Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.184
Filtrar
1.
mSphere ; : e0042524, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975761

RESUMO

Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in the treatment of aspergillosis with this drug class acting by inhibiting a key step in the biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for the expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologs consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA sequencing (RNA-seq), we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced. IMPORTANCE: Aspergillus fumigatus is the primary human filamentous fungal pathogen. The principal chemotherapeutic drug used to control infections associated with A. fumigatus is the azole compound. These drugs are well-tolerated and effective, but resistance is emerging at an alarming rate. Most resistance is associated with mutations that lead to overexpression of the azole target enzyme, lanosterol α-14 demethylase, encoded by the cyp51A gene. A key regulator of cyp51A gene expression is the transcription factor AtrR. Very little is known of the molecular mechanisms underlying the effect of AtrR on gene expression. Here, we use deletion and clustered amino acid substitution mutagenesis to map a region of AtrR that confers gene-specific activation on target genes of this transcription factor. This region is highly conserved across AtrR homologs from other pathogenic species arguing that its importance in transcriptional regulation is maintained across evolution.

2.
Plant J ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985498

RESUMO

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.

3.
Front Genet ; 15: 1424085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952710

RESUMO

Motivation: The interaction between DNA motifs (DNA motif pairs) influences gene expression through partnership or competition in the process of gene regulation. Potential chromatin interactions between different DNA motifs have been implicated in various diseases. However, current methods for identifying DNA motif pairs rely on the recognition of single DNA motifs or probabilities, which may result in local optimal solutions and can be sensitive to the choice of initial values. A method for precisely identifying DNA motif pairs is still lacking. Results: Here, we propose a novel computational method for predicting DNA Motif Pairs based on Composite Heterogeneous Graph (MPCHG). This approach leverages a composite heterogeneous graph model to identify DNA motif pairs on paired sequences. Compared with the existing methods, MPCHG has greatly improved the accuracy of motifs prediction. Furthermore, the predicted DNA motifs demonstrate heightened DNase accessibility than the background sequences. Notably, the two DNA motifs forming a pair exhibit functional consistency. Importantly, the interacting TF pairs obtained by predicted DNA motif pairs were significantly enriched with known interacting TF pairs, suggesting their potential contribution to chromatin interactions. Collectively, we believe that these identified DNA motif pairs held substantial implications for revealing gene transcriptional regulation under long-range chromatin interactions.

4.
Subcell Biochem ; 104: 17-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963481

RESUMO

The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.


Assuntos
Cobre , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas , Transativadores
5.
J Inorg Biochem ; 259: 112656, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38986290

RESUMO

The transcription factor CooA is a CRP/FNR (cAMP receptor protein/ fumarate and nitrate reductase) superfamily protein that uses heme to sense carbon monoxide (CO). Allosteric activation of CooA in response to CO binding is currently described as a series of discrete structural changes, without much consideration for the potential role of protein dynamics in the process of DNA binding. This work uses site-directed spin-label electron paramagnetic resonance spectroscopy (SDSL-EPR) to probe slow timescale (µs-ms) conformational dynamics of CooA with a redox-stable nitroxide spin label, and IR spectroscopy to probe the environment at the CO-bound heme. A series of cysteine substitution variants were created to selectively label CooA in key functional regions, the heme-binding domain, the 4/5-loop, the hinge region, and the DNA binding domain. The EPR spectra of labeled CooA variants are compared across three functional states: Fe(III) "locked off", Fe(II)-CO "on", and Fe(II)-CO bound to DNA. We observe changes in the multicomponent EPR spectra at each location; most notably in the hinge region and DNA binding domain, broadening the description of the CooA allosteric mechanism to include the role of protein dynamics in DNA binding. DNA-dependent changes in IR vibrational frequency and band broadening further suggest that there is conformational heterogeneity in the active WT protein and that DNA binding alters the environment of the heme-bound CO.

6.
PeerJ ; 12: e17657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011384

RESUMO

Background: Our previous studies have successfully reported the reprogramming of fibroblasts into induced mammary epithelial cells (iMECs). However, the regulatory relationships and functional roles of MicroRNAs (miRNAs) in the progression of fibroblasts achieving the cell fate of iMECs are insufficiently understood. Methods: First, we performed pre-and post-induction miRNAs sequencing analysis by using high-throughput sequencing. Following that, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment studies were used to determine the primary roles of the significantly distinct miRNAs and targeted genes. Finally, the effect of miR-222-3p on iMECs fate reprogramming in vitro by transfecting. Results: As a result goat ear fibroblasts (GEFs) reprogramming into iMECs activates a regulatory program, involving 79 differentially expressed miRNAs. Besides, the programming process involved changes in multiple signaling pathways such as adherens junction, TGF-ß signaling pathway, GnRH secretion and the prolactin signaling pathway, etc. Furthermore, it was discovered that the expression of miR-222-3p downregulation by miR-222-3p inhibitor significantly increase the reprogramming efficiency and promoted lipid accumulation of iMECs.


Assuntos
Reprogramação Celular , Células Epiteliais , Fibroblastos , Cabras , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Fibroblastos/metabolismo , Células Epiteliais/metabolismo , Feminino , Reprogramação Celular/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Células Cultivadas , Regulação para Baixo
7.
Genes Dis ; 11(5): 101199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947741

RESUMO

As the most prevalent and reversible internal epigenetic modification in eukaryotic mRNAs, N 6-methyladenosine (m6A) post-transcriptionally regulates the processing and metabolism of mRNAs involved in diverse biological processes. m6A modification is regulated by m6A writers, erasers, and readers. Emerging evidence suggests that m6A modification plays essential roles in modulating the cell-fate transition of embryonic stem cells. Mechanistic investigation of embryonic stem cell maintenance and differentiation is critical for understanding early embryonic development, which is also the premise for the application of embryonic stem cells in regenerative medicine. This review highlights the current knowledge of m6A modification and its essential regulatory contribution to the cell fate transition of mouse and human embryonic stem cells.

8.
Int J Stem Cells ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952059

RESUMO

Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the Usp7 gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the Usp7 gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.

9.
Biochim Biophys Acta Mol Basis Dis ; : 167349, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002703

RESUMO

Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling. Epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is considered to be a crucial player in asthma. Methyltransferase-like 14 (METTL14), an RNA methyltransferase, is implicated in multiple pathological processes, including EMT, cell proliferation and migration. However, the role of METTL14 in asthma remains uncertain. This research aimed to explore the biological functions of METTL14 in asthma and its underlying upstream mechanisms. METTL14 expression was down-regulated in asthmatic from three GEO datasets (GSE104468, GSE165934, and GSE74986). Consistent with this trend, METTL14 was decreased in the lung tissues of OVA-induced asthmatic mice and transforming growth factor-ß1 (TGF-ß1)-stimulated human bronchial epithelial cells (Beas-2B) in this study. Overexpression of METTL14 caused reduction in mesenchymal markers (FN1, N-cad, Col-1 and α-SMA) in TGF-ß1-treated cells, but caused increase in epithelial markers (E-cad), thus inhibiting EMT. Also, METTL14 suppressed the proliferation and migration ability of TGF-ß1-treated Beas-2B cells. Two transcription factors, ETS1 and RBPJ, could both bind to the promoter region of METTL14 and drive its expression. Elevating METTL14 expression could reversed EMT, cell proliferation and migration promoted by ETS1 or RBPJ deficiency. These results indicate that the ETS1/METTL14 and RBPJ/METTL14 transcription axes exhibit anti-EMT, anti-proliferation and anti-migration functions in TGF-ß1-induced bronchial epithelial cells, implying that METTL14 may be considered an alternative candidate target for the treatment of asthma.

10.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982460

RESUMO

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Precursores de RNA , Splicing de RNA , Imunidade Vegetal/genética , Arabidopsis/genética , Arabidopsis/imunologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Spliceossomos/metabolismo , Spliceossomos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia
11.
Biol Cell ; : e2400012, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963053

RESUMO

FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.

12.
Appl Environ Microbiol ; : e0089124, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953369

RESUMO

Serratia sp. ATCC 39006 is an important model strain for the study of prodigiosin production, whose prodigiosin biosynthesis genes (pigA-O) are arranged in an operon. Several transcription factors have been shown to control the transcription of the pig operon. However, since the regulation of prodigiosin biosynthesis is complex, the regulatory mechanism for this process has not been well established. In most γ-proteobacteria, the ROK family regulator NagC acts as a global transcription factor in response to N-acetylglucosamine (GlcNAc). In Serratia sp. ATCC 39006, NagC represses the transcription of two divergent operons, nagE and nagBAC, which encode proteins involved in the transport and metabolism of GlcNAc. Moreover, NagC directly binds to a 21-nt region that partially overlaps the -10 and -35 regions of the pig promoter and promotes the transcription of prodigiosin biosynthesis genes, thereby increasing prodigiosin production. Although NagC still acts as both repressor and activator in Serratia sp. ATCC 39006, its transcriptional regulatory activity is independent of GlcNAc. NagC was first found to regulate antibiotic biosynthesis in Gram-negative bacteria, and NagC-mediated regulation is not responsive to GlcNAc, which contributes to future studies on the regulation of secondary metabolism by NagC in other bacteria. IMPORTANCE: The ROK family transcription factor NagC is an important global regulator in the γ-proteobacteria. A large number of genes involved in the transport and metabolism of sugars, as well as those associated with biofilm formation and pathogenicity, are regulated by NagC. In all of these regulations, the transcriptional regulatory activity of NagC responds to the supply of GlcNAc in the environment. Here, we found for the first time that NagC can regulate antibiotic biosynthesis, whose transcriptional regulatory activity is independent of GlcNAc. This suggests that NagC may respond to more signals and regulate more physiological processes in Gram-negative bacteria.

13.
mBio ; : e0152424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953632

RESUMO

The hydroxyacid glycolate is a highly abundant carbon source in the environment. Glycolate is produced by unicellular photosynthetic organisms and excreted at petagram scales to the environment, where it serves as growth substrate for heterotrophic bacteria. In microbial metabolism, glycolate is first oxidized to glyoxylate by the enzyme glycolate oxidase. The recently described ß-hydroxyaspartate cycle (BHAC) subsequently mediates the carbon-neutral assimilation of glyoxylate into central metabolism in ubiquitous Alpha- and Gammaproteobacteria. Although the reaction sequence of the BHAC was elucidated in Paracoccus denitrificans, little is known about the regulation of glycolate and glyoxylate assimilation in this relevant alphaproteobacterial model organism. Here, we show that regulation of glycolate metabolism in P. denitrificans is surprisingly complex, involving two regulators, the IclR-type transcription factor BhcR that acts as an activator for the BHAC gene cluster, and the GntR-type transcriptional regulator GlcR, a previously unidentified repressor that controls the production of glycolate oxidase. Furthermore, an additional layer of regulation is exerted at the global level, which involves the transcriptional regulator CceR that controls the switch between glycolysis and gluconeogenesis in P. denitrificans. Together, these regulators control glycolate metabolism in P. denitrificans, allowing the organism to assimilate glycolate together with other carbon substrates in a simultaneous fashion, rather than sequentially. Our results show that the metabolic network of Alphaproteobacteria shows a high degree of flexibility to react to the availability of multiple substrates in the environment.IMPORTANCEAlgae perform ca. 50% of the photosynthetic carbon dioxide fixation on our planet. In the process, they release the two-carbon molecule glycolate. Due to the abundance of algae, massive amounts of glycolate are released. Therefore, this molecule is available as a source of carbon for bacteria in the environment. Here, we describe the regulation of glycolate metabolism in the model organism Paracoccus denitrificans. This bacterium uses the recently characterized ß-hydroxyaspartate cycle to assimilate glycolate in a carbon- and energy-efficient manner. We found that glycolate assimilation is dynamically controlled by three different transcriptional regulators: GlcR, BhcR, and CceR. This allows P. denitrificans to assimilate glycolate together with other carbon substrates in a simultaneous fashion. Overall, this flexible and multi-layered regulation of glycolate metabolism in P. denitrificans represents a resource-efficient strategy to make optimal use of this globally abundant molecule under fluctuating environmental conditions.

14.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000099

RESUMO

Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.


Assuntos
Cobre , Plantas , Cobre/metabolismo , Cobre/deficiência , Plantas/metabolismo , Homeostase , Estresse Oxidativo , Estresse Fisiológico , Transporte Biológico
15.
Plant Sci ; 347: 112179, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004407

RESUMO

Ethylene response factor (ERF) is a class of plant-specific transcription factors that play an important role in plant growth, development, and stress response. However, the underlying mechanism of strawberry ERFs in pathogenic responses against Botrytis cinerea (B. cinerea) remains largely unclear. In this study, we isolated FaERF2, a nucleus-localized ERF transcription factor from Fragaria x ananassa. Transiently overexpressing FaERF2 in strawberry fruits significantly enhances their resistant ability to B. cinerea, while silencing FaERF2 in strawberry fruits enhances their susceptibility to B. cinerea. In addition, we found that FaERF2 could directly bind to the cis-acting element GCC box in the promoters of two ß-1,3-glucanase genes, FaBG-1 and FaBG-2, and activate their expression. Finally, both strawberry fruits transient expression followed by B. cinerea inoculation assays and recombinant protein incubation tests collectively substantiated the inhibitory effect of FaBG-1 and FaBG-2 on B. cinerea mycelium growth. These results revealed the molecular regulation mechanism of FaERF2 in response to B. cinerea and laid foundations for creating disease-resistance strawberry cultivar through genome editing approach.

16.
Plant Physiol Biochem ; 214: 108932, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018777

RESUMO

Understanding the regulatory biosynthesis mechanisms of active compounds in herbs is vital for the preservation and sustainable use of natural medicine resources. Diterpenoids, which play a key role in plant growth and resistance, also serve as practical products for humans. Tanshinone, a class of abietane-type diterpenes unique to the Salvia genus, such as Salvia miltiorrhiza, is an excellent model for studying diterpenoids. In this study, we discovered that a transcription factor, SmERF106, responds to MeJA induction and is located in the nucleus. It exhibits a positive correlation with the expression of SmKSL1 and SmIDI1, which are associated with tanshinone biosynthesis. We performed DNA affinity purification sequencing (DAP-seq) to predict genes that may be transcriptionally regulated by SmERF106. Our cis-elements analysis suggested that SmERF106 might bind to GCC-boxes in the promoters of SmKSL1 and SmIDI1. This indicates that SmKSL1 and SmIDI1 could be potential target genes regulated by SmERF106 in the tanshinone biosynthesis pathway. Their interaction was then demonstrated through a series of in vitro and in vivo binding experiments, including Y1H, EMSA, and Dual-LUC. Overexpression of SmERF106 in the hairy root of S. miltiorrhiza led to a significant increase in tanshinone content and the transcriptional levels of SmKSL1 and SmIDI1. In summary, we found that SmERF106 can activate the transcription of SmKSL1 and SmIDI1 in response to MeJA induction, thereby promoting tanshinone biosynthesis. This discovery provides new insights into the regulatory mechanisms of tanshinones in response to JA and offers a potential gene tool for tanshinone metabolic engineering strategy.

17.
Adv Exp Med Biol ; 1459: 53-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017839

RESUMO

BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.


Assuntos
Imunidade Adaptativa , Linfócitos B , Linfócitos T , Transativadores , Animais , Humanos , Imunidade Adaptativa/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transativadores/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Camundongos
18.
Photosynth Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017982

RESUMO

Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.

19.
J Integr Plant Biol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980217

RESUMO

Phosphorus is an essential macronutrient for plant growth and development. In response to phosphate (Pi) deficiency, plants rapidly produce a substitutive amount of root hairs; however, the mechanisms underlying Pi supply for root hair growth remain unclear. Here, we observed that soybean (Glycine max) plants maintain a consistent level of Pi within root hairs even under external Pi deficiency. We therefore investigated the role of vacuole-stored Pi, a major Pi reservoir in plant cells, in supporting root hair growth under Pi-deficient conditions. Our findings indicated that two vacuolar Pi efflux (VPE) transporters, GmVPE1 and GmVPE2, remobilize vacuolar stored Pi to sustain cytosolic Pi content in root hair cells. Genetic analysis showed that double mutants of GmVPE1 and GmVPE2 exhibited reduced root hair growth under low Pi conditions. Moreover, GmVPE1 and GmVPE2 were highly expressed in root hairs, with their expression levels significantly upregulated by low Pi treatment. Further analysis revealed that GmRSL2 (ROOT HAIR DEFECTIVE 6-like 2), a transcription factor involved in root hair morphogenesis, directly binds to the promoter regions of GmVPE1 and GmVPE2, and promotes their expressions under low Pi conditions. Additionally, mutants lacking both GmRSL2 and its homolog GmRSL3 exhibited impaired root hair growth under low Pi stress, which was rescued by overexpressing either GmVPE1 or GmVPE2. Taken together, our study has identified a module comprising vacuolar Pi exporters and transcription factors responsible for remobilizing vacuolar Pi to support root hair growth in response to Pi deficiency in soybean.

20.
Dev Genes Evol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980376

RESUMO

Folsomia candida is a tiny soil-living arthropod belonging to the Collembola, which is an outgroup to Insecta. It resembles insects as having a pair of antennae and three pairs of thorax legs, while it also possesses three abdominal appendages: a ventral tube located in the first abdominal segment (A1), a retinaculum in A3, and a furca in A4. Collembolan Ubx and AbdA specify abdominal appendages, but they are unable to repress appendage marker gene Dll. The genetic basis of collembolan appendage formation and the mechanisms by which Ubx and AbdA regulate Dll transcription and appendage development remains unknown. In this study, we analysed the developmental transcriptomes of F. candida and identified candidate appendage formation genes, including Ubx (FcUbx). The expression data revealed the dominance of Dll over Ubx during the embryonic 3.5 and 4.5 days, suggesting that Ubx is deficient in suppressing Dll at early appendage formation stages. Furthermore, via electrophoretic mobility shift assays and dual luciferase assays, we found that the binding and repression capacity of FcUbx on Drosophila Dll resembles those of the longest isoform of Drosophila Ubx (DmUbx_Ib), while the regulatory mechanism of the C-terminus of FcUbx on Dll repression is similar to that of the crustacean Artemia franciscana Ubx (AfUbx), demonstrating that the function of collembolan Ubx is intermediate between that of Insecta and Crustacea. In summary, our study provides novel insights into collembolan appendage formation and sheds light on the functional evolution of Ubx. Additionally, we propose a model that collembolan Ubx regulates abdominal segments in a context-specific manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...