Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Radiography (Lond) ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955646

RESUMO

INTRODUCTION: Radiotherapy is the standard treatment for breast cancer patients after surgery. However, radiotherapy can cause side effects such as dry and moist desquamation of the patient's skin. The dose calculation from a treatment planning system (TPS) might also be inaccurate. The purpose of this study is to measure the surface dose on the CIRS thorax phantom by an optically stimulated luminescent dosimeter (OSLD). METHODS: The characteristics of OSLD were studied in terms of dose linearity, reproducibility, and angulation dependence on the solid water phantom. To determine the surface dose, OSLD (Landauer lnc., USA) was placed on 5 positions at the CIRS phantom (Tissue Simulation and Phantom Technology, USA). The five positions were at the tip, medial, lateral, tip-medial, and tip-lateral. Then, the doses from OSLD and TPS were compared. RESULTS: The dosimeter's characteristic test was good. The maximum dose at a depth of 15 mm was 514.46 cGy, which was at 100%. The minimum dose at the surface was 174.91 cGy, which was at 34%. The results revealed that the surface dose from TPS was less than the measurement. The percent dose difference was -2.17 ± 6.34, -12.08 ± 3.85, and -48.71 ± 1.29 at the tip, medial, and lateral positions, respectively. The surface dose from TPS at tip-medial and tip-lateral was higher than the measurement, which was 12.56 ± 5.55 and 10.45 ± 1.76 percent dose different, respectively. CONCLUSION: The percent dose difference is within the acceptable limit, except for the lateral position because of the body curvature. However, OSLD is convenient to assess the radiation dose, and further study is to measure in vivo. IMPLICATION FOR PRACTICE: The OSL NanoDot dosimeter can be used for dose validation with a constant setup location. The measurement dose is higher than the dose from TPS, except for some tilt angles.

2.
Phys Med ; 124: 104485, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059251

RESUMO

PURPOSE: The Monte Carlo (MC) method, the gold standard method for radiotherapy dose calculations, is underused in clinical research applications mainly due to computational speed limitations. Another reason is the time-consuming and error prone conversion of treatment plan specifications into MC parameters. To address this issue, we developed an interface tool that creates a set of TOPAS parameter control files (PCF) from information exported from a clinical treatment planning system (TPS) for plans delivered by the TrueBeam radiotherapy system. METHODS: The interface allows the user to input DICOM-RT files, exported from a TPS and containing the plan parameters, and choose different multileaf-collimator models, variance reduction technique parameters, scoring quantities and simulation output formats. Radiation sources are precomputed phase space files obtained from Varian. Based on this information, ready-to-run TOPAS PCF that incorporate the position and angular rotation of the TrueBeam dynamic collimation devices, gantry, couch, and patient according to treatment plan specifications are created. RESULTS: Dose distributions computed using these PCF were compared against predictions from commercial TPS for different clinical treatment plans and techniques (3D-CRT, IMRT step-and-shoot and VMAT) to evaluate the performance of the interface. The agreement between dose distributions from TOPAS and TPS (>98 % pass ratio in the gamma test) confirmed the correct parametrization of treatment plan specifications into MC PCF. CONCLUSIONS: This interface tool is expected to widen the use of MC methods in the clinical medical physics field by facilitating the straightforward transfer of treatment plan parameters from commercial TPS into MC PCF.

3.
J Appl Clin Med Phys ; : e14409, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923699

RESUMO

BACKGROUND: To investigate the effect of the Increment of gantry angle (Inc) parameter setting of the Monaco Treatment planning system (Monaco TPS) on the dosimetry and quality parameters of the volumetric modulated arc therapy (VMAT) program for rectal cancer. METHODS: A retrospective analysis was conducted on 50 patients with rectal cancer who underwent intensity modulated radiation therapy using the Monaco TPS system from 2020 to 2021. Under the same optimization function configuration and other parameter settings, the Inc parameters in the VMAT radiotherapy plan were set to 10°, 20°, 30°, and 40°. The dose-volume histogram (DVH) was used to evaluate the dose distribution of the target area and the radiation dose of the organs at risk (OAR). The differences in the dosimetry of the planning target volume (PTV) and OAR, as well as the gamma pass rate (GPR) were compared. RESULTS: In terms of target dose, D98, Dmin, HI, and conformity index (CI) of Inc10 group was significantly lower than those of Inc20, 30, and 40 groups (P < 0.05), and D2 of Inc10 group was significantly higher than that of Inc20 group (P = 0.009). We also found CI of Inc20 and 30 were significantly better than that of Inc40 (both P < 0.05). In terms of OAR dose, the study found that the Dmean, Dmin, V50%, V45%, and V40% for the bladder of the Inc10 group were lower than those of the other groups (all P < 0.05), the Dmean for femoral head of the Inc20 group was lower than that of the Inc30 group (P < 0.05), and Inc20 showed a better protective effect on the femoral head. The MUs tend to decrease as the Inc parameter setting is increased. The monitor unit (MU) in Inc10 group were significantly higher than those in Inc20, Inc30, and Inc40 groups, and the MU of Inc20 group was significantly higher than that of Inc40 group (both P < 0.05). We found that for the 3%/3 mm and 2%/2 mm standards, the GPRs of each plan were > 90%, which met clinical requirements. CONCLUSIONS: Different settings of Inc parameters have varying degrees of impact on target dose, OAR dose, and machine MU. It is important for doctors to choose different Inc parameters according to different clinical needs.

4.
Front Oncol ; 14: 1358487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863634

RESUMO

Introduction: The ability to dynamically adjust target contours, derived Boolean structures, and ultimately, the optimized fluence is the end goal of online adaptive radiotherapy (ART). The purpose of this work is to describe the necessary tests to perform after a software patch installation and/or upgrade for an established online ART program. Methods: A patch upgrade on a low-field MR Linac system was evaluated for post-software upgrade quality assurance (QA) with current infrastructure of ART workflow on (1) the treatment planning system (TPS) during the initial planning stage and (2) the treatment delivery system (TDS), which is a TPS integrated into the delivery console for online ART planning. Online ART QA procedures recommended for post-software upgrade include: (1) user interface (UI) configuration; (2) TPS beam model consistency; (3) segmentation consistency; (4) dose calculation consistency; (5) optimizer robustness consistency; (6) CT density table consistency; and (7) end-to-end absolute ART dose and predicted dose measured including interruption testing. Differences of calculated doses were evaluated through DVH and/or 3D gamma comparisons. The measured dose was assessed using an MR-compatible A26 ionization chamber in a motion phantom. Segmentation differences were assessed through absolute volume and visual inspection. Results: (1) No UI configuration discrepancies were observed. (2) Dose differences on TPS pre-/post-software upgrade were within 1% for DVH metrics. (3) Differences in segmentation when observed were small in general, with the largest change noted for small-volume regions of interest (ROIs) due to partial volume impact. (4) Agreement between TPS and TDS calculated doses was 99.9% using a 2%/2-mm gamma criteria. (5) Comparison between TPS and online ART plans for a given patient plan showed agreement within 2% for targets and 0.6 cc for organs at risk. (6) Relative electron densities demonstrated comparable agreement between TPS and TDS. (7) ART absolute and predicted measured end-to-end doses were within 1% of calculated TDS. Discussion: An online ART QA program for post-software upgrade has been developed and implemented on an MR Linac system. Testing mechanics and their respective baselines may vary across institutions, but all necessary components for a post-software upgrade QA have been outlined and detailed. These outlined tests were demonstrated feasible for a low-field MR Linac system; however, the scope of this work may be applied and adapted more broadly to other online ART platforms.

5.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 80(4): 345-353, 2024 Apr 20.
Artigo em Japonês | MEDLINE | ID: mdl-38447969

RESUMO

PURPOSE: When performing single-point dose verification in VMAT, it is necessary to avoid the regions with steep dose gradient. We propose a method to obtain the estimated value ( Uplan) of uncertainty of the absolute dose measurement due to the phantom setup error by using dose gradient calculated from treatment planning system (TPS), for evaluating the appropriate measurement points. METHODS: The dose gradient was calculated from the planned dose values in the vicinity of the isocenter point using TPS. The phantom setup error was estimated. The Uplan was calculated using the proposed formula after estimating the phantom setup error. Then, the dose gradient was calculated from the measured dose values in the vicinity of the isocenter point specified by TPS using the Tough water phantom with ionization chamber (IC), and Umeas was calculated as in Uplan. RESULTS: The correlation coefficient between Uplan and Umeas was 0.984, which indicates a high correlation. The average of the difference between Umeas and Uplan was -0.24%. We considered that this result was caused by the influence of volume averaging effect of IC. CONCLUSION: The Uplan obtained from this proposed method reflects the uncertainty of the absolute dose measurement due to the phantom setup error and is useful for evaluating the appropriate measurement points for absolute dose measurement.


Assuntos
Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Incerteza , Radioterapia de Intensidade Modulada/métodos , Humanos
6.
J Orofac Orthop ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345616

RESUMO

PURPOSE: Using a commercial orthodontic treatment planning system, tooth movements were simulated to analyse how precise predefined movements can be determined by three different superimposition methods. Additionally, a retrospective analysis on clinical patient models before and after orthodontic treatment was performed to analyse possible differences in determination of clinical tooth movements with these methods. METHODS: (1) A hexapod system was used to perform the tooth movements in physical maxillary dental models (N = 70). The initial and final situations were scanned, superimpositions executed, movements calculated, and their accuracy compared to the predefined movements was determined. (2) Digital three-dimensional (3D) maxillary dental models representing pre- and postorthodontic treatment situations (N = 100 patients) were superimposed. Selected tooth movements were calculated (N = 3600), and the results of the different superimposition methods were compared pairwise. RESULTS: (1) The experimental study delivered only small location and scale shifts. Furthermore, concordance correlation coefficients above 0.99 for all three methods. This verified that all methods deliver values corresponding well to the predefined movements. (2) The retrospective analysis of the clinically performed orthodontic tooth movements comparing pairwise the three different methods intraindividually also showed small location and scale shifts. Furthermore, concordance correlation coefficients between 0.68 and 0.98 were observed, with only three of them below 0.8. This verified that the applied superimposition methods delivered values sufficiently close to each other. CONCLUSIONS: As the experimental study showed very good agreement between the predefined and determined movements, and as the retrospective clinical study showed that the methods compared pairwise delivered values close to each other for the performed orthodontic tooth movements, it can be concluded that orthodontic tooth movements can be determined adequately correct by each of the examined methods.

7.
Brachytherapy ; 23(1): 64-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37806788

RESUMO

PURPOSE: An electromagnetic tracking device (EMT) has been integrated in an HDR 3D ultrasound guidance system for prostate HDR. The aim of this study was to compare the efficiency of HDR workflows with and without EM tracking. METHODS AND MATERIALS: A total of 58 patients with a 15 Gy HDR prostate boost were randomized in two arms and two operation room (OR) procedures using: (1) the EMT investigational device, and (2) the Oncentra prostate system (OCP). OR times were compared for both techniques. RESULTS: The overall procedure median time was about 20% shorter for EMT (63 min) compared to OCP (79 min). The US acquisition and contouring was longer for OCP compared to EMT (23 min vs. 16 min). The catheter reconstruction's median times were 23 min and 13 min for OCP and EMT respectively. For the automatic reconstruction with EMT, 62% of cases required no or few manual corrections. Using the EM technology in an OR environment was challenging. In some cases, interferences or the stiffness of the stylet introduced errors in the reconstruction of catheters. The last step was the dosimetry with median times of 11 min (OCP) and 15.5 min (EMT). Finally, it was observed that there was no learning curve associated with the introduction of this new technology. CONCLUSIONS: The EMT device offers an efficient solution for automatic catheter reconstruction for HDR prostate while reducing the possibility of mis-reconstructed catheters caused by issues of visualization in the US images. Because of that, the overall OR times was shorter when using the EMT system.


Assuntos
Braquiterapia , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Catéteres
8.
Phys Med ; 116: 103172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001000

RESUMO

INTRODUCTION: Dedicated Treatment Planning Systems (TPSs) were developed to personalize 90Y-transarterial radioembolization. This study evaluated the agreement among four commercial TPSs assessing volumes of interest (VOIs) volumes and dose metrics. METHODS: A homogeneous (EH) and an anthropomorphic phantom with hot and cold inserts (EA) filled with 99mTc-pertechnetate were acquired with a SPECT/CT scanner. Their virtual versions (VH and VA, respectively) and a phantom with activity inside a single voxel (VK) were generated by an in-house MATLAB script. Images and delineated VOIs were imported into the TPSs to compute voxel-based absorbed dose distributions with various dose deposition approaches: local deposition method (LDM) and dose kernel convolution (DKC) with/without local density correction (LDC). VOI volumes and mean absorbed doses were assessed against their median value across TPSs. Dose-volume histograms (DVHs) and VK-derived dose profiles were evaluated. RESULTS: Small (<2.1 %) and large (up to 42.4 %) relative volume differences were observed on large (>500 ml) and small VOIs, respectively. Mean absorbed doses relative differences were < 3 % except for small VOIs with steep dose gradients (up to 89.1 % in the VA Cold Sphere VOI). Within the same TPS, LDC negligibly affected the mean absorbed dose, while DKC and LDM showed differences up to 63 %. DHVs were mostly overlapped in experimental phantoms, with some differences in the virtual versions. Dose profiles agreed within 1 %. CONCLUSION: TPSs showed an overall good agreement except for small VOI volumes and mean absorbed doses of VOIs with steep dose gradients. These discrepancies should be considered in the dosimetry uncertainty assessment, thus requiring an appropriate harmonization.


Assuntos
Braquiterapia , Neoplasias Hepáticas , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radiometria/métodos , Imagens de Fantasmas , Radioisótopos de Ítrio/uso terapêutico
9.
Curr Pharm Des ; 29(34): 2738-2751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916622

RESUMO

INTRODUCTION: Dose reconstructed based on linear accelerator (linac) log-files is one of the widely used solutions to perform patient-specific quality assurance (QA). However, it has a drawback that the accuracy of log-file is highly dependent on the linac calibration. The objective of the current study is to represent a new practical approach for a patient-specific QA during Volumetric modulated arc therapy (VMAT) using both log-file and calibration errors of linac. METHODS: A total of six cases, including two head and neck neoplasms, two lung cancers, and two rectal carcinomas, were selected. The VMAT-based delivery was optimized by the TPS of Pinnacle^3 subsequently, using Elekta Synergy VMAT linac (Elekta Oncology Systems, Crawley, UK), which was equipped with 80 Multi-leaf collimators (MLCs) and the energy of the ray selected at 6 MV. Clinical mode log-file of this linac was used in this study. A series of test fields validate the accuracy of log-file. Then, six plans of test cases were delivered and log-file of each was obtained. The log-file errors were added to the corresponding plans through the house script and the first reconstructed plan was obtained. Later, a series of tests were performed to evaluate the major calibration errors of the linac (dose-rate, gantry angle, MLC leaf position) and the errors were added to the first reconstruction plan to generate the second reconstruction plan. At last, all plans were imported to Pinnacle and recalculated dose distribution on patient CT and ArcCheck phantom (SUN Nuclear). For the former, both target and OAR dose differences between them were compared. For the latter, γ was evaluated by ArcCheck, and subsequently, the surface dose differences between them were performed. RESULTS: Accuracy of log-file was validated. If error recordings in the log file were only considered, there were four arcs whose proportion of control points with gantry angle errors more than ± 1°larger than 35%. Errors of leaves within ± 0.5 mm were 95% for all arcs. The distinctness of a single control point MU was bigger, but the distinctness of cumulative MU was smaller. The maximum, minimum, and mean doses for all targets were distributed between -6.79E-02-0.42%, -0.38-0.4%, 2.69E-02-8.54E-02% respectively, whereas for all OAR, the maximum and mean dose were distributed between -1.16-2.51%, -1.21-3.12% respectively. For the second reconstructed dose: the maximum, minimum, and mean dose for all targets was distributed between 0.0995~5.7145%, 0.6892~4.4727%, 0.5829~1.8931% separately. Due to OAR, maximum and mean dose distribution was observed between -3.1462~6.8920%, -6.9899~1.9316%, respectively. CONCLUSION: Patient-specific QA based on the log-file could reflect the accuracy of the linac execution plan, which usually has a small influence on dose delivery. When the linac calibration errors were considered, the reconstructed dose was closer to the actual delivery and the developed method was accurate and practical.


Assuntos
Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Garantia da Qualidade dos Cuidados de Saúde/métodos
10.
J Med Signals Sens ; 13(3): 191-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622042

RESUMO

Background: Virtual wedge (VW) is used in radiotherapy to compensate for missing tissues and create a uniform dose distribution in tissues. According to TECDOC-1583 and technical reports series no. 430, evaluating the dose calculation accuracy is essential for the quality assurance of treatment planning systems (TPSs). In this study, the dose calculation accuracy of the collapsed cone superposition (CCS) algorithm in the postmastectomy radiotherapy of the chest wall for breast cancer was evaluated by comparing the calculated and measured dose in VW fields. Methods: Two tangential fields with the typical VW angles were planned using ISOgray TPS in a thorax phantom. The CCS algorithm was used for dose calculation at 6 and 15 MV photon beams. The obtained dose distributions from EBT3 film spaces and TPS were evaluated using the gamma index. Results: The measured and calculated dose values using VW in a heterogeneous medium with different beam energies were in a good agreement with each other (acceptance rate: 88.0%-93.4%). The calculated and measured data did not differ significantly with an increase/decrease in wedge angle. In addition, the results demonstrated that ISOgray overestimated and underestimated the dose of the soft tissue and lung in the planned volume, respectively. Conclusions: According to the results of gamma index analysis, the calculated dose distribution using VW model with the CCS algorithm in a heterogeneous environment was within acceptable limits.

11.
Phys Eng Sci Med ; 46(4): 1803-1809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615922

RESUMO

Accurate radiotherapy treatment planning requires attenuation through the treatment couch to be accounted for in dose calculation. This is commonly performed by using contouring tools to add a virtual structure in the shape of the treatment couch and assigning the preferred absorption properties. The RayStation treatment planning system (TPS) allows users to assign a material that comprises both an elemental structure and a physical density. The selection of such parameters should be made so that modelled attenuation through the couch closely matches measured data. When these measurements involve the use of plastic phantoms and rotational beams, the validity of the data is dependent upon aspects of TPS and linear accelerator performance that can be difficult to quantify. A fundamental measure of couch attenuation using an ionisation chamber in water and perpendicular beam geometry that required no gantry movement was implemented to eliminate the identified uncertainties. This data was used to determine the combination of elemental composition and density assigned to a modelled couch structure that provided the most accurate representation of beam attenuation in this simple geometry. The preferred material was then validated using a cylindrical phantom and rotational beams. The findings were equivalent between the static gantry with water phantom and rotating gantry with cylindrical phantom. Of the elemental compositions investigated, it was possible to achieve suitable agreement with the measured data for each option provided the density was optimised. Choice of the elemental composition was not observed to be an important factor in achieving a good model.


Assuntos
Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador , Imagens de Fantasmas , Água
12.
Rep Pract Oncol Radiother ; 28(2): 241-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456703

RESUMO

Background: Beam matching is widely used to ensure that linear accelerators used in radiotherapy have equal dosimetry characteristics. Small-field output factors (OF) were measured using different detectors infour beam-matched linear accelerators and the measured OFs were compared with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Materials and methods: Three Elekta Versa HDTM and one Elekta InfinityTMlinear accelerators with photon energies of 6 MV flattening filter (FF), 10 MVFF, 6 MV flattening filter free (FFF) and 10 MVFFF were used in this study. All the Linac'swere beam-matched, Dosimetry beam data were ± 1% compare with Reference Linac. Ten different type of detectors (four ionizationchambers and six diode detectors) were used for small-field OF measurements. The OFs were measured for field sizes of 1 × 1 to 10 × 10 cm2, and normalized to 10 × 10 cm2 field size. The uncorrected and corrected OFs were calculated from these measurements. The corrected OF was compare with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Results: The small-field corrected and Uncorrected OF variations among the linear accelerators was within 1% for all energies and detectors. An increase in field size led to a reduction in the difference between OFs among the detectors, which was the case for all energies. The RSD values decreased with increasing field size. The TRS 483 provided Detector-specificoutput-correction factor (OCF) reduced uncertainty in small-field measurements. Conclusion: It is necessary to implement the OF-correction of small fields in a TPS. Special care must be taken to incorporate the corrected small-field OF in a TPS.

13.
J Xray Sci Technol ; 31(5): 1013-1033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393487

RESUMO

BACKGROUND: Accurate and fast dose calculation is crucial in modern radiation therapy. Four dose calculation algorithms (AAA, AXB, CCC, and MC) are available in Varian Eclipse and RaySearch Laboratories RayStation Treatment Planning Systems (TPSs). OBJECTIVES: This study aims to evaluate and compare dosimetric accuracy of the four dose calculation algorithms applying to homogeneous and heterogeneous media, VMAT plans (based on AAPM TG-119 test cases), and the surface and buildup regions. METHODS: The four algorithms are assessed in homogeneous (IAEA-TECDOCE 1540) and heterogeneous (IAEA-TECDOC 1583) media. Dosimetric evaluation accuracy for VMAT plans is then analyzed, along with the evaluation of the accuracy of algorithms applying to the surface and buildup regions. RESULTS: Tests conducted in homogeneous media revealed that all algorithms exhibit dose deviations within 5% for various conditions, with pass rates exceeding 95% based on recommended tolerances. Additionally, the tests conducted in heterogeneous media demonstrate high pass rates for all algorithms, with a 100% pass rate observed for 6 MV and mostly 100% pass rate for 15 MV, except for CCC, which achieves a pass rate of 94%. The results of gamma index pass rate (GIPR) for dose calculation algorithms in IMRT fields show that GIPR (3% /3 mm) for all four algorithms in all evaluated tests based on TG119, are greater than 97%. The results of the algorithm testing for the accuracy of superficial dose reveal variations in dose differences, ranging from -11.9% to 7.03% for 15 MV and -9.5% to 3.3% for 6 MV, respectively. It is noteworthy that the AXB and MC algorithms demonstrate relatively lower discrepancies compared to the other algorithms. CONCLUSIONS: This study shows that generally, two dose calculation algorithms (AXB and MC) that calculate dose in medium have better accuracy than other two dose calculation algorithms (CCC and AAA) that calculate dose to water.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Software , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Método de Monte Carlo
14.
Radiol Phys Technol ; 16(2): 137-159, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37129777

RESUMO

When an ion beam penetrates deeply into the body, its kinetic energy decreases, and its biological effect increases due to the change of the beam quality. To give a uniform biological effect to the target, it is necessary to reduce the absorbed dose with the depth. A bio-physical model estimating the relationship between ion beam quality and biological effect is necessary to determine the relative biological effectiveness (RBE) of the ion beam that changes with depth. For this reason, Lawrence Berkeley Laboratory, National Institute of Radiological Sciences (NIRS) and GSI have each developed their own model at the starting of the ion beam therapy. Also, NIRS developed a new model at the starting of the scanning irradiation. Although the Local Effect Model (LEM) at the GSI and the modified Microdosimetric Kinetic Model (MKM) at the NIRS, the both are currently used, can similarly predict radiation quality-induced changes in surviving fraction of cultured cell, the clinical RBE-weighted doses for the same absorbed dose are different. This is because the LEM uses X-rays as a reference for clinical RBE, whereas the modified MKM uses carbon ion beam as a reference and multiplies it by a clinical factor of 2.41. Therefore, both are converted through the absorbed dose. In PART 2, I will describe the development of such a bio-physical model, as well as the birth and evolution of a treatment planning system and image guided radiotherapy.


Assuntos
Radioterapia com Íons Pesados , Radioterapia Guiada por Imagem , Radioterapia com Íons Pesados/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Dosagem Radioterapêutica , Carbono/uso terapêutico
15.
Int J Comput Assist Radiol Surg ; 18(12): 2339-2347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37245180

RESUMO

PURPOSE: Bone-targeted radiofrequency ablation (RFA) is widely used in the treatment of vertebral metastases. While radiation therapy utilizes established treatment planning systems (TPS) based on multimodal imaging to optimize treatment volumes, current RFA of vertebral metastases has been limited to qualitative image-based assessment of tumour location to direct probe selection and access. This study aimed to design, develop and evaluate a computational patient-specific RFA TPS for vertebral metastases. METHODS: A TPS was developed on the open-source 3D slicer platform, including procedural setup, dose calculation (based on finite element modelling), and analysis/visualization modules. Usability testing was carried out by 7 clinicians involved in the treatment of vertebral metastases on retrospective clinical imaging data using a simplified dose calculation engine. In vivo evaluation was performed in a preclinical porcine model (n = 6 vertebrae). RESULTS: Dose analysis was successfully performed, with generation and display of thermal dose volumes, thermal damage, dose volume histograms and isodose contours. Usability testing showed an overall positive response to the TPS as beneficial to safe and effective RFA. The in vivo porcine study showed good agreement between the manually segmented thermally damaged volumes vs. the damage volumes identified from the TPS (Dice Similarity Coefficient = 0.71 ± 0.03, Hausdorff distance = 1.2 ± 0.1 mm). CONCLUSION: A TPS specifically dedicated to RFA in the bony spine could help account for tissue heterogeneities in both thermal and electrical properties. A TPS would enable visualization of damage volumes in 2D and 3D, assisting clinicians in decisions about potential safety and effectiveness prior to performing RFA in the metastatic spine.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Humanos , Suínos , Animais , Estudos Retrospectivos , Coluna Vertebral , Ablação por Radiofrequência/métodos , Ablação por Cateter/métodos
16.
J Appl Clin Med Phys ; 24(8): e14003, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37170654

RESUMO

BACKGROUND: The currently available treatment planning systems (TPSs) are neither designed nor intended for accurate dose calculations in nontarget regions. The aim of this work is to quantify the accuracy and reliability of nontarget doses calculated by a commercially available TPS. METHODS: Nontarget doses calculated by the collapsed cone (CC) (v5.2) algorithm implemented in the RayStation (v6) TPS were compared to measured values. Different scenarios were investigated, from simple static fields to intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans. Deviations and confidence limits (CLs) were calculated between results of calculations and measurements-applying both local (δ) and global (Δ) normalization-for various points of interest (POIs). Results were based on a single-institution experience for one clinical test case (prostate) and evaluated against internationally accepted criteria. RESULTS: Overall, the TPS underestimated the nontarget dose by an average of -17.7% ± 25.3% for IMRT. Quantitatively similar results were obtained for VMAT (-17.6% ± 21.2%). POIs receiving < 5% of the prescription dose were significantly underestimated by the TPS (p-value < 0.05 for both IMRT and VMAT). Dose calculation accuracy was also determined by the contribution of secondary radiation, with measured doses for out-of-field POIs being significantly different from calculated values (p-value < 0.01 for both IMRT and VMAT). Although the CLδ in nontarget regions failed the proposed tolerance criteria (40%) for both IMRT (68.8%) and VMAT (52.6%), the CLΔ was within the tolerance limit (4%) for both treatment techniques (1.9% for IMRT and 1.3% for VMAT). No action levels (7%) were exceeded. CONCLUSIONS: Based on the currently available benchmarks our TPS is considered acceptable for clinical use, although the dose in some POIs was poorly predicted by the CC algorithm. Some areas were pointed out where TPSs and linear accelerator control systems can be improved.


Assuntos
Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
17.
J Cancer Res Ther ; 19(Supplement): S36-S40, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37147980

RESUMO

Lung cancer is one of the most common cancers in the world. Intraluminal brachytherapy (BT) is one of the most adopted treatment modalities for lung malignancies with Ir-192 source in radiotherapy. In intraluminal BT, treatment delivery is required to be very accurate and precise with respect to the plan created in the treatment planning system (TPS). The BT dosimetry is necessary for better treatment outcomes. Therefore in this review article, some relevant studies were identified and analyzed for dosimetric outcomes in intraluminal BT in lung malignancies. The dosimetry in BT for plan verification is not presently in practice, which needs to be performed to check the variation between the planned and measured doses. The necessary dosimetric work done by the various researchers in intraluminal BT such as the Monte Carlo CYLTRAN code was used to calculate and measure the dose rate in any medium. Anthropomorphic phantom was used to measure doses at some distance from the source with Thermo luminescence dosimeters (TLDs). The dosimetric influence of air passage in the bronchus was evaluated with the GEANT4 Monte Carlo method. A pinpoint chamber was used to measure and quantify the impact of inhomogeneity in wax phantom for the Ir-192 source. The Gafchromic films and Monte Carlo methods were used to find the phantom and heterogeneities, which were found to underestimate the dose for the lungs and overestimated for the bones in TPS. The exact tool to quantify the variation in planned and delivered doses should be cost-effective and easy to use possibly with tissue equivalent phantoms and Gafchromic films in lung malignancies treatment.


Assuntos
Braquiterapia , Carcinoma , Neoplasias Pulmonares , Humanos , Braquiterapia/métodos , Simulação por Computador , Radiometria , Dosagem Radioterapêutica , Neoplasias Pulmonares/radioterapia , Pulmão , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Imagens de Fantasmas
18.
Phys Med ; 109: 102588, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37080156

RESUMO

PURPOSE: A photon Monte Carlo (MC) model was commissioned for flattened (FF) and flattening filter free (FFF) 6 MV beam energy. The accuracy of this model, as a single model to be used for three beam matched LINACs, was evaluated. METHODS: Multiple models were created in RayStation v.10A for three linacs equipped with Elekta "Agility" collimator. A clinically commissioned collapsed cone (CC) algorithm (GoldCC), a MC model automatically created from the CC algorithm without further optimization (CCtoMC) and an optimized MC model (GoldMC) were compared with measurements. The validation of the model was performed by following the recommendations of IAEA TRS 430 and comprised of basic validation in a water tank, validation in a heterogeneous phantom and validation of complex IMRT/VMAT paradigms using gamma analysis of calculated and measured dose maps in a 2D-Array. RESULTS: Dose calculation with the GoldMC model resulted in a confidence level of 3% for point measurements in water tank and heterogeneous phantom for measurements performed in all three linacs. The same confidence level resulted for GoldCC model. Dose maps presented an agreement for all models on par to each other with γ criteria 2%/2mm. CONCLUSIONS: The GoldMC model showed a good agreement with measured data and is determined to be accurate for clinical use for all three linacs in this study.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Aceleradores de Partículas , Método de Monte Carlo , Imagens de Fantasmas , Água
19.
Clin Transl Radiat Oncol ; 40: 100608, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36942088

RESUMO

Background: Biology-guided radiotherapy (BgRT) is a novel treatment where the detection of positron emission originating from a volume called the biological tracking zone (BTZ) initiates dose delivery. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is a novel imaging technique that may improve patient selection for metastasis-directed therapy in renal cell carcinoma (RCC). This study aims to determine the feasibility of BgRT treatment for RCC. Material and methods: All consecutive patients that underwent PSMA PET/CT scan for RCC staging at our institution between 2014 and 2020 were retrospectively considered for inclusion. GTVs were contoured on the CT component of the PET/CT scan. The tumor-to-background ratio was quantified from the normalized standardized uptake value (nSUV), defined as the ratio between SUVmax inside the GTV and SUVmean inside the margin expansion. Tumors were classified suitable for BgRT if (1) nSUV was greater or equal to an nSUV threshold and (2) if the BTZ was free of any PET-avid region other than the tumor. Results: Out of this cohort of 83 patients, 47 had metastatic RCC and were included in this study. In total, 136 tumors were delineated, 1 to 22 tumors per patient, mostly in lung (40%). Using a margin expansion of 5 mm/10 mm/20 mm and nSUV threshold = 3, 66%/63%/41% of tumors were suitable for BgRT treatment. Uptake originating from another tumor, the kidney, or the liver was typically inside the BTZ in tumors judged unsuitable for BgRT. Conclusions: More than 60% of tumors were found to be suitable for BgRT in this cohort of patients with RCC. However, the proximity of PET-avid organs such as the liver or the kidney may affect BgRT delivery.

20.
J Appl Clin Med Phys ; 24(5): e13902, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36637797

RESUMO

The aim of this work is to describe the implementation and commissioning of a plaque brachytherapy program using Eye Physics eye plaques and Plaque Simulator treatment planning system based on the experience of one institution with an established COMS-based plaque program. Although commissioning recommendations are available in official task groups publications such as TG-129 and TG-221, we found that there was a lack of published experiences with the specific details of such a transition and the practical application of the commissioning guidelines. The specific issues addressed in this paper include discussing the lack of FDA approval of the Eye Physics plaques and Plaque Simulator treatment planning system, the commissioning of the plaques and treatment planning system including considerations of the heterogeneity corrected calculations, and the implementation of a second check using an FDA-approved treatment planning system. We have also discussed the use of rental plaques, the analysis of plans using dose histograms, and the development of a quality management program. By sharing our experiences with the commissioning of this program this document will assist other institutions with the same task and act as a supplement to the recommendations in the recently published TG-221.


Assuntos
Braquiterapia , Neoplasias Oculares , Melanoma , Humanos , Dosagem Radioterapêutica , Radioisótopos do Iodo/uso terapêutico , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...