Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
AAPS PharmSciTech ; 25(5): 122, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816546

RESUMO

Prinsepia utilis seed oil (PUSO) is a natural medication obtained from Prinsepia utilis Rogle seed, which has been used for the treatment of skin diseases. The study aims to prepare ethosomes with high drug loading as a water-soluble transdermal vehicle to enhance the transdermal delivery of PUSO. PUSO-loaded ethosomes (PEs) were prepared using a cold method, and optimized by an orthogonal experimental design with entrapment efficiency (EE) as the dependent variable. The PEs prepared with the optimized formulation showed good stability, with a spherical shape under transmission electron microscopy (TEM), average particle size of 39.12 ± 0.85 nm, PDI of 0.270 ± 0.01, zeta potential of -11.3 ± 0.24 mV, and EE of 95.93 ± 0.43%. PEs significantly increased the skin deposition of PUSO compared to the PUSO suspension (P < 0.001). Moreover, the optimum formula showed significant ameliorative effects on ultraviolet B (UVB) irradiation-associated macroscopic and histopathological changes in mice skin. Therefore, PEs represent a promising therapeutic approach for the treatment of UVB-induced skin inflammation, with the potential for industrialization.


Assuntos
Administração Cutânea , Tamanho da Partícula , Óleos de Plantas , Sementes , Pele , Raios Ultravioleta , Animais , Raios Ultravioleta/efeitos adversos , Camundongos , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Absorção Cutânea/efeitos dos fármacos , Química Farmacêutica/métodos , Dermatopatias/tratamento farmacológico , Dermatopatias/etiologia , Masculino , Sistemas de Liberação de Medicamentos/métodos
2.
Asian J Pharm Sci ; 19(2): 100900, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590797

RESUMO

Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.

3.
Gels ; 10(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667658

RESUMO

The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.

4.
ACS Appl Mater Interfaces ; 16(17): 21595-21609, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635857

RESUMO

A microneedle transdermal drug delivery system simultaneously avoids systemic toxicity of oral administration and low efficiency of traditional transdermal administration, which is of great significance for acne vulgaris therapy. Herein, eugenol-loaded hyaluronic acid-based dissolving microneedles (E@P-EO-HA MNs) with antibacterial and anti-inflammatory activities are developed for acne vulgaris therapy via eugenol transdermal delivery integrated with photothermal therapy. E@P-EO-HA MNs are pyramid-shaped with a sharp tip and a hollow cavity structure, which possess sufficient mechanical strength to penetrate the stratum corneum of the skin and achieve transdermal delivery, in addition to excellent in vivo biocompatibility. Significantly, E@P-EO-HA MNs show effective photothermal therapy to destroy sebaceous glands and achieve antibacterial activity against deep-seated Propionibacterium acnes (P. acnes) under near-infrared-light irradiation. Moreover, cavity-loaded eugenol is released from rapidly dissolved microneedle bodies to play a sustained antibacterial and anti-inflammatory therapy on the P. acnes infectious wound. E@P-EO-HA MNs based on a synergistic therapeutic strategy combining photothermal therapy and eugenol transdermal administration can significantly alleviate inflammatory response and ultimately facilitate the repair of acne vulgaris. Overall, E@P-EO-HA MNs are expected to be clinically applied as a functional minimally invasive transdermal delivery strategy for superficial skin diseases therapy in skin tissue engineering.


Assuntos
Acne Vulgar , Administração Cutânea , Antibacterianos , Eugenol , Ácido Hialurônico , Agulhas , Terapia Fototérmica , Propionibacterium acnes , Acne Vulgar/terapia , Acne Vulgar/tratamento farmacológico , Eugenol/química , Eugenol/farmacologia , Ácido Hialurônico/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Camundongos , Sistemas de Liberação de Medicamentos , Humanos , Pele
5.
Int J Biol Macromol ; 265(Pt 2): 130958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503369

RESUMO

In this study, polyethylene glycol was grafted onto pullulan polysaccharides, resulting in the development of a novel adhesive termed PLUPE, offering superior drug loading capacity and rapid release efficiency. The efficacy of PLUPE was rigorously evaluated through various tests, including the tack test, shear strength test, 180° peel strength test, and human skin adhesion test. The results demonstrated that PLUPE exhibited a static shear strength that was 4.6 to 9.3 times higher than conventional PSAs, ensuring secure adhesion for over 3 days on human skin. A comprehensive analysis, encompassing electrical potential evaluation, calculation of interaction parameters, and FT-IR spectra, elucidated why improved the miscibility between the drug and PSAs, that the significant enhancement of intermolecular hydrogen bonding in the PLUPE structure. ATR-FTIR, rheological, and thermodynamic analyses further revealed that the hydrogen bonding network in PLUPE primarily interacted with polar groups in the skin. This interaction augmented the fluidity and free volume of PSA molecules, thereby promoting efficient drug release. The results confirmed the safety profile of PLUPE through skin irritation tests and MTT assays, bolstering its viability for application in TDDS patches. In conclusion, PLUPE represented a groundbreaking adhesive solution for TDDS patches, successfully overcoming longstanding challenges associated with PSAs.


Assuntos
Adesivos , Glucanos , Polietilenoglicóis , Humanos , Adesivos/química , Polietilenoglicóis/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Pele/metabolismo , Liberação Controlada de Fármacos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Administração Cutânea , Adesivo Transdérmico
6.
Cureus ; 16(1): e51669, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38313989

RESUMO

Pain relief is an integral component of any orthodontic procedure given its high association with patient compliance and treatment adherence. A transdermal drug delivery system (TDDS) is a non-invasive method of drug delivery through the skin surface that can spread the medication throughout the dermis at a predetermined rate to produce a local or systemic effect. It might be used in place of hypodermic injections and the oral medication route. A transdermal analgesic, often known as a pain reliever patch, is an adhesive patch that contains medication to treat mild-to-severe pain. Many opioids and non-steroidal anti-inflammatory drugs are currently available as patches. TDDS offers many benefits over the conventional medication delivery method. The non-invasive transdermal route or therapy has features such as excellent bioavailability, stable medication plasma concentration, and no first-pass metabolism effect. This review aims to explore the available evidence on the use of transdermal patches for pain relief in orthodontic procedures and possibly suggest recommendations based on the findings.

7.
Pharmaceutics ; 16(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399254

RESUMO

Dissolving microneedles (MNs) are novel transdermal drug delivery systems that can be painlessly self-administered. This study investigated the effects of experimental conditions on the mechanical characterization of dissolving MNs for quality evaluation. Micromolding was used to fabricate polyvinyl alcohol (PVA)-based dissolving MN patches with eight different cone-shaped geometries. Axial force mechanical characterization test conditions, in terms of compression speed and the number of compression needles per test, significantly affected the needle fracture force of dissolving MNs. Characterization using selected test conditions clearly showed differences in the needle fracture force of dissolving MNs prepared under various conditions. PVA-based MNs were divided into two groups that showed buckling and unbuckling deformation, which occurred at aspect ratios (needle height/base diameter) of 2.8 and 1.8, respectively. The needle fracture force of PVA-based MNs was negatively correlated with an increase in the needle's aspect ratio. Higher residual water or higher loading of lidocaine hydrochloride significantly decreased the needle fracture force. Therefore, setting appropriate methods and parameters for characterizing the mechanical properties of dissolving MNs should contribute to the development and supply of appropriate products.

8.
Gels ; 10(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38247787

RESUMO

Microneedles are of great interest in diverse fields, including cosmetics, drug delivery systems, chromatography, and biological sensing for disease diagnosis. Self-dissolving ultrafine microneedles of pure sodium hyaluronate hydrogels were fabricated using a UV-curing TiO2-SiO2 gas-permeable mold polymerized by sol-gel hydrolysis reactions in nanoimprint lithography processes under refrigeration at 5 °C, where thermal decomposition of microneedle components can be avoided. The moldability, strength, and dissolution behavior of sodium hyaluronate hydrogels with different molecular weights were compared to evaluate the suitability of ultrafine microneedles with a bottom diameter of 40 µm and a height of 80 µm. The appropriate molecular weight range and formulation of pure sodium hyaluronate hydrogels were found to control the dissolution behavior of self-dissolving ultrafine microneedles while maintaining the moldability and strength of the microneedles. This fabrication technology of ultrafine microneedles expands their possibilities as a next-generation technique for bioactive gels for controlling the blood levels of drugs and avoiding pain during administration.

9.
J Control Release ; 365: 161-175, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972766

RESUMO

Hydrogels have broad application prospects in drug delivery due to their biocompatibility, high water content and three-dimensional structure. However, the regulation of drug release from hydrogels is an important issue in medical applications. At the same time, water also has an important impact on drug release. In this study, a hydrogel with hydrogen bond and ion dipole interaction (PAHDP) was prepared by introducing catechol group into polymer to regulate drug release. Ten model drugs were selected to explore the relationship and mechanism of action among polymer, drug and water. The results showed that PAHDP had excellent adhesion and safety. Drug release test showed that 10 kinds of drugs had different drug release trends, and the release amount was negatively correlated with drug polarizability and LogP. In addition, in vitro transdermal test and pharmacokinetic results showed that the hydrogel based on PAHDP achieved increased or decreased blood drug concentration, and the area under the concentration-time curve (AUC) of >1.5 times showed its potential to regulate drug release. The mechanism study showed that the hydrogen bond and ion dipole interaction between polymer and drug were affected by drug polarizability and LogP, and the distribution of water in different states was changed. Hydrogen bond and ion dipole interactions synergistically control drug release. Therefore, the mussel inspired PAHDP hydrogel has the potential to become a controllable drug delivery system.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Liberação Controlada de Fármacos , Ligação de Hidrogênio , Água
10.
Pharm Res ; 41(1): 153-163, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923948

RESUMO

PURPOSE: We fabricated and characterized polyvinyl alcohol (PVA)-based dissolving microneedles (MNs) for transdermal drug delivery of apomorphine hydrochloride (APO), which is used in treating the wearing-off phenomenon observed in Parkinson's disease. METHODS: We fabricated MN arrays with 11 × 11 needles of four different lengths (300, 600, 900, and 1200 µm) by micromolding. The APO-loaded dissolving MNs were characterized in terms of their physicochemical and functional properties. We also compared the pharmacokinetic parameters after drug administration using MNs with those after subcutaneous injection by analyzing the blood concentration of APO in rats. RESULTS: PVA-based dissolving MNs longer than 600 µm could effectively puncture the stratum corneum of the rat skin with penetrability of approximately one-third of the needle length. Although APO is known to have chemical stability issues in aqueous solutions, the drug content in APO-loaded MNs was retained at 25°C for 12 weeks. The concentration of APO after the administration of APO-loaded 600-µm MNs that dissolved completely in skin within 60 min was 81%. The absorption of 200-µg APO delivered by MNs showed a Tmax of 20 min, Cmax of 76 ng/mL, and AUC0-120 min of 2,829 ng・min/mL, compared with a Tmax of 5 min, Cmax of 126 ng/mL, and AUC0-120 min of 3,224 ng・min/mL for subcutaneous injection. The bioavailability in terms of AUC0-120 min of APO delivered by MNs was 88%. CONCLUSION: APO-loaded dissolving MNs can deliver APO via skin into the systemic circulation with rapid absorption and high bioavailability.


Assuntos
Apomorfina , Doença de Parkinson , Ratos , Animais , Apomorfina/farmacologia , Sistemas de Liberação de Medicamentos , Doença de Parkinson/tratamento farmacológico , Administração Cutânea , Pele
11.
Biomaterials ; 303: 122362, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931455

RESUMO

Depression is a type of mental disorder with a significant and persistent low mood as the main clinical feature. It is often accompanied by symptoms such as slow thinking, decreased will, loss of appetite, and weight loss. The current treatment methods for depression are mainly medical treatment, psychotherapy, and physical therapy. These treatments are dependent on the patient's autonomy and the patients may suspend treatment due to forgetting or refusing. Therefore, an anti-depressant intelligent drug release system was designed, which can achieve autonomously controlled doses for the treatment of depression by transdermal drug delivery system. The work of this study is as follows: (1) The first module: the electrothermal material heating layer. Several preparation methods were screened, and multiple sets of graphene (GE) electric thermogenic layers were successfully prepared. After increasing the actual energization area to 1 cm × 1 cm, the GE electric thermogenic layer is used as the heating layer of the electrothermal material of the system, and can reach a uniform surface temperature of (45 ± 0.5) °C within 15 s at a voltage of 6 V keeping the temperature fluctuation range not exceeding ±0.03 °C, and the resistance fluctuation range not exceeding ±20 Ω, which plays a role in controlling the temperature and heat treatment of the drug loaded gel layer. (2) The second module: the drug-loaded gel layer. Based on the L16 (45) orthogonal test, the best formulation and process of N-Isopropyl acrylamide-Acrylamide copolymer (P(NIPAAm-co-AAm)) hydrogel was determined. Then, the percutaneous permeability of Selegiline liposome was studied in vitro. (3) A rat model of depression was established using chronic unpredictable mild stress (CUMS) combined with separation. From the aspects of behavior (body weight, sucrose preference test, forced swimming test, open field test) and biochemical indexes (serum proinflammatory cytokines (IL-1ß, TNF-α), hippocampus HE staining observation), the therapeutic effect of hyperthermia, Selegiline oral administration and transdermal administration was discussed.


Assuntos
Antidepressivos , Depressão , Humanos , Ratos , Animais , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Administração Cutânea , Selegilina/farmacologia , Sistemas de Liberação de Medicamentos , Hipocampo , Modelos Animais de Doenças
12.
J Control Release ; 364: 383-392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37914000

RESUMO

Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.


Assuntos
Neoplasias , Absorção Cutânea , Humanos , Iontoforese/métodos , Smartphone , Administração Cutânea , Pele/metabolismo , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
13.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005244

RESUMO

This research presents novel ibuprofen derivatives in the form of alkyl ester salts of L-amino acids with potential analgesic, anti-inflammatory, and antipyretic properties for potential use in transdermal therapeutic systems. New derivatives of (RS)-2-[4-(2-methylpropyl)phenyl]propionic acid were synthesized using hydrochlorides of alkyl esters (ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, and pentyl) of L-glutamine. These were further transformed into alkyl esters of L-amino acid ibuprofenates through neutralization and protonation reactions. Characterization involved spectroscopic methods, including nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Various physicochemical properties were investigated, such as UV-Vis spectroscopy, polarimetric analysis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, water solubility, octanol/water partition coefficient, and permeability through pig skin using Franz diffusion cells. The research confirmed the ionic structure of the obtained hydrochlorides of alkyl esters of L-amino acids and ibuprofenates of alkyl esters of L-glutamic acid. It revealed significant correlations between ester chain length and thermal stability, crystallinity, phase transition temperatures, lipophilicity, water solubility, skin permeability, and skin accumulation of these compounds. Compared to the parent ibuprofen, the synthesized derivatives exhibited higher water solubility, lower lipophilicity, and enhanced skin permeability. This study introduces promising ibuprofen derivatives with improved physicochemical properties, highlighting their potential for transdermal therapeutic applications. The findings shed light on the structure-activity relationships of these derivatives, offering insights into their enhanced solubility and skin permeation, which could lead to more effective topical treatments for pain and inflammation.


Assuntos
Ibuprofeno , Sais , Animais , Suínos , Ibuprofeno/química , Sais/farmacologia , Ésteres/química , Administração Cutânea , Pele , Solubilidade , Aminoácidos/farmacologia , Permeabilidade , Água/farmacologia
14.
Carbohydr Polym ; 322: 121327, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839839

RESUMO

Wound healing remains challenging due to posttraumatic pain. At present, most wound dressings ignore the importance of wound pain. In this study, a temperature-sensitive multifunctional intelligent hydrogel patch (CPAG) containing lidocaine has developed for wound healing. CPAG hydrogel was prepared by grafting N-isopropylacrylamide and acrylamide onto carboxymethyl agarose (CMA) modified by agarose and encapsulating gallic acid and lidocaine. FTIR, 1H NMR spectroscopy, SEM and rheology were used to investigate its structure and temperature-sensitive properties. The contraction force generated by the temperature response characteristics of CPAG at 30 °C can accelerate wound healing. In vitro release assays demonstrated that CPAG directly controlled the same amount of lidocaine release at different temperatures through the competition between polymer-polymer and polymer-water interactions. In addition, MTT, H&E staining and stimulation test further proved its biological safety. The pain behavior study showed that the pain inhibition rates of the lidocaine cataplasms and LID@CPAG were 51.16 % and 67.83 %, respectively. In vitro and in vivo studies have shown that compared with the blank group, the bleeding volume of LID@CPAG decreased by 54.3 %, and the wound healing rate reached 97 %. CPAG hydrogel can play a comprehensive therapeutic role in accelerating wound closure by controlling drug release, analgesia, antioxidation and hemostasis.


Assuntos
Hidrogéis , Cicatrização , Humanos , Hidrogéis/química , Sefarose , Temperatura , Liberação Controlada de Fármacos , Acrilamidas , Lidocaína/uso terapêutico , Dor , Polímeros , Antibacterianos/farmacologia
15.
Int J Pharm ; 645: 123410, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703958

RESUMO

Transdermal drug delivery system (TDDS) was an effective way to realize controlled drug delivery. However, realizing zero-order controlled drug skin delivery was still challenging in the drug-in-adhesive patch. This study provided a strategy to accomplish this delivery form by stabilizing the drug concentration in adhesive through concentration-dependent competitive interaction. Clonidine (CLO) and Granisetron (GRA) were chosen as the model drugs which were of high skin permeability, and polydimethylaminoethyl acrylate (EA) as an excipient to interact with hydroxyphenyl adhesive (HP). Drug release, permeation and pharmacokinetic study were conducted to evaluate the controlled effect of HP-EA. The molecular interaction was characterized by FT-IR, 1H NMR and XPS. Dynamic simulation and molecular docking further clarified the competitive interaction involved in the release process. Both the drug skin permeation study of CLO and GRA patch based on the HP-EA adhesive showed good zero-order fitting with r of 0.994 and 0.998, compared with non-functional adhesive (0-PSA). Furthermore, the pharmacokinetic study of the CLO patch showed a plateau phase for around 52 h without influencing the area under concentration-time curve (AUC), indicating that the HP-EA could realize zero-order drug skin delivery. The mechanism study revealed that EA serving as a 'buffer component' promoted the conversion of the ionic CLO to the neutrals the as the neutrals released, which stabilized '1% neutrals CLO concentration'. In conclusion, the drug delivery system based on the concentration-dependent competitive interaction broadened our understanding of the molecular mechanisms involved in zero-order controlled release in transdermal patches which would promote the development of zero-order drug delivery in TDDS.


Assuntos
Absorção Cutânea , Pele , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Pele/metabolismo , Administração Cutânea , Adesivos/química , Liberação Controlada de Fármacos , Adesivo Transdérmico
16.
Pharmaceutics ; 15(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631379

RESUMO

Skin diseases are among the most prevalent non-fatal conditions worldwide. The transdermal drug delivery system (TDDS) has emerged as a promising approach for treating skin diseases, owing to its numerous advantages such as high bioavailability, low systemic toxicity, and improved patient compliance. However, the effectiveness of the TDDS is hindered by several factors, including the barrier properties of the stratum corneum, the nature of the drug and carrier, and delivery conditions. In this paper, we provide an overview of the development of the TDDS from first-generation to fourth-generation systems, highlighting the characteristics of each carrier in terms of mechanism composition, penetration method, mechanism of action, and recent preclinical studies. We further investigated the significant challenges encountered in the development of the TDDS and the crucial significance of clinical trials.

17.
J Pharm Sci ; 112(11): 2879-2890, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37331627

RESUMO

Acyclovir is an acyclic purine nucleoside analog that is highly effective in inhibiting the herpes simplex virus. However, topical acyclovir has poor efficacy because of its low skin permeability. This study aimed to develop an acyclovir gel plaster containing sponge spicules (AGP-SS) to achieve synergistic improvements in skin absorption and deposition of acyclovir. The process of preparing the gel plaster was optimized by orthogonal experiments, while the composition of the formulation was optimized using the Plackett-Burman and Box-Behnken experimental designs. The selected formula was tested for physical properties, in vitro release, stability, ex vivo permeation, skin irritation, and pharmacokinetics. The optimized formulation exhibited good physical characteristics. In vitro release and ex vivo permeation studies showed that acyclovir release from AGP-SS was dominated by diffusion with significantly higher skin permeation (20.00 ± 1.07 µg/cm2) than that of the controls (p < 0.05). Dermatopharmacokinetic analyses revealed that the maximum concentration (78.74 ± 11.12 µg/g), area under the curve (1091.81 ± 29.05 µg/g/h) and relative bioavailability (197.12) of AGP-SS were higher than those of the controls. Therefore, gel plaster containing sponge spicules show potential for development as transdermal delivery systems to achieve higher skin absorption and deposition of acyclovir, especially in deep skin layers.

18.
Eur J Pharm Sci ; 184: 106409, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871810

RESUMO

Recently, transdermal treatment of rheumatoid arthritis (RA) has received increasing attention due to the advantages of improving patient compliance and avoiding gastrointestinal side effects. However, the stratum corneum (SC) barrier limits the transdermal delivery of most substances. Therefore, we constructed tetramethylpyrazine-loaded dissolving microneedle patches (TMP-DMNPs) and investigated its anti-rheumatoid arthritis effect. The cone-shaped dissolving microneedle patch had complete, neatly arranged needles and great mechanical strength. It could effectively penetrate the stratum corneum when applied to the skin. In vitro transdermal experiment showed that DMNPs could significantly promote the transdermal penetration of TMP compared with TMP-cream. The needles were completely dissolved within 18 min and the applied skin recovered completely within 3 h. The excipients and blank DMNP had good safety and biocompatibility to human rheumatoid arthritis fibroblast synovial cells. To compare the therapeutic effects, the animal model was established. The experiments of paw swelling, histopathology and X-ray examination showed that dissolving microneedles significantly alleviated paw condition, reduced the serum concentrations of proinflammatory cytokines, and inhibited synovial tissue damage in AIA rats. These results indicate that the DMNPs we prepared can deliver TMP safely, effectively and conveniently, providing a basis for the percutaneous treatment of RA.


Assuntos
Artrite Reumatoide , Sistemas de Liberação de Medicamentos , Humanos , Ratos , Animais , Pele , Administração Cutânea , Artrite Reumatoide/tratamento farmacológico , Agulhas , Adesivo Transdérmico
19.
Int J Pharm ; 636: 122853, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931537

RESUMO

The present work aimed to evaluate different Liquid Crystal Mesophases (LCM) as transdermal drug delivery systems (TDDS) for nifedipine (NFD), a lipophilic drug model. The formulations composed of water, Citrus sinensis essential oil (CSEO), PPG-5-CETETH-20, and Olive oil ester PEG-7 were obtained and characterized by polarized light microscopy (PLM), rheology, small-angle x-ray scattering (SAXS), Fourier transform infrared coupled with an attenuated total reflection accessory (FTIR-ATR) and in vitro assays: bioadhesion, drug release, skin permeation, and retention tests. As a result, changes in component proportions led to several transparent viscous systems with an anisotropic profile. PLM and SAXS proved the presence of lamellar (S1), hexagonal (S3), and lamellar + hexagonal (S2) LCM, and rheology showed a high viscoelasticity profile. LCMs were able to adhere to the skin, and S2 achieved higher adhesion strength. NFD (5 mg/mL) has not modified the organization of LCMs. Results also showed that S3 promoted higher permeation and retention and higher disorganization of stratum corneum lipids, which is the main permeation-enhancing mechanism. Thus, the formulations obtained can carry and improve drug delivery through the skin and are promising TDDS for lipophilic drug administration, such as NFD.


Assuntos
Cristais Líquidos , Preparações Farmacêuticas , Espalhamento a Baixo Ângulo , Cristais Líquidos/química , Difração de Raios X , Administração Cutânea , Pele
20.
Bioengineering (Basel) ; 10(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36671676

RESUMO

Exosomes act as emerging transdermal drug delivery vehicles with high deformability and excellent permeability, which can be used to deliver various small-molecule drugs and macromolecular drugs and increase the transdermal and dermal retention of drugs, improving the local efficacy and drug delivery compliance. At present, there are many studies on the use of plant exosome-like nanoparticles (PELNVs) as drug carriers. In this review, the source, extraction, isolation, and chemical composition of plant exosomes are reviewed, and the research progress on PELNVs as drug delivery systems in transdermal drug delivery systems in recent years has elucidated the broad application prospect of PELNVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...