Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.181
Filtrar
1.
Genes Dev ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960718

RESUMO

As part of the efforts to understand nuclear IκB function in NF-κB-dependent gene expression, we report an X-ray crystal structure of the IκBζ ankyrin repeat domain in complex with the dimerization domain of the NF-κB p50 homodimer. IκBζ possesses an N-terminal α helix that conveys domain folding stability. Affinity and specificity of the complex depend on a small portion of p50 at the nuclear localization signal. The model suggests that only one p50 subunit supports binding with IκBζ, and biochemical experiments confirm that IκBζ associates with DNA-bound NF-κB p50:RelA heterodimers. Comparisons of IκBζ:p50 and p50:κB DNA complex crystallographic models indicate that structural rearrangement is necessary for ternary complex formation of IκBζ and p50 with DNA.

2.
Mol Cell ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955180

RESUMO

During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.

3.
Mol Cell ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955181

RESUMO

The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.

4.
RNA ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981655

RESUMO

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge of a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38824270

RESUMO

BACKGROUND: Drug resistance is one of the major reasons of the poor prognosis and recurs frequently in glioma. Ferroptosis is considered to be a new therapeutic strategy for glioma. METHODS: Microsomal glutathione S-transferase 1 (MGST1) expression in glioma samples was ensured through GAPIA database, qRT-PCR, western blotting assay and immunohistochemistry. The interaction between zinc finger protein 384 (ZNF384) and MGST1 promoter was analyzed through UCSC and JASPAR databases and further verified by ChIP and luciferase reporter assay. Cell viability and IC50 value of temozolomide (TMZ) was measured by CCK-8 assay. The production of MDA, GSH and ROS and the level of Fe2+ were determined using the corresponding kit. RESULTS: MGST1 expression was increased in clinical glioma tissues and glioma cells. MGST1 expression was increased but ferroptosis was suppressed in TMZ-resistant cells when contrasted to parent cells. MGST1 silencing downregulated IC50 value of TMZ and cell viability but facilitated ferroptosis in TMZ-resistant cells and parent glioma cells. Moreover, our data indicated that ZNF384 interacted with MGST1 promoter and facilitated MGST1 expression. ZNF384 was also increased expression in TMZ-resistant cells, and showed a positive correlation with MGST1 expression in clinical level. ZNF384 decreasing enhanced the sensitivity of resistant cells to TMZ, while the effect of ZNF384 could be reversed by overexpression of MGST1. CONCLUSION: MGST1 transcription is regulated by transcription factor ZNF384 in TMZ-resistant cells. ZNF384 confers the resistance of glioma cells to TMZ through inhibition of ferroptosis by positively regulating MGST1 expression. The current study may provide some new understand to the mechanism of TMZ resistance in glioma.

6.
DNA Repair (Amst) ; 141: 103714, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943827

RESUMO

The Mediator complex is an essential coregulator of RNA polymerase II transcription. More recent developments suggest Mediator functions as a link between transcription regulation, genome organisation and DNA repair mechanisms including nucleotide excision repair, base excision repair, and homologous recombination. Dysfunctions of these processes are frequently associated with human pathologies, and growing evidence shows Mediator involvement in cancers, neurological, metabolic and infectious diseases. The detailed deciphering of molecular mechanisms of Mediator functions, using interdisciplinary approaches in different biological models and considering all functions of this complex, will contribute to our understanding of relevant human diseases.

7.
J Biol Chem ; 300(7): 107431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825006

RESUMO

Antibiotic-resistant Enterobacterales pose a major threat to healthcare systems worldwide, necessitating the development of novel strategies to fight such hard-to-kill bacteria. One potential approach is to develop molecules that force bacteria to hyper-activate prodrug antibiotics, thus rendering them more effective. In the present work, we aimed to obtain proof-of-concept data to support that small molecules targeting transcriptional regulators can potentiate the antibiotic activity of the prodrug metronidazole (MTZ) against Escherichia coli under aerobic conditions. By screening a chemical library of small molecules, a series of structurally related molecules were identified that had little inherent antibiotic activity but showed substantial activity in combination with ineffective concentrations of MTZ. Transcriptome analyses, functional genetics, thermal shift assays, and electrophoretic mobility shift assays were then used to demonstrate that these MTZ boosters target the transcriptional repressor MarR, resulting in the upregulation of the marRAB operon and its downstream MarA regulon. The associated upregulation of the flavin-containing nitroreductase, NfsA, was then shown to be critical for the booster-mediated potentiation of MTZ antibiotic activity. Transcriptomic studies, biochemical assays, and electron paramagnetic resonance measurements were then used to show that under aerobic conditions, NfsA catalyzed 1-electron reduction of MTZ to the MTZ radical anion which in turn induced lethal DNA damage in E. coli. This work reports the first example of prodrug boosting in Enterobacterales by transcriptional modulators and highlights that MTZ antibiotic activity can be chemically induced under anaerobic growth conditions.

8.
Cancer Lett ; 597: 217058, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880226

RESUMO

OBJECTIVE: N6-methyladenosine (M6A) is the most prevalent epigenetic alteration. Methyltransferase-like 3 (METTL3) is a key player in the control of M6A modification. Methyltransferase promote the processing of mature miRNA in an M6A-dependent manner, thereby participating in disease occurrence and development. However, the regulatory mechanism of M6A in NK/T cell lymphoma (NKTCL) remains unclear. PATIENTS AND METHODS: We determined the expression of METTL3 and its correlation with clinicopathological features using qRT-PCR and immunohistochemistry. We evaluated the effects of METTL3 on NKTCL cells using dot blot assay, CCK8 assay and subcutaneous xenograft experiment. We then applied M6A sequencing combined with gene expression omnibus data to screen candidate targets of METTL3. Finally, we investigated the regulatory mechanism of METTL3 in NKTCL by methylated RNA immunoprecipitation and RNA immunoprecipitation (RIP) assays. RESULTS: We demonstrated that METTL3 was highly expressed in NKTCL cells and tissues and indicated poor prognosis. The METTL3 expression was associated with NKTCL survival. Functionally, METTL3 promoted the proliferation capability of NKTCL cells in vitro and in vivo. Furthermore, EBV-miR-BART3-3p was identified as the downstream effector of METTL3, and silencing EBV-miR-BART3-3p inhibited the proliferation of NKTCL. Finally, we confirmed that PLCG2 as a target gene of EBVmiR-BART3-3p by relative assays. CONCLUSIONS: We identified that METTL3 is significantly up-regulated in NKTCL and promotes NKTCL development. M6A modification contributes to the progression of NKTCL via the METTL3/EBV-miR-BART3-3p/PLCG2 axis. Our study is the first to report that M6A methylation has a critical role in NKTCL oncogenesis, and could be a potential target for NKTCL treatment.

9.
Biochemistry (Mosc) ; 89(4): 626-636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831500

RESUMO

Su(Hw) belongs to the class of proteins that organize chromosome architecture, determine promoter activity, and participate in formation of the boundaries/insulators between the regulatory domains. This protein contains a cluster of 12 zinc fingers of the C2H2 type, some of which are responsible for binding to the consensus site. The Su(Hw) protein forms complex with the Mod(mdg4)-67.2 and the CP190 proteins, where the last one binds to all known Drosophila insulators. To further study functioning of the Su(Hw)-dependent complexes, we used the previously described su(Hw)E8 mutation with inactive seventh zinc finger, which produces mutant protein that cannot bind to the consensus site. The present work shows that the Su(Hw)E8 protein continues to directly interact with the CP190 and Mod(mdg4)-67.2 proteins. Through interaction with Mod(mdg4)-67.2, the Su(Hw)E8 protein can be recruited into the Su(Hw)-dependent complexes formed on chromatin and enhance their insulator activity. Our results demonstrate that the Su(Hw) dependent complexes without bound DNA can be recruited to the Su(Hw) binding sites through the specific protein-protein interactions that are stabilized by Mod(mdg4)-67.2.


Assuntos
Cromatina , Proteínas de Drosophila , Drosophila melanogaster , Proteínas Repressoras , Fatores de Transcrição , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Animais , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Ligação Proteica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dedos de Zinco , Proteínas Associadas aos Microtúbulos
10.
Cell Mol Immunol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849539

RESUMO

The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.

11.
Res Sq ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712042

RESUMO

Transcription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood. Here, we characterize two candidate Klotho enhancers using H3K27ac epigenetic marks and transcription factor binding and investigate their functions, individually and combined, through CRISPR-Cas9 genome engineering. We discovered that only the distal (E1), but not the proximal (E2) candidate region constitutes a functional enhancer, with the double deletion not causing Klotho expression to further decrease. E1 activity is dependent on HNF1b transcription factor binding site within the enhancer. Further, E1 controls the sexual dimorphism of Klotho as evidenced by qPCR and RNA-seq. Despite the sharp reduction of Klotho mRNA, unlike germline Klotho knockouts, mutant mice presented normal phenotype, including weight, lifespan, and serum biochemistry. Lastly, only males lacking E1 display more prominent acute, but not chronic kidney injury responses, indicating a remarkable range of potential adaptation to isolated Klotho loss, especially in female E1 knockouts, retaining renoprotection despite over 80% Klotho reduction.

12.
Dokl Biochem Biophys ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744735

RESUMO

Transvection is a phenomenon of interallelic communication in which enhancers can activate a specific promoter located on a homologous chromosome. Insulators play a significant role in ensuring functional interactions between enhancers and promoters. In the presented work, we created a model where two or three copies of the insulator are located next to enhancers and promoters localized on homologous chromosomes. Using the Su(Hw) insulator as a model, we showed that the functional interaction between a pair of insulators promotes enhancer-promoter trans-interactions. The interaction between the three insulators, on the contrary, can lead to the formation of chromatin loops that sterically hinder the full enhancer-promoter interaction. The results of the work suggest the participation of insulators in the regulation of homologous chromosome pairing and in communication between distant genomic loci.

13.
J Biomed Res ; : 1-15, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38808563

RESUMO

Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.

14.
Genes Cells ; 29(7): 532-548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715205

RESUMO

Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.


Assuntos
Genoma Viral , Papillomavirus Humano 18 , Proto-Oncogene Mas , Humanos , Papillomavirus Humano 18/genética , Células HeLa , RNA Viral/genética , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Integração Viral , Transcrição Gênica , Feminino , Genoma Humano , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contêm Bromodomínio
15.
Cell Mol Immunol ; 21(7): 752-769, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822080

RESUMO

The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.


Assuntos
Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular , Células Dendríticas , Homeostase , Fatores Reguladores de Interferon , Camundongos Endogâmicos C57BL , Fatores de Transcrição , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Transcrição Gênica , Apoptose , RNA Polimerase II/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Knockout , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia
16.
Kidney Int ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782200

RESUMO

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.

17.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790178

RESUMO

Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation. Despite their abundance, the functional consequences of bidirectional promoter architecture remain largely unexplored. This work studies the long-range gene expression regulatory role of a long non-coding RNA gene promoter using chromosome conformation capture methods. We found that this particular bidirectional promoter contributes to distal gene expression regulation in a target-specific manner by establishing promoter-promoter interactions. In particular, we validated that the promoter-promoter interactions of this regulatory element with the promoter of distal gene BBX contribute to modulating the transcription rate of this gene; removing the bidirectional promoter from its genomic context leads to a rearrangement of BBX promoter-enhancer interactions and to increased gene expression. Moreover, long-range regulatory functionality is not directly dependent on its associated non-coding gene pair expression levels.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Regulação da Expressão Gênica/genética , Transcrição Gênica , Elementos Facilitadores Genéticos
18.
Antiviral Res ; 226: 105889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631661

RESUMO

Hepatitis B virus (HBV) infections pose a major threat to human health. HBV can upregulate the expression of the transcription factor Yin Yang 1 (YY1) in in vitro cytological experiments, suggesting an association between YY1 and HBV infection. However, data on YY1 expression in chronic hepatitis B (CHB) patients are lacking. In this study, we aimed to assess the correlation between YY1 expression and HBV infection. We detected serum YY1 levels in 420 patients with chronic HBV infection, 30 patients with chronic hepatitis C virus infection, and 32 healthy controls using an enzyme-linked immunosorbent assay. The correlation between YY1 levels and clinical parameters was analyzed. Meanwhile, the changes of YY1 before and after interferon or entecavir treatment were analyzed. YY1 levels in the liver tissues were detected using immunofluorescence staining. The expression of YY1 in HBV-expressing cells was detected through western blotting. Meanwhile, we explored the effects of YY1 on HBV replication and gene expression. We found that YY1 was highly expressed in the serum and liver tissues of CHB patients. Serum YY1 levels positively correlated with HBV DNA and hepatitis B surface antigen (HBsAg). Additionally, HBV DNA levels increased but HBsAg levels decreased after HBV-expressing cells overexpress YY1. In conclusion, our study demonstrates that YY1 plays an important role in HBV replication and gene expression, providing a potential target for the treatment of CHB.


Assuntos
DNA Viral , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica , Fígado , Replicação Viral , Fator de Transcrição YY1 , Humanos , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Hepatite B Crônica/virologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , DNA Viral/genética , DNA Viral/sangue , Antígenos de Superfície da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/metabolismo , Fígado/virologia , Fígado/metabolismo , Guanina/análogos & derivados , Antivirais/uso terapêutico , Antivirais/farmacologia , Interferons/metabolismo , Células Hep G2
19.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611825

RESUMO

Glucocorticoids (GCs) act through the glucocorticoid receptor (GR) and are commonly used as anti-inflammatory and immunosuppressant medications. Chronic GC use has been linked with unwanted complications such as steroid-induced diabetes mellitus (SIDM), although the mechanisms for these effects are not completely understood. Modification of six GC parent molecules with 2-mercaptobenzothiazole resulted in consistently less promoter activity in transcriptional activation assays using a 3xGRE reporter construct while constantly reducing inflammatory pathway activity. The most selective candidate, DX1, demonstrated a significant reduction (87%) in transactivation compared to commercially available dexamethasone. DX1 also maintained 90% of the anti-inflammatory potential of dexamethasone while simultaneously displaying a reduced toxicity profile. Additionally, two novel and highly potent compounds, DX4 and PN4, were developed and shown to elicit similar mRNA expression at attomolar concentrations that dexamethasone exhibits at nanomolar dosages. To further explain these results, Molecular Dynamic (MD) simulations were performed to examine structural changes in the ligand-binding domain of the glucocorticoid receptor in response to docking with the top ligands. Differing interactions with the transcriptional activation function 2 (AF-2) region of the GR may be responsible for lower transactivation capacity in DX1. DX4 and PN4 lose contact with Arg611 due to a key interaction changing from a stronger hydrophilic to a weaker hydrophobic one, which leads to the formation of an unoccupied channel at the location of the deacylcortivazol (DAC)-expanded binding pocket. These findings provide insights into the structure-function relationships important for regulating anti-inflammatory activity, which has implications for clinical utility.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/farmacologia , Ligantes , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia
20.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612463

RESUMO

Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.


Assuntos
Melatonina , Vitis , Tolerância ao Sal/genética , Melatonina/farmacologia , Vitis/genética , Metaboloma , Perfilação da Expressão Gênica , Flavonoides , Ácidos Indolacéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...