Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant J ; 119(3): 1197-1209, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864847

RESUMO

Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Resposta ao Choque Térmico/genética , Temperatura Alta , Metilação de DNA , Plantas/genética , Plantas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo
2.
Mol Ther Nucleic Acids ; 25: 143-151, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34457999

RESUMO

The inhibition of immunosuppressive mechanisms may switch the balance between tolerance and surveillance, leading to an increase in antitumor activity. Regulatory T cells play an important role in the control of immunosuppression, exhibiting the unique property of inhibiting T cell proliferation. These cells migrate to tumor sites or may be generated at the tumor site itself from the conversion of lymphocytes exposed to tumor microenvironment signaling. Because of the high similarity between regulatory T cells and other lymphocytes, the available approaches to inhibit this population are nonspecific and may antagonize antitumor response. In this work we explore a new strategy for inhibition of regulatory T cells based on the use of a chimeric aptamer targeting a marker of immune activation harboring a small antisense RNA molecule for transcriptional gene silencing of Fox p 3, which is essential for the control of the immunosuppressive phenotype. The silencing of Fox p 3 inhibits the immunosuppressive phenotype of regulatory T cells and potentiates the effect of the GVAX antitumor vaccine in immunocompetent animals challenged with syngeneic tumors. This novel approach highlights an alternative method to antagonize regulatory T cell function to augment antitumor immune responses.

3.
Plant Sci ; 291: 110327, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928663

RESUMO

Daucus carota is a biennale crop that develops an edible storage root. Orange carrots, the most consumed cultivar worldwide, accumulate high levels of ß-carotene and α-carotene in the storage root during secondary growth. Genes involved in ß-carotene synthesis have been identified in carrots and unlike most species, D. carota has two ζ-carotene desaturase genes, named ZDS1 and ZDS2, that share 91.3 % identity in their coding regions. ZDS1 expression falls during leaf, but not root development, while ZDS2 is induced in leaves and storage roots of a mature plant. In this work, by means of post-transcriptional gene silencing, we determined that ZDS1 is essential for initial carrot development. The suppression of the expression of this gene by RNAi triggered a reduction in the transcript levels of ZDS2 and PSY2 genes, with a concomitant decrease in the carotenoid content in both, leaves and storage roots. On the contrary, transgenic lines with reduced ZDS2 transcript abundance maintain the same levels of expression of endogenous ZDS1 and PSY2 and carotenoid profile as wild-type plants. The simultaneous silencing of ZDS1 and ZDS2 resulted in lines with a negligible leaf and root development, as well as significantly lower endogenous PSY2 expression. Further functional analyses, such as a plastidial subcellular localization of ZDS1:GFP and the increment in carotenoid content in transgenic tobacco plants overexpressing the carrot ZDS1, confirmed that ZDS1 codifies for a functional enzyme. Overall, these results lead us to propose that the main ζ-carotene desaturase activity in carrot is encoded by the ZDS1 gene and ZDS2 gene has a complementary and non essential role.


Assuntos
Carotenoides/metabolismo , Daucus carota/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo
4.
Univ. sci ; 24(1): 111-133, Jan-Apr. 2019. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1014756

RESUMO

Abstract Cape gooseberry (Physalis peruviana, L.) is a herbaceous plant belonging to the Solanaceae family that produces an edible berry appreciated for its nutraceutical and pharmaceutical properties. Its production is often limited by diseases and reproducible fruit quality. Recent studies have reported genes associated with fruit quality and resistance response to the root-infecting fungus Fusarium oxysporum f. sp. physali (Foph,) which causes vascular wilt. In order to standardize a method to validate the biological function of candidate genes in the non-model species P. peruviana, we tested the robust approach in reverse genetics, virus-induced gene silencing (VIGS). In this study, we validated and optimized VIGS using an insert of the phytoene desaturase (PDS) gene in a silencing viral vector generated from tobacco rattle virus (TRV). Leaves infiltrated with Agrobacterium (GV3101 strain) showed photo-bleached segments, which were distinctive for PDS suppression at 7 days post-infection (dpi). More than half of the treated plants showed photo-bleaching, indicating an efficiency rate of 50 % of the VIGS protocol. The results of this study showed that VIGS can be used for future functional gene characterization implicated in the immune response, disease resistance and fruit quality in capegooseberry.


Resumo A physalis (Physalis peruviana, L.) é uma planta herbácea pertencente à família Solanaceae, que produz uma baga comestível apreciada por suas propriedades nutracêuticas e farmacêuticas. Sua produção com frequência se vê limitada devido a enfermidades e baixa reprodutibilidade na qualidade do fruto. Estudos recentes reportaram genes associados com a qualidade do fruto e com a resposta de resistência ao fungo radicular Fusarium oxysporum f. sp. physali (Foph.), que causa esmorecimento vascular. Com a finalidade de padronizar um método para validar a função biológica de genes candidatos na espécie não-modelo P. p ruviana, avaliamos uma aproximação robusta em genética invertida, o sil nciamento de genes induzidos por vírus (VIGS). Neste estudo, validamos e otimizamos o VIGS usando um inserto da fitoeno desaturase (PDS) em um vetor viral de silenciamento produzido a partir do vírus do chocalho do tabaco (TRV). As folhas infiltradas com Agrobacterium (cepa GV3101) mostraram segmentos fotobranqueados, que foram distintivos para a supressão de PDS a 7 dias pós-infecção (dpi). Mais da metade das plantas tratadas mostraram fotobranqueamento, o que indica uma taxa de eficiência de 50 % do procotolo VIGS. Os resultados de este estudo mostraram que o VIGS pode ser usado em caracterizações futuras de genes funcionais implicados na resposta imune, na resistência a enfermidades e na qualidade do fruto de physalis.


Resumen La uchuva (Physalis peruviana, L.) es una planta herbácea perteneciente a la familia de las solanáceas, que produce una baya comestible apreciada por sus propiedades nutracéuticas y farmacéuticas. Su producción con frecuencia se ve limitada debido a enfermedades y a falta de reproducibilidad en la calidad del fruto. Estudios recientes han reportado genes asociados con la calidad del fruto y con la respuesta de resistencia al hongo radicular Fusarium oxysporum f. sp. physali (Foph,), que causa marchitamiento vascular. Con el fin de estandarizar un método para validar la función biológica de genes candidatos en la especie no-modelo P. peruviana, evaluamos la aproximación robusta en genética inversa, el silenciamiento génico inducido por virus (VIGS). En este estudio, validamos y optimizamos el VIGS usando un inserto de la fitoeno desaturasa (PDS) en un vector viral de silenciamiento producido a partir del virus del cascabeleo del tabaco (TRV). Las hojas infiltradas con Agrobacterium (cepa GV3101) mostraron segmentos fotoblanqueados, que fueron distintivos para la supresión de PDS a 7 días pos-infeccion (dpi). Más de la mitad de las plantas tratadas mostraron fotoblanqueo, lo cual indica una tasa de eficiencia del 50 % del protocolo VIGS. Los resultados de este estudio mostraron que el VIGS se puede usar en futuras caracterizaciones de genes funcionales implicados en la respuesta inmune, la resistencia a enfermedad y la calidad del fruto en la uchuva.

5.
Acta sci. vet. (Impr.) ; 40(3): Pub. 1048, 2012. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1373608

RESUMO

Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specific corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specific mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most efficient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specific and unique siRNA sequences (Stealth RNaiTM). Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (172 bp in exon 2; and 108 bp in exon 6; NM003401) genes were chosen to generate dsRNA for subsequent "Dicing" to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80ºC. Alternatively, chemically synthesized Stealth siRNAs were designed and generated to match two very specific gene sequence regions for each target gene of interest (Ku70 and Xrcc4). HCT116 cells were plated at 30% confluence in 24- or 6-well culture plates. The next day, cells were transfected by lipofection with either Diced or Stealth siRNAs for Ku70 or Xrcc4, in duplicate, at various doses, with blank and sham transfections used as controls. Cells were harvested at 0, 24, 48, 72 and 96 h post-transfection for protein determination. The knockdown of specific targeted gene products was quantified by Western blot using GAPDH as control. Transfection of gene-specific siRNA to either Ku70 or Xrcc4 with both Diced and Stealth siRNAs resulted in a down regulation of the targeted proteins to approximately 10 to 20% of control levels 48 h after transfection, with recovery to pre-treatment levels by 96 h. Discussion: By transfecting cells with Diced or chemically synthesized Stealth siRNAs, Ku70 and Xrcc4, two highly expressed proteins in cells, were effectively attenuated, demonstrating the great potential for the use of both siRNA production strategies as tools to perform loss of function experiments in mammalian cells. In fact, down-regulation of Ku70 and Xrcc4 has been shown to reduce the activity of the non-homologous end joining DNA pathway, a very desirable approach for the use of homologous recombination technology for gene targeting or knockout studies. Stealth RNAiTM was developed to achieve high specificity and greater stability when compared with mixtures of enzymatically-produced (Diced) siRNA fragments. In this study, both siRNA approaches inhibited the expression of Ku70 and Xrcc4 gene products, with no detectable toxic effects to the cells in culture. However, similar knockdown effects using Diced siRNAs were only attained at concentrations 10-fold higher than with Stealth siRNAs. The application of RNAi technology will expand and continue to provide new insights into gene regulation and as potential applications for new therapies, transgenic animal production and basic research.


Assuntos
Humanos , Interferência de RNA , Ribonuclease III/biossíntese , Reparo do DNA , Técnicas In Vitro
6.
Acta sci. vet. (Impr.) ; 40(3): 01-11, 2012.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1457005

RESUMO

Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Dicing to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80o C. Alternatively, chemically synthesiz


Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (1

7.
Acta sci. vet. (Online) ; 40(3): 01-11, 2012.
Artigo em Inglês | VETINDEX | ID: vti-475627

RESUMO

Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Dicing to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80o C. Alternatively, chemically synthesiz


Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (1

8.
Plant Dis ; 88(5): 516-522, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-30812656

RESUMO

Local varieties of papaya grown in the Andean foothills of Mérida, Venezuela, were transformed independently with the coat protein (CP) gene from two different geographical Papaya ringspot virus (PRSV) isolates, designated VE and LA, via Agrobacterium tumefaciens. The CP genes of both PRSV isolates show 92 and 96% nucleotide and amino acid sequence similarity, respectively. Four PRSV-resistant R0 plants were intercrossed or selfed, and the progenies were tested for resistance against the homologous isolates VE and LA, and the heterologous isolates HA (Hawaii) and TH (Thailand) in greenhouse conditions. Resistance was affected by sequence similarity between the transgenes and the challenge viruses: resistance values were higher for plants challenged with the homologous isolates (92 to 100% similarity) than with the Hawaiian (94% similarity) and, lastly, Thailand isolates (88 to 89% similarity). Our results show that PRSV CP gene effectively protects local varieties of papaya against homologous and heterologous isolates of PRSV.

9.
Genet. mol. res. (Online) ; Genet. mol. res. (Online);3(3): 323-341, 2004. tab, ilus
Artigo em Inglês | LILACS | ID: lil-482174

RESUMO

Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These features make VIGS an attractive alternative instrument in functional genomics, even in a high throughput fashion. The system is already well established in Nicotiana benthamiana; however, efforts are being made to improve VIGS in other species, including monocots. Current research is focussed on unravelling the mechanisms of post-transcriptional gene silencing and VIGS, as well as on finding novel viral vectors in order to broaden the host species spectrum. We examined how VIGS has been used to assess gene functions in plants, including molecular mechanisms involved in the process, available methodological elements, such as vectors and inoculation procedures, and we looked for examples in which the system has been applied successfully to characterize gene function in plants.


Assuntos
Inativação Gênica , Genes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Transcrição Gênica/genética , Vírus de Plantas/genética , DNA Viral , Flores/genética , Vetores Genéticos , Genômica/métodos , Modelos Genéticos , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA