Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Toxins (Basel) ; 16(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057955

RESUMO

Bacillus thuringiensis (Bt) toxins are potential alternatives to synthetic insecticides for the control of lepidopteran pests. However, the evolution of resistance in some insect pest populations is a threat and can reduce the effectiveness of Bt toxins. In this review, we summarize the results of 161 studies from 20 countries reporting field and laboratory-evolved resistance, cross-resistance, and inheritance, mechanisms, and fitness costs of resistance to different Bt toxins. The studies refer mainly to insects from the United States of America (70), followed by China (31), Brazil (19), India (12), Malaysia (9), Spain (3), and Australia (3). The majority of the studies revealed that most of the pest populations showed susceptibility and a lack of cross-resistance to Bt toxins. Factors that delay resistance include recessive inheritance of resistance, the low initial frequency of resistant alleles, increased fitness costs, abundant refuges of non-Bt, and pyramided Bt crops. The results of field and laboratory resistance, cross-resistance, and inheritance, mechanisms, and fitness cost of resistance are advantageous for predicting the threat of future resistance and making effective strategies to sustain the effectiveness of Bt crops.


Assuntos
Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Resistência a Inseticidas , Controle Biológico de Vetores , Animais , Resistência a Inseticidas/genética , Bacillus thuringiensis/genética , Lepidópteros/efeitos dos fármacos , Aptidão Genética , Inseticidas/farmacologia , Endotoxinas/genética
2.
Front Genome Ed ; 6: 1398813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045572

RESUMO

Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.

3.
Mol Breed ; 44(2): 8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263979

RESUMO

Breeding for resistant crops is a sustainable way to control disease and relies on the introduction of novel resistance genes. Here, we tested three strategies on how to use transgenes from wheat to achieve durable resistance against fungal pathogens in the field. First, we tested the highly effective, overexpressed single transgene Pm3e in the background of spring wheat cultivar Bobwhite in a long-term field trial over many years. Together with previous results, this revealed that transgenic wheat line Pm3e#2 conferred complete powdery mildew resistance during a total of nine field seasons without a negative impact on yield. Furthermore, overexpressed Pm3e provided resistance to powdery mildew isolates from our worldwide collection when crossed into the elite wheat cultivar Fiorina. Second, we pyramided the four overexpressed transgenes Pm3a, Pm3b, Pm3d, and Pm3f in the background of cultivar Bobwhite and showed that the pyramided line Pm3a,b,d,f was completely resistant to powdery mildew in five field seasons. Third, we performed field trials with three barley lines expressing adult plant resistance gene Lr34 from wheat during three field seasons. Line GLP8 expressed Lr34 under control of the pathogen-inducible Hv-Ger4c promoter and provided partial barley powdery mildew and leaf rust resistance in the field with small, negative effects on yield components which might need compensatory breeding. Overall, our study demonstrates and discusses three successful strategies for achieving fungal disease resistance of wheat and barley in the field using transgenes from wheat. These strategies might confer long-term resistance if applied in a sustainable way. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01451-2.

4.
J Exp Bot ; 75(7): 1872-1886, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38071644

RESUMO

Introgression of resistance genes from wild or related species is a common strategy to improve disease resistance of wheat cultivars. Pm17 is a gene that confers powdery mildew resistance in wheat. It encodes an NLR type of immune receptor and was introgressed from rye to wheat as part of the 1RS chromosome arm translocation several decades ago. So far it has not been possible to separate Pm17 from its co-introgressed rye genes due to suppressed recombination. Here we tested in the field transgenic Bobwhite wheat overexpressing Pm17 without any other rye genes. Four transgenic events showed high levels of PM17 protein accumulation, strong powdery mildew resistance, and no pleiotropic effects during three field seasons. We used a combined approach of transgene insertion and cross-breeding to generate lines co-expressing Pm17 and Pm3, or Pm17 and Pm8. Blumeria graminis f. sp. tritici infection tests confirmed additive, race-specific resistance of the two pyramided transgenes in lines Pm17+Pm3b and Pm17+Pm8. Furthermore, pyramided lines showed strong powdery mildew resistance during three field seasons. We conclude that the combination of overexpressed NLR genes from the extended gene pool broadens and diversifies wheat disease resistance.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Resistência à Doença/genética , Pool Gênico , Ascomicetos/genética , Melhoramento Vegetal , Doenças das Plantas
5.
Front Plant Sci ; 14: 1294207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965027
6.
Mol Biotechnol ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37573566

RESUMO

Plant transformation based on Agrobacterium-mediated transformation is a technique that mimics the natural agrobacterium system for gene(s) introduction into crops. Through this technique, various crop species have been improved/modified for different trait/s, showing a successful genetic transformation so far. This technique has many advantages over other transformation methods such as stable integration of transgene, cost effective. However, there are many limitations of this technology such as mostly the crops are recalcitrant to agrobacterium, low transformation efficiency, transgene integration as well as off targets. So, it's very important to explore the major limitations and possible solutions for Agrobacterium-mediated transformation in order to increase its genetic transformation efficiency. Therefore, the present review article gives a comprehensive study how the transgenic crops are developed using Agrobacterium-mediated transformation, crops that have already been modified through this method, and risks associated with transgenic plants based on Agrobacterium-mediated transformation. Moreover, the challenges and problems associated with Agrobacterium-mediated transformation and how those problems can be solved in future for a successful genetic transformation of crops using modern biotechnology techniques such as CRISPR/Cas9 systems. The present review article will be really helpful for the audience those working on Genome editing of crops using Agrobacterium-mediated transformation and will opens many ways for future plant genetic transformation.

7.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299149

RESUMO

Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.

8.
Insects ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36975899

RESUMO

Insect pests are increasingly evolving practical resistance to insecticidal transgenic crops that produce Bacillus thuringiensis (Bt) proteins. Here, we analyzed data from the literature to evaluate the association between practical resistance to Bt crops and two pest traits: fitness costs and incomplete resistance. Fitness costs are negative effects of resistance alleles on fitness in the absence of Bt toxins. Incomplete resistance entails a lower fitness of resistant individuals on a Bt crop relative to a comparable non-Bt crop. In 66 studies evaluating strains of nine pest species from six countries, costs in resistant strains were lower in cases with practical resistance (14%) than without practical resistance (30%). Costs in F1 progeny from crosses between resistant and susceptible strains did not differ between cases with and without practical resistance. In 24 studies examining seven pest species from four countries, survival on the Bt crop relative to its non-Bt crop counterpart was higher in cases with practical resistance (0.76) than without practical resistance (0.43). Together with previous findings showing that the nonrecessive inheritance of resistance is associated with practical resistance, these results identify a syndrome associated with practical resistance to Bt crops. Further research on this resistance syndrome could help sustain the efficacy of Bt crops.

9.
Rend Lincei Sci Fis Nat ; 33(3): 479-487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991676

RESUMO

The reduction of greenhouse gases (GHGs) emission by replacing fossil energy stocks with carbon-neutral fuels is a major topic of the political and scientific debate on environmental sustainability. Such shift in energy sources is expected to curtail the accumulation rate of atmospheric CO2, which is a strong infrared absorber and thus contributes to the global warming effect. Although such change would produce desirable outputs, the consequences of a drastic decrease in atmospheric CO2 (the substrate of photosynthesis) should be carefully considered in the light of its potential impact on ecosystems stability and agricultural productivity. Indeed, plants regulate CO2 uptake and water loss through the same anatomical structure: the leaf stomata. A reduced CO2 availability is thus expected to enhance transpiration rate in plants decreasing their water use efficiency and imposing an increased water demand for both agricultural and wild ecosystems. We suggest that this largely underestimated issue should be duly considered when implementing policies that aim at the mitigation of global environmental changes and, at the same time, promote sustainable agricultural practices, include the preservation of biodiversity. Also, we underlie the important role(s) that modern biotechnology could play to tackle these global challenges by introducing new traits aimed at creating crop varieties with enhanced CO2 capture and water- and light-use efficiency.

10.
Front Bioeng Biotechnol ; 10: 871651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547161

RESUMO

Habitat loss and fragmentation, and the effects of pesticides, contribute to biodiversity losses and unsustainable food production. Given the United Nation's (UN's) declaration of this decade as the UN Decade on Ecosystem Restoration, we advocate combining conservation biocontrol-enhancing practices with the use of RNA interference (RNAi) pesticide technology, the latter demonstrating remarkable target-specificity via double-stranded (ds)RNA's sequence-specific mode of action. This specificity makes dsRNA a biosafe candidate for integration into the global conservation initiative. Our interdisciplinary perspective conforms to the UN's declaration, and is facilitated by the Earth BioGenome Project, an effort valuable to RNAi development given its utility in providing whole-genome sequences, allowing identification of genetic targets in crop pests, and potentially relevant sequences in non-target organisms. Interdisciplinary studies bringing together biocontrol-enhancing techniques and RNAi are needed, and should be examined for various crop‒pest systems to address this global problem.

11.
Bioengineered ; 13(4): 9508-9520, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389819

RESUMO

Sustainable development serves as the foundation for a range of international and national policymaking. Traditional breeding methods have been used to modify plant genomes and production. Genetic engineering is the practice of assisting agricultural systems in adapting to rapidly changing global growth by hastening the breeding of new varieties. On the other hand, the development of genetic engineering has enabled more precise control over the genomic alterations made in recent decades. Genetic changes from one species can now be introduced into a completely unrelated species, increasing agricultural output or making certain elements easier to manufacture. Harvest plants and soil microorganisms are just a few of the more well-known genetically modified creatures. Researchers assess current studies and illustrate the possibility of genetically modified organisms (GMOs) from the perspectives of various stakeholders. GMOs increase yields, reduce costs, and reduce agriculture's terrestrial and ecological footprint. Modern technology benefits innovators, farmers, and consumers alike. Agricultural biotechnology has numerous applications, each with its own set of potential consequences. This will be able to reach its full potential if more people have access to technology and excessive regulation is avoided. This paper covers the regulations for genetically modified crops (GMCs) as well as the economic implications. It also includes sections on biodiversity and environmental impact, as well as GMCs applications. This recounts biotechnological interventions for long-term sustainability in the field of GMCs, as well as the challenges and opportunities in this field of research.Abbreviations: GMCs-Genetically modified crops; GMOs- Genetically modified organisms; GE- Genetic engineering; Bt- Bacillus thuringiensisNIH- National Institutes of Health; FDA- Food and Drug Administration; HGT- Horizontal gene transfer; GM- Genetically modified; rDNA- Ribosomal deoxyribonucleic acid; USDA- United States Department of Agriculture; NIH- National Institutes of Health.


Assuntos
Produtos Agrícolas , Desenvolvimento Sustentável , Agricultura , Biotecnologia , Produtos Agrícolas/genética , Engenharia Genética , Humanos , Plantas Geneticamente Modificadas/genética
12.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234875

RESUMO

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Estudo de Associação Genômica Ampla , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , Mariposas/metabolismo , Plantas Geneticamente Modificadas/genética , Zea mays/genética
13.
ACS Synth Biol ; 11(1): 317-324, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34915706

RESUMO

Current tools for detecting transgenic crops, such as polymerase chain reaction (PCR), require professional equipment and complex operation. Herein, we introduce a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system to analyze transgenes by designing an isothermal amplification to serve as the amplified reporter, allowing an isothermal and label-free detection of transgenic crops. The use of Cas12a allowed direct and specific recognition of transgenes. To enhance the sensitivity of the assay, we used rolling circle amplification (RCA) to monitor the recognition of transgenes by designing the RCA primer as the cleavage substrate of Cas12a. The presence of transgenes can be detected by monitoring the G-quadruplex in RCA amplicon using a G-quadruplex binding dye, N-methyl mesoporphyrin IX (NMM). We termed the assay as isoCRISPR and showed that the assay allowed distinguishing transgenic corn cultivars ("Bt11" and "MON89034") from nontransgenic corn cultivars ("yellow", "shenyu", "xianyu", and "jingke"). The isoCRISPR assay will enrich the toolbox for transgenic crop identification and broaden the application of CRISPR/Cas in food authenticity and safety.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase
14.
Front Microbiol ; 12: 742341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970232

RESUMO

Strategies involving genes in the dehydration-responsive element binding (DREB) family, which participates in drought stress regulation, and intercropping with legumes are becoming prominent options in promoting sustainable sugarcane cultivation. An increasing number of studies focusing on root interactions in intercropping systems, particularly involving transgenic crops, are being conducted to better understand and thus, harness beneficial soil microbes to enhance plant growth. We designed experiments to investigate the characteristics of two intercropping patterns, soybean with wild-type (WT) sugarcane and soybean with genetically modified (GM) Ea-DREB2B-overexpressing sugarcane, to assess the response of the rhizosphere microbiota to the different cropping patterns. Bacterial diversity in the rhizosphere microbial community differed between the two intercropping pattens. In addition, the biomass of GM sugarcane that intercropped with soybean was significantly improved compared with WT sugarcane, and the aboveground biomass and root biomass of GM soybean intercropping sugarcane increased by 49.15 and 46.03% compared with monoculture. Furthermore, a beneficial rhizosphere environment for the growth of Actinobacteria was established in the systems intercropped with GM sugarcane. Improving the production mode of crops by genetic modification is a key strategy to improving crop yields and provides new opportunities to further investigate the effects of intercropping on plant roots and soil microbiota. Thus, this study provides a basis for selecting suitable sugarcane-soybean intercropping patterns and a theoretical foundation for a sustainable sugarcane production.

15.
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834702

RESUMO

Plant viruses cause yield losses to crops of agronomic and economic significance and are a challenge to the achievement of global food security. Although conventional plant breeding has played an important role in managing plant viral diseases, it will unlikely meet the challenges posed by the frequent emergence of novel and more virulent viral species or viral strains. Hence there is an urgent need to seek alternative strategies of virus control that can be more readily deployed to contain viral diseases. The discovery in the late 1980s that viral genes can be introduced into plants to engineer resistance to the cognate virus provided a new avenue for virus disease control. Subsequent advances in genomics and biotechnology have led to the refinement and expansion of genetic engineering (GE) strategies in crop improvement. Importantly, many of the drawbacks of conventional breeding, such as long lead times, inability or difficulty to cross fertilize, loss of desirable plant traits, are overcome by GE. Unfortunately, public skepticism towards genetically modified (GM) crops and other factors have dampened the early promise of GE efforts. These concerns are principally about the possible negative effects of transgenes to humans and animals, as well as to the environment. However, with regards to engineering for virus resistance, these risks are overstated given that most virus resistance engineering strategies involve transfer of viral genes or genomic segments to plants. These viral genomes are found in infected plant cells and have not been associated with any adverse effects in humans or animals. Thus, integrating antiviral genes of virus origin into plant genomes is hardly unnatural as suggested by GM crop skeptics. Moreover, advances in deep sequencing have resulted in the sequencing of large numbers of plant genomes and the revelation of widespread endogenization of viral genomes into plant genomes. This has raised the possibility that viral genome endogenization is part of an antiviral defense mechanism deployed by the plant during its evolutionary past. Thus, GM crops engineered for viral resistance would likely be acceptable to the public if regulatory policies were product-based (the North America regulatory model), as opposed to process-based. This review discusses some of the benefits to be gained from adopting GE for virus resistance, as well as the challenges that must be overcome to leverage this technology. Furthermore, regulatory policies impacting virus-resistant GM crops and some success cases of virus-resistant GM crops approved so far for cultivation are discussed.

16.
Appl Biochem Microbiol ; 57(2): 271-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727728

RESUMO

In Russia and around the world, there are important questions regarding the potential threats to national and biological safety created by genetic technologies and the need to improve or introduce new, justified, and adequate measures for their control, regulation, and prevention. The article shows that a significant volume of the global market is occupied by five major transgenic crops, and producers are ready to switch to crops with an edited genome that has been approved in the United States, Argentina, and other countries. We propose a qualitatively new approach to the risk assessment of edited plants, "Safe Design," and we have also developed an extremely important, fundamentally new approach to the development of methods that combine next-generation sequencing (NGS) and Bioinformatics for the assessment of the crop import biosafety. The proposed mathematical approach provides a detailed analysis of the possible insertions of DNA fragments into the genome of edited crops and a clarification of their biological significance. The developed method can be used in the rapid screening of plants for the presence of potentially dangerous genes, viral sequences, and nonspecific promoter sequences.

17.
Bioresour Technol ; 326: 124772, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33551280

RESUMO

Biodiesel is a green, renewable alternative to petroleum-derived diesel. However, using vegetable oil for biodiesel production significantly challenges the food security. Progress in metabolic engineering, understanding of lipid biosynthesis and storage have enabled engineering of vegetative tissues of plants such as sugarcane, sorghum, and tobacco for lipid production. Such sources could be cultivated on land resources, which are currently not suitable for row crops. Besides achieving significant lipid accumulation, it is imperative to maintain the fatty acid and lipid profile ideal for biodiesel production and engine performance. In this study, genetic modifications used to induce lipid accumulation in transgenic crops and the proposed strategies for efficient recovery of oil from these crops have been presented. This paper highlights that lipids sourced from vegetative biomass in their native form would pose significant challenges in biodiesel production. Therefore, different strategies have been presented for improving feedstock quality to achieve high-quality biodiesel production.


Assuntos
Biocombustíveis , Saccharum , Biomassa , Ácidos Graxos , Lipídeos
18.
Ecol Appl ; 31(4): e02295, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33428798

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of maize in the United States and is an invasive pest in Europe. Maize is the only agricultural crop on which western corn rootworm larvae can survive and this insect requires two consecutive years of maize cultivation to complete its life cycle. Transgenic maize producing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is often used to manage rootworm populations. The first Bt trait, Cry3Bb1, was introduced in 2003, but larval resistance to this toxin appeared in northeastern Iowa in 2009. Rootworm management occurs on a field-by-field basis, but adult rootworm may disperse among fields. It is known that growing consecutive years of Cry3Bb1 maize within a field can lead to resistance, but the relationship of the surrounding landscape to the development of resistance is unknown. Using geospatial tools and publicly available land-use data, we examined circular areas (buffers) surrounding fields that had previously experienced high levels of rootworm injury to Cry3Bb1 maize and rootworm resistance to Cry3Bb1 maize (problem fields). We calculated the proportion of area inside each buffer planted to maize continuously for 1-9 yr, and compared these values to those for randomly selected control points throughout the state. We also calculated the proportion of the state planted to maize for at least three consecutive years for 2003 through 2018, and its relationship with the annual value of maize. We found that areas surrounding problem fields had significantly more continuous maize compared to controls, with the most continuous maize within 1.6 km of problem fields. We also found that the cultivation of continuous maize in Iowa increased significantly between 2003 and 2018, and this was correlated with average annual price of maize. We hypothesize a scenario in which continuous cultivation of Cry3Bb1 maize in local landscapes, driven in part by the increased value of maize, facilitated selection for Cry3Bb1 resistance. These results suggest that land use in areas surrounding problem fields affect the rate of resistance evolution and approaches for resistance management can be enhanced by taking a landscape-level perspective.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Surtos de Doenças , Europa (Continente) , Iowa , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Zea mays/genética
19.
Plant Mol Biol ; 105(1-2): 11-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32990920

RESUMO

KEY MESSAGE: Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.


Assuntos
Estresse Oxidativo/fisiologia , Fenômenos Fisiológicos Vegetais , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassinosteroides/metabolismo , Mudança Climática , Produtos Agrícolas , Citocininas/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredução , Poliaminas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tocoferóis
20.
Front Plant Sci ; 12: 787292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35281697

RESUMO

Salt stress is one of the most important abiotic stresses as it persists throughout the plant life cycle. The productivity of crops is prominently affected by soil salinization due to faulty agricultural practices, increasing human activities, and natural processes. Approximately 10% of the total land area (950 Mha) and 50% of the total irrigated area (230 Mha) in the world are under salt stress. As a consequence, an annual loss of 12 billion US$ is estimated because of reduction in agriculture production inflicted by salt stress. The severity of salt stress will increase in the upcoming years with the increasing world population, and hence the forced use of poor-quality soil and irrigation water. Unfortunately, majority of the vegetable crops, such as bean, carrot, celery, eggplant, lettuce, muskmelon, okra, pea, pepper, potato, spinach, and tomato, have very low salinity threshold (ECt, which ranged from 1 to 2.5 dS m-1 in saturated soil). These crops used almost every part of the world and lakes' novel salt tolerance gene within their gene pool. Salt stress severely affects the yield and quality of these crops. To resolve this issue, novel genes governing salt tolerance under extreme salt stress were identified and transferred to the vegetable crops. The vegetable improvement for salt tolerance will require not only the yield influencing trait but also target those characters or traits that directly influence the salt stress to the crop developmental stage. Genetic engineering and grafting is the potential tool which can improve salt tolerance in vegetable crop regardless of species barriers. In the present review, an updated detail of the various physio-biochemical and molecular aspects involved in salt stress have been explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...