Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.564
Filtrar
1.
Environ Sci Technol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365877

RESUMO

Current understanding of atmospheric transport of semivolatile organic contaminants (SVOCs) in alpine areas is limited due to complex meteorology and topography. Salt Lake City, Utah borders protected wilderness areas in the Wasatch Mountains, exhibiting a useful model system in which an urban source of SVOCs, including polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), is located directly adjacent to an alpine sink. Our objective was to investigate the impacts of topographical features on the transport and deposition of SVOCs across an urban-alpine boundary. To do so, we measured PAHs and PCBs in soils along a transect starting at the urban-mountain interface and extending into an alpine wilderness, crossing several prominent ridgelines. Concentrations of PAHs and PCBs in soils were heavily influenced by soil organic carbon content, air temperature, and proximity to the urban boundary. However, the role of source proximity was only revealed after normalizing concentrations in soil to organic carbon content and air temperature. Further, we present evidence of SVOC emission/deposition cycles driven by diurnal alpine winds that do not extend past topographical features. Our results illustrate the roles of multiple competing processes on SVOC transport in alpine systems and their importance at an urban-alpine boundary.

2.
Small ; : e2406865, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374027

RESUMO

Myosins are ATP-powered, force-generating motor proteins involved in cardiac and muscle contraction. The external load experienced by the myosins modulates and coordinates their function in vivo. Here, this study investigates the tension-sensing mechanisms of rabbit native ß-cardiac myosin (ßM-II) and slow skeletal myosins (SolM-II) that perform in different physiological settings. Using mobile optical tweezers with a square wave-scanning mode, a range of external assisting and resisting loads from 0 to 15 pN is exerted on single myosin molecules as they interact with the actin filament. Influenced of load on specific strongly-bound states in the cross-bridge cycle is examined by adjusting the [ATP]. The results implies that the detachment kinetics of actomyosin ADP.Pi strongly-bound force-generating state are load sensitive. Low assisting load accelerates, while the resisting load hinders the actomyosin detachment, presumably, by slowing both the Pi and ADP release. However, under both high assisting and resisting load, the rate of actomyosin dissociation decelerates. The transition from actomyosin ADP.Pi to ADP state appears to occur with a higher probability for ßM-II than SolM-II. This study interpret that dissociation of at least three strongly-bound actomyosin states are load-sensitive and may contribute to functional diversity among different myosins.

3.
J Environ Manage ; 370: 122442, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244930

RESUMO

The reliance on fossil fuels is a major contributor to increased anthropogenic CO2 emissions, driving global challenges such as climate change through the greenhouse effect. Carbon capture and storage (CCS) is a promising interdisciplinary technology aimed at mitigating these emissions by securely sequestering gigatons of CO2. This study focuses on the feasibility of storing point-source CO2 emissions in saline formations, with a particular emphasis on the Mae Moh coal-fired power plant in Lampang, Thailand, which is located near its associated coal mine. The region presents challenges due to tight sandstone reservoirs buried over 2000 m deep. With reservoir simulation, this study evaluates the impact of various factors on CO2 containment and trapping in these geological settings. Results show that elevated temperatures decrease structural trapping of 43.0%-28.9% and increase solubility trapping of 28.55%-46.5%, at 40 °C and 80 °C respectively. Hysteresis is found to enhance residual trapping by immobilizing up to 31.1% of CO2 within pore spaces at 0.5. Permeability heterogeneity has a minimal impact on overall trapping efficiency due to the less heterogeneity of the tight sandstone. However, the kV/kH ratio significantly influences vertical CO2 migration which resulted in residual trapping at its highest at the ratio of 0.1, while lower ratios support lateral dispersion. Moderate rock compressibility values are identified as optimal for structural and residual trapping, while extreme compressibility enhances solubility trapping by up to 30%. These findings emphasize the complexity of CO2 trapping mechanisms in tight sandstone formations, emphasizing the need for careful consideration of key factors in CCS projects.

4.
Ann Bot ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240138

RESUMO

BACKGROUND AND AIMS: A hierarchical micro-topography of ridges and steps renders the trap rim of carnivorous Nepenthes pitcher plants unusually wettable, and slippery for insects when wet. This complex three-dimensional epidermis structure forms, hidden from plain sight, inside the still-closed developing pitcher bud. Here, we reveal the sequence of epidermal patterning events that shape the trap rim. By linking this sequence to externally visible markers of bud development, we provide a framework for targeting individual stages of surface development in future studies. METHODS: We used cryo-scanning electron microscopy to investigate the detailed morphogenesis and epidermal patterning of the Nepenthes x hookeriana pitcher rim. In addition, we collected morphometric and qualitative data from developing pitcher traps including those sampled for microscopy. KEY RESULTS: We identified three consecutive patterning events. First, strictly oriented cell divisions resulted in radially aligned rows of cells and established a macroscopic ridge-and-groove pattern. Next, conical papillate cells formed, and papillae elongated towards the trap interior, increasingly overlapping adjacent cells and eventually forming continuous microscopic ridges. In between these ridges, the flattened papillae formed acutely angled arched steps. Finally, the cells elongated radially, thereby establishing the convex collar shape of the rim. This general sequence of surface development also showed a spatial progression from the outer to the inner trap rim edge, with several consecutive developmental stages co-occurring at any given time. CONCLUSIONS: We demonstrate that the complex surface microtopography of the Nepenthes pitcher rim develops by sequentially combining widespread, evolutionarily conserved epidermal patterning processes in a new way. This makes the Nepenthes trap rim an excellent model for studying epidermal patterning mechanisms in leaves.

5.
Sci Rep ; 14(1): 20585, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232005

RESUMO

Carbon Capture, Utilization, and Storage (CCUS) offers a viable solution to reduce the carbon footprint in the petroleum industry, and foam injection presents a promising method to achieve this while simultaneously increasing oil recovery. In this work, we studied the feasibility of CO2 foam for co-optimizing enhanced oil recovery and CO2 storage in a high-salinity carbonate formation. The simulated hydrodynamic model is a depleted formation containing 30% residual oil, with three mechanisms for CO2 storage: solubility, residual, and mineralization trapping mechanisms. The results showed that after 20 years, oil recovery during foam injection was 2.7 times higher than CO2 injection, and the CO2 stored during foam flooding was 38% higher than CO2 injection. Notably, foam injection also increased CO2 storage capacity by 2.6 times, indicating the potential to store around 2 gigatons of CO2 in the simulated model. This was attributed to the ability of foam to significantly reduce gas mobility and thus form isolated bubbles through its Jamin effect. Residual trapping was the dominant trapping mechanism, contributing to over 70% of the total CO2 trapped, attributed to the reduction in the dissolution of CO2 in brine due to the high salinity of the aqueous medium. CO2 mineralization was also studied, showing the least trapping efficiency and the dissolution trend of all the carbonate minerals. This study illustrates a novel CO2 utilization and storage technique in which CO2 is concurrently sequestered while enhancing oil recovery in a depleted oil reservoir by injecting CO2 as foam. The relevance of this study lies in its potential to provide a dual benefit of reducing greenhouse gas emissions and boosting oil production, offering a sustainable approach for the petroleum industry.

6.
Elife ; 132024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259595

RESUMO

Carnivores play key roles in maintaining ecosystem structure and function as well as ecological processes. Understanding how sympatric species coexist in natural ecosystems is a central research topic in community ecology and biodiversity conservation. In this study, we explored intra- and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores (wolf Canis lupus, snow leopard Panthera uncia, Eurasian lynx Lynx lynx) and mesocarnivores (Pallas's cat Otocolobus manul, red fox Vulpes vulpes, Tibetan fox Vulpes ferrilata) in Qilian Mountain National Park, China, using camera trapping data and DNA metabarcoding sequencing data. Our study showed that apex carnivore species had more overlap temporally (coefficients of interspecific overlap ranging from 0.661 to 0.900) or trophically (Pianka's index ranging from 0.458 to 0.892), mesocarnivore species had high dietary overlap with each other (Pianka's index ranging from 0.945 to 0.997), and apex carnivore and mesocarnivore species had high temporal overlap (coefficients of interspecific overlap ranging from 0.497 to 0.855). Large dietary overlap was observed between wolf and snow leopard (Pianka's index = 0.892) and Pallas's cat and Tibetan fox (Pianka's index = 0.997), suggesting the potential for increased resource competition for these species pairs. We concluded that spatial niche partitioning is likely to key driver in facilitating the coexistence of apex carnivore species, while spatial and temporal niche partitioning likely facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. Our findings consider partitioning across temporal, spatial, and dietary dimensions while examining diverse coexistence patterns of carnivore species in Qilian Mountain National Park, China. These findings will contribute substantially to current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.


Assuntos
Ecossistema , Raposas , Animais , China , Raposas/fisiologia , Parques Recreativos , Gatos , Lobos/fisiologia , Carnívoros/fisiologia , Dieta , Lynx/fisiologia , Análise Espaço-Temporal , Panthera/fisiologia , Biodiversidade
7.
Adv Sci (Weinh) ; : e2410446, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279471

RESUMO

The rapid advancement in attractive platforms such as biomedicine and human-machine interaction has generated urgent demands for intelligent materials with high strength, flexibility, and self-healing capabilities. However, existing self-healing ability materials are challenged by a trade-off between high strength, low elastic modulus, and healing ability due to the inherent low strength of noncovalent bonding. Here, drawing inspiration from human fibroblasts, a monomer trapping synthesis strategy is presented based on the dissociation and reconfiguration in amphiphilic ionic restrictors (7000-times volume monomer trapping) to develop a eutectogel. Benefiting from the nanoconfinement and dynamic interfacial interactions, the molecular chain backbone of the formed confined domains is mechanically reinforced while preserving soft movement capabilities. The resulting eutectogels demonstrate superior mechanical properties (1799% and 2753% higher tensile strength and toughness than pure polymerized deep eutectic solvent), excellent self-healing efficiency (>90%), low tangential modulus (0.367 MPa during the working stage), and the ability to sensitively monitor human activities. This strategy is poised to offer a new perspective for developing high strength, low modulus, and self-healing wearable electronics tailored to human body motion.

8.
ACS Appl Bio Mater ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279649

RESUMO

Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.

9.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273504

RESUMO

In recent years, Raman spectroscopy has garnered growing interest in the field of biomedical research. It offers a non-invasive and label-free approach to defining the molecular fingerprint of immune cells. We utilized Raman spectroscopy on optically trapped immune cells to investigate their molecular compositions. While numerous immune cell types have been studied in the past, the characterization of living human CD3/CD28-stimulated T cell subsets remains incomplete. In this study, we demonstrate the capability of Raman spectroscopy to readily distinguish between naïve and stimulated CD4 and CD8 cells. Additionally, we compared these cells with monocytes and discovered remarkable similarities between stimulated T cells and monocytes. This paper contributes to expanding our knowledge of Raman spectroscopy of immune cells and serves as a launching point for future clinical applications.


Assuntos
Monócitos , Análise Espectral Raman , Subpopulações de Linfócitos T , Humanos , Análise Espectral Raman/métodos , Monócitos/citologia , Monócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Pinças Ópticas , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Antígenos CD28/metabolismo , Antígenos CD28/imunologia
10.
Heliyon ; 10(18): e37421, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323807

RESUMO

Surface modification, including the anchoring of functional groups is a popular method to increase the photocatalytic activity of semiconductor photocatalysts. These species can trap excited electrons, thus prolonging the life of the charge carriers. N-containing functional groups are suitable for this purpose due to their high electron density. Here, we report a facile synthesis method for preparing interfacial N-based functional groups-modified and nitrogen-doped SrTiO3 photocatalysts. Among the modified samples (with 0.42-11.14 at.% nominal nitrogen content), the one with 7.71 at.% nitrogen showed 6.4 times higher photooxidation efficiency for phenol and 2.2 times better photoreduction efficiency for CO2 conversion than the unmodified SrTiO3 reference. Characterization results showed that using a low amount of nitrogen source resulted in low but measurable nitrogen doping, which did not significantly affect the photocatalytic activity. The formation of surface amine groups was significant even at lower initial nitrogen concentrations, while higher amounts of nitrogen source gradually resulted in the incorporation of nitrogen in higher amounts. Surface amine groups decreased the recombination of charge carriers, resulting in increased photocatalytic activity.

11.
Trends Genet ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39306519

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is a crucial member of the PARP family, which modifies targets through ADP-ribosylation and plays key roles in a variety of biological processes. PARP inhibitors (PARPis) hinder ADP-ribosylation and lead to the retention of PARP1 at the DNA lesion (also known as trapping), which underlies their toxicity. However, inhibitors and mutations that make PARP1 inactive do not necessarily correlate with trapping potency, challenging the current understanding of inactivation-caused trapping. Recent studies on mouse models indicate that both trapping and non-trapping inactivating mutations of PARP1 lead to embryonic lethality, suggesting the unexpected toxicity of the current inhibition strategy. The allosteric model, complicated automodification, and various biological functions of PARP1 all contribute to the complexity of PARP1 inactivation.

12.
Nanomaterials (Basel) ; 14(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39269104

RESUMO

Ultraviolet (UV) photodetectors (PDs) based on nanowire (NW) hold significant promise for applications in fire detection, optical communication, and environmental monitoring. As optoelectronic devices evolve towards lower dimensionality, multifunctionality, and integrability, multicolor PDs have become a research hotspot in optics and electronic information. This study investigates the enhancement of detection capability in a light-trapping ZnO NW array through modification with Pt nanoparticles (NPs) via magnetron sputtering and hydrothermal synthesis. The optimized PD exhibits superior performance, achieving a responsivity of 12.49 A/W, detectivity of 4.07 × 1012 Jones, and external quantum efficiency (EQE) of 4.19 × 103%, respectively. In addition, the Pt NPs/ZnO NW/ZnO PD maintains spectral selectivity in the UV region. These findings show the pivotal role of Pt NPs in enhancing photodetection performance through their strong light absorption and scattering properties. This improvement is associated with localized surface plasmon resonance induced by the Pt NPs, leading to enhanced incident light and interfacial charge separation for the specialized configurations of the nanodevice. Utilizing metal NPs for device modification represents a breakthrough that positively affects the preparation of high-performance ZnO-based UV PDs.

13.
Nutrients ; 16(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339686

RESUMO

Obesity, a complex condition that involves genetic, environmental, and behavioral factors, is a non-infectious pandemic that affects over 650 million adults worldwide with a rapidly growing prevalence. A major contributor is the consumption of high-fat diets, an increasingly common feature of modern diets. Maternal obesity results in an increased risk of offspring developing obesity and related health problems; however, the impact of maternal diet on the adipose tissue composition of offspring has not been evaluated. Here, we designed a generational diet-induced obesity study in female C57BL/6 mice that included maternal cohorts and their female offspring fed either a control diet (10% fat) or a high-fat diet (45% fat) and examined the visceral adipose proteome. Solubilizing proteins from adipose tissue is challenging due to the need for high concentrations of detergents; however, the use of a detergent-compatible sample preparation strategy based on suspension trapping (S-Trap) enabled label-free quantitative bottom-up analysis of the adipose proteome. We identified differentially expressed proteins related to lipid metabolism, inflammatory disease, immune response, and cancer, providing valuable molecular-level insight into how maternal obesity impacts the health of offspring. Data are available via ProteomeXchange with the identifier PXD042092.


Assuntos
Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Proteoma , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/etiologia , Camundongos , Gravidez , Omento/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Proteômica/métodos , Gordura Intra-Abdominal/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(39): e2402162121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292741

RESUMO

Liquid-like protein condensates have recently attracted much attention due to their critical roles in biological phenomena. They typically show high fluidity and reversibility for exhibiting biological functions, while occasionally serving as sites for the formation of amyloid fibrils. To comprehend the properties of protein condensates that underlie biological function and pathogenesis, it is crucial to study them at the single-condensate level; however, this is currently challenging due to a lack of applicable methods. Here, we demonstrate that optical trapping is capable of inducing the formation of a single liquid-like condensate of α-synuclein in a spatiotemporally controlled manner. The irradiation of tightly focused near-infrared laser at an air/solution interface formed a condensate under conditions coexisting with polyethylene glycol. The fluorescent dye-labeled imaging showed that the optically induced condensate has a gradient of protein concentration from the center to the edge, suggesting that it is fabricated through optical pumping-up of the α-synuclein clusters and the expansion along the interface. Furthermore, Raman spectroscopy and thioflavin T fluorescence analysis revealed that continuous laser irradiation induces structural transition of protein molecules inside the condensate to ß-sheet rich structure, ultimately leading to the condensate deformation and furthermore, the formation of amyloid fibrils. These observations indicate that optical trapping is a powerful technique for examining the microscopic mechanisms of condensate appearance and growth, and furthermore, subsequent aging leading to amyloid fibril formation.


Assuntos
Amiloide , Pinças Ópticas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Amiloide/química , Amiloide/metabolismo , Humanos , Análise Espectral Raman/métodos
15.
Prev Vet Med ; 233: 106347, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39321741

RESUMO

Introductions of transboundary animal diseases (TADs) into free-ranging wildlife can be difficult to control and devastating for domestic livestock trade. Combating a new TAD introduction in wildlife with an emergency response requires quickly limiting spread of the disease by intensely removing wild animals within a contiguous area. In the case of African swine fever virus (ASFv) in wild pigs (Sus scrofa), which has been spreading in many regions of the world, there is little information on the time- and cost-efficiency of methods for intensively and consistently culling wild pigs and recovering carcasses in an emergency response scenario. We compared the efficiencies of aerial operations, trapping, experimental toxic baiting, and ground shooting in northcentral Texas, USA during two months in 2023. Culling and recovering carcasses of wild pigs averaged a rate of 0.15 wild pigs/person hour and cost an average of $233.04/wild pig ($USD 2023) across all four methods. Aerial operations required the greatest initial investment but subsequently was the most time- and cost-efficient, costing an average of $7266 to reduce the population by a standard measure of 10 %, including recovering carcasses. Aerial operations required a ground crew of ∼7 people/helicopter to recover carcasses. Costs for reducing the population of wild pigs using trapping were similar, although took 13.5 times longer to accomplish. In cases where carcass recovery and disposal are needed (e.g., response to ASFv), a benefit of trapping was immediate carcass recovery. Toxic baiting was less efficient because both culling and carcass recovery required substantial time. We culled very few wild pigs with ground shooting in this landscape. Our results provide insight on the efficiencies of each removal method. Strategically combining removal methods may increase overall efficiency. Overall, our findings inform the preparation of resources, personnel needs, and deployment readiness for TAD responses involving wild pigs.

16.
Front Zool ; 21(1): 24, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327595

RESUMO

BACKGROUND: Rapidly expanding human activities have profoundly changed the habitat use of both large carnivores and their prey, but whether and how human activities affect the interactions between them has received relatively less attention. In this study, we conducted a systematically designed camera-trapping survey on an endangered large carnivore (North Chinese leopard Panthera pardus japonensis) and its wild ungulate prey (Siberian roe deer Capreolus pygargus and wild boar Sus scrofa) in the Taihang Mountains of central North China. Using conditional two-species occupancy model based on data derived from the extensive sampling effort (15,654 camera-days at 102 camera sites), we examined the relationship of spatial use between leopards and each prey species under the effects of human presence, free-ranging cattle, roads and settlements. RESULTS: Humans and cattle had contrasting effects on the relationship of spatial use between leopard and roe deer, with higher and lower spatial segregation between them at human and cattle-frequented sites, respectively. Roads might create a shelter for wild boar from leopard predation, with less spatial segregation between them at sites close to the roads. CONCLUSIONS: Our findings demonstrate that human activities are reshaping the spatial overlap between large carnivores and their prey, and have non-equivalent effects among different types of human activity. Such effects may further alter the strength of interspecific interactions between predator and prey, with far-reaching influences on the community and ecosystem that require more research.

17.
J Fungi (Basel) ; 10(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39330386

RESUMO

Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.

18.
ACS Appl Mater Interfaces ; 16(38): 50160-50174, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39265036

RESUMO

Diabetic wounds are prone to recurrent infections, often leading to delayed healing. To address this challenge, we developed a chitin-copper sulfide (CuS@CH) composite sponge, which combines bacterial trapping with near-infrared (NIR) activated phototherapy for treating infected diabetic wounds. CuS nanoparticles were synthesized and incorporated in situ within the sponge using a chitin assisted biomineralization strategy. The positively charged chitin surface effectively adhered bacteria, while NIR irradiation of CuS generated reactive oxygen species (ROS) heat and Cu2+ to rapidly damage the trapped bacteria. This synergistic effect resulted in an exceptional antibacterial performance against E. coli (∼99.9%) and S. aureus (∼99.3%). The bactericidal mechanism involved NIR-induced glutathione oxidation, membrane lipid peroxidation, and increased membrane permeability. In diabetic mouse models, the CuS@CH sponge accelerated the wound healing of S. aureus infected wounds by facilitating collagen deposition and reducing inflammation. Furthermore, the sponge demonstrated good biocompatibility. This dual-functional platform integrating bacterial capture and NIR-triggered phototherapy shows promise as an antibacterial wound dressing to promote healing of infected diabetic wound.


Assuntos
Antibacterianos , Quitina , Cobre , Diabetes Mellitus Experimental , Escherichia coli , Raios Infravermelhos , Staphylococcus aureus , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Cobre/química , Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Quitina/química , Quitina/farmacologia , Diabetes Mellitus Experimental/patologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/terapia , Espécies Reativas de Oxigênio/metabolismo , Bandagens , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia
19.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39348591

RESUMO

Invasive fruit flies (Diptera: Tephritidae) pose a serious threat to the production and export of many commercially important fruits and vegetables. Detection of the agricultural pests Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett) relies heavily on traps baited with male-specific attractants. For B. dorsalis, traps are typically baited with liquid methyl eugenol (ME), and for Z. cucurbitae, traps are baited with liquid cue-lure (CL). Operating large-scale trapping networks is costly, consequently, there is much interest in identifying ways to maintain network sensitivity while reducing costs. One cost-cutting approach is the possibility of combining different male lures in the same dispenser, thus reducing the number of traps requiring servicing. The chief objective of this study was to compare captures of B. dorsalis and Z. cucurbitae males in Jackson traps baited with polymeric wafers impregnated with both ME and raspberry ketone (RK, a hydrolyzed form of CL) versus traps baited with liquid ME or CL freshly applied to cotton wicks. Captures were measured when the ME/RK wafers had been weathered for 12, 18, or 24 wk. Captures of B. dorsalis and Z. cucurbitae males were similar between fresh lure and weathered wafers over all trapping periods, with a single exception apparently due to the lessened potency of the associated killing agent. The residual amount and release rate of ME and RK from the wafers were also measured to examine possible relationships between wafer chemistry and trap catch. The possible implications of the present results to area-wide trapping programs are discussed.


Assuntos
Eugenol , Controle de Insetos , Longevidade , Tephritidae , Animais , Tephritidae/efeitos dos fármacos , Tephritidae/fisiologia , Masculino , Controle de Insetos/métodos , Controle de Insetos/instrumentação , Eugenol/farmacologia , Eugenol/análogos & derivados , Longevidade/efeitos dos fármacos , Butanonas/farmacologia , Feromônios/farmacologia
20.
Insects ; 15(9)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39336605

RESUMO

The rice leaf-roller Cnaphalocrocis medinalis is an important migratory pest of rice. We conducted a study to determine the physiological status of adults trapped by a sex pheromone and floral odor. In the immigrant group, the number of males trapped by the floral odor was greater than the number caught by sex pheromone trapping. The volume of testes was similar in the above two trapping methods but was smaller than in the sweep net method. The ovary developmental grade, mating rate, and number of matings of females caught in floral odor trap were higher than in those caught in the sweep net. In the local breeding group, the number of males trapped by sex pheromones was greater than the number trapped by the floral odor. The volume of testes was smaller in the floral odor trap compared to the pheromone trap group, with the largest in the sweep net group. The ovarian developmental grade, mating rate, and number of matings of females were significantly higher in the floral odor trap group than in the sweep net group. In the emigrant group, the adult olfactory response to the sex pheromone and floral odor was low. The volume of testes was larger in the sweep net group compared to the moths caught by floral odor trapping. The number of eggs laid by female immigrants trapped by the floral odor and sweep net was similar, while the number in the local breeding group was greater in moths caught with the sweep net in comparison with those caught by the floral odor trap. The difference in egg hatchability between the two trapping methods in both immigrants and local breedings was not significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA