Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.862
Filtrar
1.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975953

RESUMO

Tumor-stromal interactions and stromal heterogeneity in the tumor microenvironment are critical factors that influence the progression, metastasis, and chemoresistance of pancreatic ductal adenocarcinoma (PDAC). Here, we used spatial transcriptome technology to profile the gene expression landscape of primary PDAC and liver metastatic PDAC after bioactive black phosphorus nanomaterial (bioactive BP) treatment using a murine model of PDAC (LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre mice). Bioinformatic and biochemical analyses showed that bioactive BP contributes to the tumor-stromal interplay by suppressing cancer-associated fibroblast (CAF) activation. Our results showed that bioactive BP contributes to CAF heterogeneity by decreasing the amount of inflammatory CAFs and myofibroblastic CAFs, two CAF subpopulations. Our study demonstrates the influence of bioactive BP on tumor-stromal interactions and CAF heterogeneity and suggests bioactive BP as a potential PDAC treatment.

2.
Tree Physiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976033

RESUMO

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation is frequently happened. However, the differential responses of mangrove plant at transcriptome combined metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina, a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using ICP-MS, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids, and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, finally glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.

3.
Ecol Evol ; 14(7): e11496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983703

RESUMO

Differential expression of genes is key to mediating developmental and stress-related plant responses. Here, we addressed the regulation of plant metabolic responses to biotic stress and the developmental variation of defense-related genes in four species of the genus Datura with variable patterns of metabolite accumulation and development. We combine transcriptome profiling with phylogenomic techniques to analyze gene expression and coexpression in plants subjected to damage by a specialist folivore insect. We found (1) common overall gene expression in species of similar chemical profiles, (2) species-specific responses of proteins involved in specialized metabolism, characterized by constant levels of gene expression coupled with transcriptional rearrangement, and (3) induction of transcriptional rearrangement of major terpene and tropane alkaloid genes upon herbivory. Our results indicate differential modulation of terpene and tropane metabolism linked to jasmonate signaling and specific transcription factors to regulate developmental variation and stress programs, and suggest plastic adaptive responses to cope with herbivory. The transcriptional profiles of specialized metabolism shown here reveal complex genetic control of plant metabolism and contribute to understanding the molecular basis of adaptations and the physiological variation of significant ecological traits.

4.
Front Vet Sci ; 11: 1431879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983770

RESUMO

Senecavirus A (SVA) is an emerging virus that causes the vesicular disease in pigs, clinically indistinguishable from other high consequence vesicular diseases. This virus belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded RNA, approximately 7,300 nt in length, with a 3' poly(A) tail but without 5'-end capped structure. SVA can efficiently propagate in different cells, including some non-pig-derived cell lines. A wild-type SVA was previously rescued from its cDNA clone using reverse genetics in our laboratory. In the present study, the BSR-T7/5 cell line was inoculated with the passage-5 SVA. At 12 h post-inoculation, SVA-infected and non-infected cells were independently collected for the analysis on comparative transcriptomics. The results totally showed 628 differentially expressed genes, including 565 upregulated and 63 downregulated ones, suggesting that SVA infection significantly stimulated the transcription initiation in cells. GO and KEGG enrichment analyses demonstrated that SVA exerted multiple effects on immunity-related pathways in cells. Furthermore, the RNA sequencing data were subjected to other in-depth analyses, such as the single-nucleotide polymorphism, transcription factors, and protein-protein interactions. The present study, along with our previous proteomics and metabolomics researches, provides a multi-omics insight into the interaction between SVA and its hosts.

5.
iScience ; 27(7): 110207, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984200

RESUMO

Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.

6.
Microb Pathog ; 193: 106786, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971506

RESUMO

To better understand the interaction between attenuated vaccines and host antiviral responses, we used bioinformatics and public transcriptomics data to analyze the immune response mechanisms of host cells after canine distemper virus (CDV) infection in Vero cells and screened for potential key effector factors. In this study, CDV-QN-1 infect with Vero cells at an MOI of 0.5, and total RNA was extracted from the cells 24 h later and reverse transcribed into cDNA. Transcriptome high-throughput sequencing perform using Illumina. The results showed that 438 differentially expressed genes were screened, of which 409 were significantly up-regulated and 29 were significantly down-regulated. Eight differentially expressed genes were randomly selected for RT-qPCR validation, and the change trend was consistent with the transcriptomics data. GO and KEGG analysis of differentially expressed genes revealed that most of the differentially expressed genes in CDV-QN-1 infection in the early stage were related to immune response and antiviral activity. The enriched signaling pathways mainly included the interaction between cytokines and cytokine receptors, the NF-kappa B signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. This study provides a foundation for further exploring the pathogenesis of CDV and the innate immune response of host cells in the early stage of infection.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38972179

RESUMO

Typical 'omic analyses reduce complex biological systems to simple lists of supposedly independent variables, failing to account for changes in the wider transcriptional landscape. In this commentary, we discuss the utility of network approaches for incorporating this wider context into the study of physiological phenomena. We highlight opportunities to build on traditional network tools by utilising cutting-edge techniques to account for higher order interactions (i.e. beyond pairwise associations) within datasets, allowing for more accurate models of complex 'omic systems. Finally, we show examples of previous works utilising network approaches to gain additional insight into their organisms of interest. As 'omics grow in both their popularity and breadth of application, so does the requirement for flexible analytical tools capable of interpreting and synthesising complex datasets.

8.
Poult Sci ; 103(9): 103931, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38972281

RESUMO

Hybrid breeding has proven to enhance meat quality and is extensively utilized in goose breeding. Nevertheless, there is a paucity of research investigating the molecular mechanisms that underlie the meat quality of hybrid geese. In this study, we employed the Sichuan White Goose as the maternal line for hybridization with the Zhedong White Goose and Tianfu Meat Goose P3 line. We assessed the growth and slaughter meat quality performance of 10-wk-old hybrid offspring in comparison to Sichuan white goose purebred offspring. The results indicate that hybrid geese have significantly improved performance in growth and slaughter meat quality. Furthermore, we conducted a comprehensive analysis of the chest muscles of hybrid offspring through transcriptomics and metabolomics to unravel the effects of hybrid breeding on growth and meat quality. A total of 673 differentially expressed genes (DEGs), and 93 differentially expressed metabolites were identified. The joint analysis highlighted the significant enrichment of DEGs AMPD1, AMPD3, RRM2, ENTPD3, and the metabolite UMP in the nucleotide metabolism pathway. These findings underscore the crucial role of these genetic and metabolic factors in regulating muscle growth and meat quality in hybrid populations.

9.
Mod Pathol ; : 100560, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972356

RESUMO

Pulmonary sclerosing pneumocytoma (PSP) is a rare, distinctive benign lung adenoma of pneumocyte origin. Despite its rarity, the tumor's unique cellular morphology has sparked ongoing debates regarding the origin of its constituent cells. This study aimed to elucidate the molecular features of PSP tumor cells and enhance our understanding of the cellular processes contributing to PSP formation and biological behavior. Tissue samples from PSP and corresponding normal lung tissues (n = 4) were collected. We employed single-cell RNA sequencing and microarray-based spatial transcriptomic analyses to identify cell types and investigate their transcriptomes, with a focus on transcription factors, enriched gene expression, and single-cell trajectory evaluations. Our analysis identified two types of tumor cells: mesenchymal epithelial dual phenotype cells (MEDPs) and a distinct subpopulation of type II alveolar epithelial cells exhibiting characteristics slightly reminiscent of type I alveolar epithelial cells (AT2Cs), corresponding to histological round stromal cells and surface cuboidal cells, respectively. MEDPs displayed weak alveolar epithelial differentiation but strong collagen production capabilities, as indicated by the expression of both TTF-1 and vimentin. These cells played a pivotal role in forming the solid and sclerotic areas of PSP. Moreover, MEDPs exhibited a pronounced propensity for epithelial-mesenchymal transition, suggesting a greater potential for metastasis compared to AT2Cs. The capillary endothelial cells of PSP displayed notable diversity. Overall, this study provides, for the first time, a comprehensive mapping of the single-cell transcriptome profile of PSP. Our findings delineate two distinct subtypes of tumor cells, MEDPs and AT2Cs, each with its own biological characteristics and spatial distribution. A deeper understanding of these cell types promises insights into the histology and biological behaviors of this rare tumor.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38972894

RESUMO

To date, the field of transcriptomics has been characterized by rapid methods development and technological advancement, with new technologies continuously rendering older ones obsolete.This chapter traces the evolution of approaches to quantifying gene expression and provides an overall view of the current state of the field of transcriptomics, its applications to the study of the human brain, and its place in the broader emerging multiomics landscape.

11.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975895

RESUMO

Spatial transcriptomics provides valuable insights into gene expression within the native tissue context, effectively merging molecular data with spatial information to uncover intricate cellular relationships and tissue organizations. In this context, deciphering cellular spatial domains becomes essential for revealing complex cellular dynamics and tissue structures. However, current methods encounter challenges in seamlessly integrating gene expression data with spatial information, resulting in less informative representations of spots and suboptimal accuracy in spatial domain identification. We introduce stCluster, a novel method that integrates graph contrastive learning with multi-task learning to refine informative representations for spatial transcriptomic data, consequently improving spatial domain identification. stCluster first leverages graph contrastive learning technology to obtain discriminative representations capable of recognizing spatially coherent patterns. Through jointly optimizing multiple tasks, stCluster further fine-tunes the representations to be able to capture complex relationships between gene expression and spatial organization. Benchmarked against six state-of-the-art methods, the experimental results reveal its proficiency in accurately identifying complex spatial domains across various datasets and platforms, spanning tissue, organ, and embryo levels. Moreover, stCluster can effectively denoise the spatial gene expression patterns and enhance the spatial trajectory inference. The source code of stCluster is freely available at https://github.com/hannshu/stCluster.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Algoritmos , Humanos , Animais , Software , Aprendizado de Máquina
12.
BMC Plant Biol ; 24(1): 635, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971717

RESUMO

Excessive phosphorus (P) levels can disrupt nutrient balance in plants, adversely affecting growth. The molecular responses of Pennisetum species to high phosphorus stress remain poorly understood. This study examined two Pennisetum species, Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum, under varying P concentrations (200, 600 and 1000 µmol·L- 1 KH2PO4) to elucidate transcriptomic alterations under high-P conditions. Our findings revealed that P. americanum exhibited stronger adaption to high-P stress compared to P. americanum× P. purpureum. Both species showed an increase in plant height and leaf P content under elevated P levels, with P. americanum demonstrating greater height and higher P content than P. americanum× P. purpureum. Transcriptomic analysis identified significant up- and down-regulation of key genes (e.g. SAUR, GH3, AHP, PIF4, PYL, GST, GPX, GSR, CAT, SOD1, CHS, ANR, P5CS and PsbO) involved in plant hormone signal transduction, glutathione metabolism, peroxisomes, flavonoid biosynthesis, amino acid biosynthesis and photosynthesis pathways. Compared with P. americanum× P. purpureum, P. americanum has more key genes in the KEGG pathway, and some genes have higher expression levels. These results contribute valuable insights into the molecular mechanisms governing high-P stress in Pennisetum species and offer implications for broader plant stress research.


Assuntos
Perfilação da Expressão Gênica , Pennisetum , Fósforo , Folhas de Planta , Estresse Fisiológico , Pennisetum/genética , Pennisetum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fósforo/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Genes de Plantas
13.
BMC Plant Biol ; 24(1): 641, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971719

RESUMO

BACKGROUND: Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS: The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS: Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.


Assuntos
Alternaria , Resistência à Doença , Redes Reguladoras de Genes , Doenças das Plantas , Solanum lycopersicum , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Alternaria/fisiologia , Alternaria/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo
14.
Clinics (Sao Paulo) ; 79: 100422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38972247

RESUMO

OBJECTIVE: Cancer genomics and transcriptomics studies have provided a large volume of data that enables to test of hypotheses based on real data from cancer patients. Ezrin (encoded by the EZR gene) is a highly expressed protein in cancer that contributes to linking the actin cytoskeleton to the cell membrane and signal transduction pathways involved in oncogenesis and disease progression. NSC305787 is a pharmacological ezrin inhibitor with potential antineoplastic effects. In the present study, the authors prospected EZR mRNA levels in a pan-cancer analysis and identified potential cancers that could benefit from anti-EZR therapies. METHODS: This study analyzed TCGA data for 32 cancer types, emphasizing cervical squamous cell carcinoma and stomach adenocarcinoma. It investigated the impact of EZR transcript levels on clinical outcomes and identified differentially expressed genes. Cell lines were treated with NSC305787, and its effects were assessed through various cellular and molecular assays. RESULTS: EZR mRNA levels are highly expressed, and their expression is associated with biologically relevant molecular processes in cervical squamous carcinoma and stomach adenocarcinoma. In cellular models of cervical and gastric cancer, NSC305787 reduces cell viability and clonal growth (p < 0.05). Molecular analyses indicate that the pharmacological inhibition of EZR induces molecular markers of cell death and DNA damage, in addition, to promoting the expression of genes associated with apoptosis and inhibiting the expression of genes related to survival and proliferation. CONCLUSION: The present findings provide promising evidence that ezrin may be a molecular target in the treatment of cervical and gastric carcinoma.


Assuntos
Adenocarcinoma , Proteínas do Citoesqueleto , Perfilação da Expressão Gênica , Neoplasias Gástricas , Neoplasias do Colo do Útero , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteínas do Citoesqueleto/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Feminino , Adenocarcinoma/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética
15.
Plant Direct ; 8(7): e617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973810

RESUMO

Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.

16.
iScience ; 27(6): 110156, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974468

RESUMO

Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.

17.
iScience ; 27(7): 110163, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38974966

RESUMO

Aging-related cardiac fibrosis represents the principal pathological progression in cardiovascular aging. The Muscleblind-like splicing regulator 2 (MBNL2) has been unequivocally established as being associated with cardiovascular diseases. Nevertheless, its role in aging-related cardiac fibrosis remains unexplored. This investigation revealed an elevation of MBNL2 levels in the aged heart and senescent cardiac fibroblasts. Notably, the inhibition of MBNL2 demonstrated a capacity to mitigate H2O2-induced myofibroblast transformation and aging-related cardiac fibrosis. Further mechanistic exploration unveiled that aging heightened the expression of SENP1 and impeded the SUMO1 binding with KLF4, and SUMOylation of KLF4 effectively increased by the inhibition of MBNL2. Additionally, the inhibition of TGF-ß1/SMAD3 signaling attenuated the impact of over-expression of MBNL2 in inducing senescence and cardiac fibrosis. MBNL2, by orchestrating SUMOylation of KLF4, upregulating the TGF-ß1/SMAD3 signaling pathway, emerges as a significant promoter of aging-related cardiac fibrosis. This discovery identifies a novel regulatory target for managing aging-related cardiac fibrosis.

18.
Heliyon ; 10(12): e32886, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975102

RESUMO

Yarrowia lipolytica is an ascomycetous yeast that can assimilate hydrophobic carbon sources including oil and n-alkane. The sucrose non-fermenting 1/AMP-activated protein kinase (Snf1/AMPK) complex is involved in the assimilation of non-fermentable carbon sources in various yeasts. However, the role of the Snf1/AMPK complex in n-alkane assimilation in Y. lipolytica has not yet been elucidated. This study aimed to clarify the role of Y. lipolytica SNF1 (YlSNF1) in the utilization of n-alkane. The deletion mutant of YlSNF1 (ΔYlsnf1) exhibited substantial growth defects on n-alkanes of various lengths (C10, C12, C14, and C16), and its growth was restored through the introduction of YlSNF1. Microscopic observations revealed that YlSnf1 tagged with enhanced green fluorescence protein showed dot-like distribution patterns in some cells cultured in the medium containing n-decane, which were not observed in cells cultured in the medium containing glucose or glycerol. The RNA sequencing analysis of ΔYlsnf1 cultured in the medium containing n-decane exhibited 302 downregulated and 131 upregulated genes compared with the wild-type strain cultured in the same medium. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that a significant fraction of the downregulated genes functioned in peroxisomes or were involved in the metabolism of n-alkane and fatty acids. Quantitative real-time PCR analysis confirmed the downregulation of 12 genes involved in the metabolism of n-alkane and fatty acid, ALK1-ALK3, ALK5, ADH7, PAT1, POT1, POX2, PEX3, PEX11, YAS1, and HFD3. Furthermore, ΔYlsnf1 exhibited growth defects on the medium containing the metabolites of n-alkane (fatty alcohol and fatty aldehyde). These findings suggest that YlSNF1 plays a crucial role in the utilization of n-alkane in Y. lipolytica. This study provides important insights into the advanced biotechnological applications of this yeast, including the bioconversion of n-alkane to useful chemicals and the bioremediation of petroleum-contaminated environments.

19.
Plant Mol Biol ; 114(4): 83, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972957

RESUMO

Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.


Assuntos
Frutas , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal/métodos , Compostos Orgânicos Voláteis/metabolismo , Paladar , Metabolômica/métodos , Aromatizantes/metabolismo , Clima Tropical , Multiômica
20.
CNS Neurosci Ther ; 30(7): e14826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973179

RESUMO

AIM: We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS: We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFß, and the influence of nicotinamide on TGFß-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS: Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFß/SMADs pathway. CONCLUSION: Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFß/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.


Assuntos
Cicatriz , Fibrose , Camundongos Endogâmicos C57BL , Niacinamida , Traumatismos da Medula Espinal , Animais , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Cicatriz/metabolismo , Cicatriz/prevenção & controle , Camundongos , Fibrose/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Metabolômica , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...