Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Antioxidants (Basel) ; 13(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39334759

RESUMO

(1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar 'Panarea' were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L-1 caffeine trimethyl-13C (caffeine), and 1 mM Zn + 1 mg L-1 caffeine trimethyl-13C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (-16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.

2.
Sci Rep ; 14(1): 21248, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261527

RESUMO

Rice grown in cadmium (Cd)-contaminated soil, is a potential threat to human health, but exogenous selenium (Se) application on rice can mitigate Cd toxicity. However, the mechanisms underlying Se mitigation of Cd stress in ratoon rice (RR) are still poorly understood. We conducted a pot experiment with moderate Cd-contaminated yellow-brown paddy soil on two rice varieties 'Taoyouxiangzhan' (TX) and 'Liangyou 6326'(LY). For all treatments, 1.0 mg kg-1 sodium selenite solution was added to soil. Treatment T1 was sodium selenite only, and in the other treatments 100 mg L-1 Se solution was sprayed on the leaves at seedling stage (T2), at tillering stage (T3), and in early anthesis stage (T4). Se treatments decreased Cd accumulation in rice grains and herbage. Under foliar spraying 100 mg L-1 Se at the seedling + 1.0 mg kg-1 Se in soil (T2), leaf Cd content decreased 16.95% in the current season and grains content decreased 46.67% in the subsequent season. Furthermore, grain Se content increased 0.94 mg kg-1 for the TX variety combined with the analysis of Cd bio-accumulation factor in grains, and Se treatments effectively decreased Cd grain concentrations due to reduced Cd translocation from roots to grains. TX variety rice showed a more pronounced response to Se treatments than LY.


Assuntos
Cádmio , Oryza , Selênio , Poluentes do Solo , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/metabolismo , Cádmio/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Selênio/metabolismo , Selênio/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Solo/química , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
3.
Front Microbiol ; 15: 1444374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220045

RESUMO

The pollution of heavy metals (HMs) is a major environmental concern for agricultural farming communities due to water scarcity, which forces farmers to use wastewater for irrigation purposes in Pakistan. Vegetables grown around the cities are irrigated with domestic and industrial wastewater from areas near mining, paint, and ceramic industries that pollute edible parts of crops with various HMs. Cadmium (Cd) is an extremely toxic metal in arable soil that enters the food chain and damages the native biota, ultimately causing a reduction in plant growth and development. However, the use of microbes and growth regulators enhances plant growth and development as well as HM immobilization into the cell wall and hinders their entry into the food chain. Thus, the integrated use of bacterial consortium along with exogenously applied jasmonic acid (JA) mitigates the adverse effect of metal stress, ultimately reducing the metal mobility into roots by soil. Therefore, the current study was conducted to check the impact of Cd-tolerant bacteria and JA on the growth, nutrient status, and uptake of Cd in the cauliflower (Brassica oleracea). Our results demonstrated that increasing concentrations of Cd negatively affect growth, physiological, and biochemical attributes, while the use of a bacterial consortium (SS7 + SS8) with JA (40 µmol L-1) significantly improved chlorophyll contents, stem fresh and dry biomass (19.7, 12.7, and 17.3%), root length and root fresh and dry weights (28.8, 15.2, and 23.0%), and curd fresh and dry weights and curd diameter (18.7, 12.6, and 15.1%). However, the maximum reduction in soil Cd, roots, and curd uptake was observed by 8, 11, and 9.3%, respectively, under integrated treatment as compared to the control. Moreover, integrating bacterial consortium and JA improves superoxide dismutase (SOD) (16.79%), peroxidase dismutase (POD) (26.96%), peroxidase (POX) (26.13%), and catalase (CAT) (26.86%). The plant nitrogen, phosphorus, and potassium contents were significantly increased in soil, roots, and curd up to 8, 11, and 9.3%, respectively. Hence, a consortium of Klebsiella strains in combination with JA is a potential phytostabilizer and it reduces the uptake of Cd from soil to roots to alleviate the adverse impact on cauliflower's growth and productivity.

4.
Plants (Basel) ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339525

RESUMO

The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this study was to clarify the potential of phytoremediation using Helichrysum splendidum (Thunb.) Less. in areas polluted by CFA through conduction of pot trial experiments for 14 weeks. Plants of the same age were cultivated in CFA to assess their growth, photosynthetic rate and tolerance towards metal toxicity. This study revealed that the CFA was moderately polluted with heavy metals, and a lower photosynthetic rate was recorded for the CFA plants in comparison to the controls (plants grown in soil). Although the CO2 assimilation rate was lower for the CFA plants, increased growth was recorded for all the plants tested. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of trace elements in samples and parameters including translocation factor (TF) and bioconcentration factor (BCF) were used to evaluate the phytoremediation potential of H. splendidum (Thunb.) Less. The results revealed that higher concentrations of Cd, Co, Cr, Cu, Mn and Pb were accumulated in the roots, while As, Ni and Zn were found in the shoots. Elements including As, Cr and Zn reported TF values above 1, indicating the plants' phytoextraction potential. The BCF values for As, Cu and Zn were 1.22, 1.19 and 1.03, indicating effectiveness in the phytostabilization processes. A removal rate efficiency ranging from 18.0 to 56.7% was recorded confirming that, H. splendidum (Thunb.) Less. can be employed for restoration of CFA dams.

5.
Plants (Basel) ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39339613

RESUMO

Although previous studies have demonstrated that methane (CH4) can mitigate the toxicity of cadmium (Cd) in alfalfa seedlings, the CH4-rich water used in these studies may create hypoxic conditions, potentially influencing the experimental outcomes. Therefore, this study aimed to investigate whether CH4 can reduce Cd toxicity in alfalfa seedlings without the interference of hypoxia and to analyze its underlying mechanisms. Here, it was observed that supplementing oxygen with saturated CH4-rich water can significantly alleviate the inhibition of 75 µM CdCl2 on the growth of alfalfa (Medicago sativa L.) seedlings. Less Cd accumulation was also observed in both root and shoot parts, which could be explained by the CH4-altered cell wall components in alfalfa seedling roots, including covalent and ionic soluble pectin, and the degree of demethylation in pectin, thus enabling a higher proportion of Cd binding to the cell walls and reducing the entry of Cd into the cells. The above actions of CH4 were accompanied by an increase in hydrogen peroxide (H2O2) content and NADPH oxidase activity, which could be blocked by the addition of the NADPH oxidase inhibitor diphenylene iodonium (DPI). Taken together, these results implied that exogenously applied CH4 could alleviate Cd toxicity in alfalfa seedlings by enhancing Cd chelation onto the root cell walls, which might be closely associated with NADPH oxidase-dependent H2O2 signals. These findings could provide insight into the mechanism through which CH4 alleviates Cd toxicity in alfalfa plants.

6.
Sci Total Environ ; : 176033, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322080

RESUMO

Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime that reduces Cd accumulation in brown rice without compromising the yield. Meanwhile, the major factors affecting brown rice Cd and the pathways of water management affecting rice Cd are not clear. This study explored major factors affecting brown rice Cd using machine learning (ML) and examined the pathways of water management affecting rice Cd using a structural equation model (SEM). Three water management systems were set up, namely flooding, water-saving, and wetting irrigation. Results showed that water-saving irrigation increased dry matter and reduced Cd content and translocation. Root uptake during the grain filling stage and Cd remobilization before the grain filling stage contributed 36 % and 64 % of the Cd accumulation in brown rice, respectively. ML explained 97 % of the variance, suggesting that crop covariates were the most important (e.g., the brown rice bioconcentration factor (12 %), stem Cd (9 %), root-to-stem translocation factor (7 %)), followed by soil covariates (e.g., reducing substances 12 %) and water management (3 %). All SEM explanatory variables collectively explained 94 % of the variation, with a predictive power of 76 %. Water treatments indirectly affected soil available Fe and Mn (indirect effect coefficient = 0.909), iron plaques (indirect effect coefficient = 0.866), soil available Cd (indirect effect coefficient = -0.671), and Cd intensity of xylem sap (BICd, indirect effect coefficient = -0.664) via pH and reducing substances. BICd significantly positively affected stem Cd (path coefficient = 0.445). These findings provide insight into the agronomic and environmental effects of water management on brown rice Cd and influence pathways in soil-rice systems, suggesting that water-saving irrigation may alleviate Cd contamination in the paddy soil.

7.
Environ Sci Pollut Res Int ; 31(40): 53552-53569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39196321

RESUMO

Advances in sustainable toxic heavy metal treatment technologies are crucial to meet our needs for safer land to develop an urban resilient future. The heavy metals bioaccumulate in the food chain due to their persistence in the soil, which poses a serious challenge to its removal and control. Utilisation of hyperaccumulators to reduce the mobility, accumulation and toxic impact of heavy metals is a promising and ecologically safe technique. Amendments such as biochar and chelates have been shown to enhance the phytoremediation efficiency. However, the potential soil improvement is influenced by the properties of the amendment, plant and metal heterogeneities. In this study, an organic sugarcane bagasse biochar amendment for the 60-day pot experiment using Catharanthus roseus L. (NT) and Chrysopogon zizanioides L. (VT) in a heavy metal-contaminated soil was applied. The influence of biochar on the phytoremediation of lead (Pb), zinc (Zn) and cadmium (Cd) from the soil was explored. The plant survival rate enhanced to 100% with biochar amendment, and the biomass increased from 5.83 to 15 g in Zn-contaminated samples. Nutrients such as potassium concentration are directly correlated to the amendment rates, whereas phosphate decreases beyond the 2% biochar amendment rate in both plants. High heavy metal accumulation capacities with improved growth with biochar indicate the sustainability of the process. The translocation factor (TF) > 1 for Zn in NT represents the phytoextraction efficiencies whereas VT indicates high BCF values in the range of 0.5-3.53 for the amended Zn-contaminated soils. The findings indicate that the amendment rate of 2% improves nutrient cycling, plant biomass and heavy metal removal efficiencies. The insights from this study establish that the synergy between biochar amendment and the selected medicinal plants improved the phytoremediation efficiency.


Assuntos
Biodegradação Ambiental , Catharanthus , Carvão Vegetal , Vetiveria , Metais Pesados , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Catharanthus/metabolismo , Vetiveria/metabolismo , Solo/química
8.
Int J Phytoremediation ; : 1-9, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001639

RESUMO

Coal mining disperses heavy metals into the environment, necessitating the identification of metal-tolerant plants for ecosystem restoration. This study evaluated the phytoremediation potential of plant species in abandoned coal wastes in northern Iran. Pollution indices indicated moderate contamination of Cu, Ni, V, Zn, Pb, Cr, and As in coal wastes. The plants varied in their ability to accumulate and translocate these metals, with most showing efficient root-to-shoot translocation. Artemisia scoparia (41.06 mg.kg-1) and Capparis spinosa (42.48 mg.kg-1) were effective for Cu phytoextraction. Most species, notably Cynodon dactylon (3.4 mg.kg-1), showed promise for phytoextraction of Cr. Capparis spinosa (7.67 mg.kg-1) exhibited potential for Pb phytoextraction. Most plants, particularly Hordeum vulgare and Melica persica, were effective phytoextractors of Ni. Sylibum marianum accumulated V beyond phytotoxic levels. Chenopodium album and Glaucium fimbriligerum were identified as phytoextractors of Zn while Cynodon dactylon and Hordeum vulgare, accumulating >100 mg.kg-1 Zn in roots, showed potential for phytostabilization. Sylibum marianum and Glaucium fimbriligerum, acted as excluders for As. Kochia prostrata and Artemisia aucheri were excluders for Cu, Cr, Ni, and Pb. This study provided the role of multiple indigenous plants, including perennials and annuals with diverse life forms, in metal extraction and stabilization for sustainable coal waste management.

9.
Environ Sci Pollut Res Int ; 31(32): 44900-44907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954337

RESUMO

Seed coating with pesticides is used extensively for the protection of both seeds and plants against pests. In this study, the uptake and transport of seed-coating pesticides (insecticides), including cyantraniliprole (CYN) and thiamethoxam (THX), were investigated. The translocation of these pesticides from the soil to the plant and their accumulation in different plant parts were also calculated. After sowing the seeds with seed coating pesticides, soil and plant samples were taken across the study area. These samples were extracted and analyzed in liquid chromatography with tandem mass spectrometry (LC-MS/MS). CYN and THX were used in maize plants for the first time to observe soil degradation kinetics, and CYN showed a higher half-life than THX in soil. Both pesticides have been taken up by the corn maize plant and transferred and accumulated to the upper parts of the plant. Although the THX concentration was between 2.240 and 0.003 mg/kg in the root, between 3.360 and 0.085 mg/kg in the stem, it was between 0.277 and 3.980 mg/kg in the leaf, whereas CYN was detected at higher concentrations. The concentration of CYN was 1.472 mg/ kg and 0.079 mg/kg in the roots and stems of the maize plant, respectively. However, the bioconcentration factor (BCF) indicates the soil-to-plant accumulation of CYN from 28 to 34.6 and that of 12.5 to 4567.1 for THX on different sampling days. The translocation factor (TFstem) represents the ratio of pesticides absorbed from the stem and transported to the roots. For CYN, TFstem ranges from 3.6 to 20.5, while for THX, it varies between 1.5 and 26.8, indicating a higher translocation rate for THX. The ratio of leaf to root concentration are 3.6 to 20.5 for CYN and 1.8 to 87.7 for THX, demonstrating effective translocation for both pesticides. The TF values for both pesticides are above 1, signifying successful root-to-stem-to-leaf movement. Notably, THX exhibits a notably higher transport rate compared to CYN.


Assuntos
Sementes , Tiametoxam , Zea mays , Zea mays/metabolismo , Pirazóis/metabolismo , Poluentes do Solo/metabolismo , ortoaminobenzoatos/metabolismo , Praguicidas/metabolismo , Solo/química
10.
Plant Physiol Biochem ; 214: 108846, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945095

RESUMO

Eco-friendly and sustainable practices must be followed while using the right plants and microbes to remove harmful heavy metals from the soil. The goal of the current study was to ascertain how effectively sorghum plants removed cadmium (Cd) from the soil using polyamines and mycorrhiza. Plant-biochemicals such as free amino acids, ascorbic acids, anthocyanin, proline, and catalase, APX, peroxidase activities were considered as markers in this study which revealed the adverse plant growth performance under 70 and 150 ppm of Cd concentration (w/w) after 30,60, and 90 days of treatment. The plants showed a mitigating effect against high Cd-concentration with exogenous use of mycorrhiza and putrescine. The treatment T17 (mycorrhiza +5 mM putrescine) showed a substantial decrease in the content of total free amino acid, ascorbic acid, catalase, APX, peroxidase by 228.36%, 39.79%, 59.06%, 182.79% 106.97%, respectively after 90 days as compared to T12 (150 ppm Cd). Anthocyanin content was negatively correlated (-0.503, -0.556, and -0.613) at p < 0.01 with other studied markers, with an increase by 10.52% in T17 treated plant as compared to T12. The concentration of Cd in root increased by 49.6% (141 ppm) and decreased in the shoot by 71% (17.8 ppm) in T17 treated plant as compared to T12 after 90 days. The application of mycorrhiza and putrescine significantly increased BCF (>1) and decreased TF (<1) for Cd translocation. The administration of mycorrhiza and putrescine boosted the Cd removal efficiency of sorghum plants, according to FTIR, XRD, and DSC analysis. As a result, this study demonstrates novel approaches for induced phytoremediation activity of plants via mycorrhiza and putrescine augmentation, which can be a promising option for efficient bioremediation in contaminated sites.


Assuntos
Cádmio , Micorrizas , Poliaminas , Sorghum , Sorghum/metabolismo , Sorghum/microbiologia , Sorghum/efeitos dos fármacos , Cádmio/metabolismo , Micorrizas/fisiologia , Poliaminas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental
11.
Sci Rep ; 14(1): 13259, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858574

RESUMO

This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 µM) and jasmonic acid (JA) (0, 5 and 10 µM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 µM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 µM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 µM Ni, the highest accumulation of Ni was observed in shoots of M (1392 µg/g DW) and NM (1382 µg/g DW). However, the application of SA and JA (especially in Ni 400 µM + SA 200 µM + JA 5 and 10 µM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 µM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.


Assuntos
Biodegradação Ambiental , Ciclopentanos , Níquel , Oxilipinas , Raízes de Plantas , Ácido Salicílico , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Níquel/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Ácido Salicílico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brassicaceae/metabolismo , Bioacumulação
12.
Sci Total Environ ; 945: 173923, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880144

RESUMO

Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.


Assuntos
Fabaceae , Metais Pesados , Rhizobium , Poluentes do Solo , Fabaceae/metabolismo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Rhizobium/fisiologia , Biodegradação Ambiental , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
13.
Chemosphere ; 360: 142405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782134

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) with the properties of structural stability, semi-volatility, and hydrophobicity are toxic and persistent in environments; thus, their transport and fate in agroecosystems is essential for reducing PAH accumulation in the edible parts of crops. Here, we cultivated cabbages (Brassica pekinensis L.) and carrots (Daucus carota L.) in PAH-contaminated soils under the greenhouse and field conditions. After harvesting, we observed a 9.5-46% reduction in soil ∑PAH concentrations. There were 37% of bioconcentration factors (BCFbs) > 1 and 93% of translocation factors (TFab) > 1, while low-molecular-weight (LMW) PAHs had higher BCFbs than high-molecular-weight (HMW) PAHs. The PAH concentrations showed significant and positive correlations among soils, the belowground parts, and the aboveground parts. The toxicity equivalent concentration (TEQBaP) followed the order of cabbage (greenhouse) > cabbage (field) > carrot (greenhouse) > carrot (field), suggesting potentially higher health risks in cabbage relative to carrot and vegetables under the greenhouse relative to field condition. Our study suggested growing carrots under field conditions as a management strategy for reducing the risks of vegetables grown in PAH-contaminated soils.


Assuntos
Brassica , Daucus carota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Daucus carota/química , Daucus carota/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Brassica/química , Brassica/metabolismo , Solo/química , Monitoramento Ambiental , Verduras/química , Verduras/metabolismo
14.
Chemosphere ; 359: 142371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768784

RESUMO

Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 µg/L) > THM (2.74 µg/L) > IMI (0.97 µg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 µg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 µg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.


Assuntos
Inseticidas , Neonicotinoides , Oryza , Poluentes do Solo , Inseticidas/análise , Neonicotinoides/análise , Oryza/química , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental , Nitrocompostos/análise , Exposição Dietética/estatística & dados numéricos , Exposição Dietética/análise , Humanos , Medição de Risco , Tiametoxam , Guanidinas/análise , Tiazóis
15.
Sci Total Environ ; 934: 173169, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735339

RESUMO

Soil cadmium (Cd) contamination is an urgent environmental problem, which endangers human health through the food chain. Bioremediation attracted extensive attention around the world due to the high cost-efficiency. However, the remediation efficiency of different plant and earthworm species of soil Cd pollution is still unclear, it is thus of great significance to explore the combined effects of different remediation plants and earthworm species to improve the bioremediation capacity. In the present study, we consequently selected three species of Cd hyperaccumulator plants (vetiver, P. vittata and S. emarginatum) and three species of earthworms (E. fetida P1, E. fetida P2, and P. guillelmi) to compare the differences in Cd accumulation among various earthworm-plant combinations. Results indicated that the changes of soil pH and SOM in plant-animal combined application induced the higher soil Cd removal efficiency. The Cd removal efficiency showed highest in combination groups P. vittata-E. fetida P2 and P. vittata-P. guillelmi. Meanwhile, the improvements of biomass of plants and animals also were consistent with the increasing of Cd concentration in both plants and earthworms after combined application. It showed that the Cd concentrations in P. vittata were the highest while the TFs of Cd in S. emarginatum displays significantly more than that in others. In conclusion, the recommended combined system of earthworm-plant (P. vittata-E. fetida P2 and P. vittata-P. guillelmi) to provide reference for soil Cd bioremediation system in practice.


Assuntos
Biodegradação Ambiental , Cádmio , Oligoquetos , Poluentes do Solo , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Animais , Solo/química , Recuperação e Remediação Ambiental/métodos
16.
Chimia (Aarau) ; 78(4): 209-214, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676611

RESUMO

Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic'sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic's characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research.


Assuntos
Antibacterianos , Plantas , Solo , Antibacterianos/metabolismo , Solo/química , Plantas/metabolismo , Plantas/química , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Transporte Biológico , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Folhas de Planta/metabolismo , Folhas de Planta/química
17.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615445

RESUMO

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Assuntos
Arsênio , Arsenitos , Oryza , Proteínas de Plantas , Raízes de Plantas , Brotos de Planta , Plantas Geneticamente Modificadas , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Arsênio/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
18.
Sci Total Environ ; 926: 172029, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552988

RESUMO

Although Eichhornia crassipes, commonly known as water hyacinth, has been widely used in wastewater treatment, further investigations are still needed to explore the removal efficiency of perfluoroalkyl acids (PFAAs) from the aqueous environment using this floating aquatic plant. In this study, a hydroponic experiment was conducted to assess accumulation, bioconcentration factors (BCFs), translocation factors (TFs), and removal rates of eight PFAAs by water hyacinth. The obtained results indicated that all PFAAs, including five perfluoroalkyl carboxylic acids (PFCAs) with chain lengths C4-C8 and three perfluoroalkyl sulfonic acids (PFSAs) with C4, C6, and C8, were readily accumulated in water hyacinth. Throughout the duration of the experiment, there was a noticeable increase in PFAA concentrations and BCF values for different plant parts. For the root, PFAAs with more carbon numbers showed a higher uptake than the shorter homologues, with PFSAs being more readily accumulated compared to PFCAs with the same carbon number in the molecules. In contrast, the levels of long-chain PFAAs were comparatively lower than those of short-chain substances in the stem and leaf. Notably, PFAAs with less carbon numbers, like PFPeA, PFBA, and PFBS, showed a remarkable translocation from the root to the stem and leaf with TFs >1. For the whole plant, no significant correlation was found between BCFs and organic carbon-water partition coefficients (Koc), octanol-water partition coefficients (Kow), membrane-water distribution coefficients (Dmw), or protein-water distribution coefficients (Dpw). The removal rates of PFAAs ranged from 40.3 to 63.5 % throughout the three weeks of the experiment while the removal efficiencies varied from 48.9 % for PFHxS to 82.6 % for PFPeA in the last week.


Assuntos
Eichhornia , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Sulfônicos , Ácidos Carboxílicos , Carbono
19.
Environ Sci Pollut Res Int ; 31(14): 21947-21961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400962

RESUMO

Arsenic (As) is a hazardous metalloid, and mycorrhizal inoculation and vermicompost amendment can influence As bioremediation. However, the studies concerning the sole and joint effects of arbuscular mycorrhizal fungi (AMF) and vermicompost on the phytoremediation efficacy are limited. In the present study at first, the impact of various levels of vermicompost (0, 2, 4, and 8% w/w) was investigated on As mobility in soil and safflower (Carthamus tinctorius L.) plants grown in soils of spiked with 0, 40, and 80 mg kg-1 As. Results revealed that with increasing dose of vermicompost, bioavailable As in soil decreased which resulted in a lower bioaccumulation factor and translocation factor (TF) and led to a significant increase of tolerance index (TI) and total chlorophyll content in plants. The highest effect on TI and total As accumulation per plant was obtained in the dosage of 8% vermicompost. Therefore, in the second experiment, the sole and joint effects of 8% vermicompost and inoculation with Rhizophagus intraradices were assessed on the tolerance and accumulation of As in safflower. The addition of vermicompost aggravated mycorrhizal colonization but did not significantly influence mycorrhizal dependency under As stress. The joint effects of AMF and vermicompost improved the dry weight of roots and shoots, increased P concentration and P:As ratio in shoots, reduced malondialdehyde content, and moderated ascorbate peroxidase activity in leaves of As-stressed plants. Interestingly, co-application of AMF and vermicompost more than their sole usage decreased As concentration in shoots and TF and more strongly increased total As accumulation per plant. These findings suggest that mycorrhizal inoculation and vermicompost have a synergistic effect on As tolerance and phytostabilization efficacy of safflower plants, and their combined application may be a new option to remediate As-contaminated soils.


Assuntos
Arsênio , Carthamus tinctorius , Micorrizas , Poluentes do Solo , Arsênio/análise , Poluentes do Solo/análise , Solo
20.
Environ Sci Pollut Res Int ; 31(16): 23623-23637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418794

RESUMO

The aim of this study was to assess the removal capability of Fe/Al contamination of Indian camphorweed (Pluchea indica; hereafter, P. indica) using different growth substrates (100% sand, gardening soil, vermiculite, and zeolite). In addition, the study aimed at observing the physio-morphological adaptation strategies of P. indica under excess Fe/Al levels in a controlled greenhouse environment. After a 4-week treatment, P. indica plants under excess Fe in the 100% sand substrate exhibited signs of decay and eventually death. In contrast, the growth performances of P. indica under gardening soil substrate remained sustained even when exposed to Fe/Al stress. Under zeolite substrate, Fe in the root tissues was 23.1 and 34.7 mg g-1 DW after 1 and 4 weeks of incubation, respectively. In addition, Al in the root tissues also increased to 1.54 mg g-1 DW after 1 week and 1.59 mg g-1 DW after 4 weeks, when subjected to 20 mM Al treatment. Zeolite was observed to be a promising substrate to regulate the uptake of Fe (3.31 mg plant-1) and Al (0.51 mg plant-1) by the root tissues. The restriction of Fe and Al in the root and a low translocation to the leaf organ was indicated by a low translocation factor (< 1.0). High Fe concentrations in the root and leaf tissues negatively affected root elongation, and the net photosynthetic rate decreased by > 40% compared to positive control. Gas exchange parameters and leaf temperature were found the most sensitive to Fe/Al stress. Moreover, the limited transpiration rate under Fe/Al stress caused an increase of the leaf temperature and crop stress index. The findings suggest that P. indica grown using zeolite substrate may serve as a good model system for constructed wetlands, storing excess Al in the root tissues without any significant growth inhibition.


Assuntos
Asteraceae , Zeolitas , Alumínio , Ferro , Areia , Bioacumulação , Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA