus through domain searches based on the sequences of known PH-4 proteins. A gene, HBHAL_RS11735, which was annotated as a multidrug DMT transporter permease in GenBank, was identified as the PH-4 gene through protein expression analysis in Escherichia coli. The PH-4 gene constituted a transcriptional unit with a promoter and a rho-independent terminator, and it was distantly located from the proline biosynthetic gene cluster (pro operon). Transcriptional analysis showed that PH-4 gene expression was NaCl concentration-dependent, and was specifically induced by chloride anion, similar to the pro operon. Accumulation of intracellular Hyp was also observed in other bacteria, suggesting that Hyp may be a widespread compatible solute in halophilic and halotolerant bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...