Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.142
Filtrar
1.
Environ Sci Technol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39067068

RESUMO

Bisphenols, parabens, and triclosan (TCS) are common endocrine disrupters used in various consumer products. These chemicals have been shown to cross the placental barrier and affect intrauterine development of fetuses. In this study, we quantified serum levels of six bisphenols, five parabens, and TCS in 483 pregnant women from southern China. Quantile-based g-computation showed that combined exposure to bisphenols, parabens, and TCS was significantly (p < 0.05) and negatively associated with birth weight (ß = -39.9, 95% CI: -73.8, -6.1), birth length (ß = -0.19, 95% CI: -0.34, -0.04), head circumference (ß = -0.13, 95% CI: -0.24, -0.02), and thoracic circumference (ß = -0.16, 95% CI: -0.29, -0.04). An inverse correlation was also identified between mixture exposure and gestational age (ß = -0.12, 95% CI: -0.24, -0.01). Bisphenol A (BPA), bisphenol Z (BPZ), bisphenol AP (BPAP), propylparaben (PrP), and TCS served as the dominant contributors to the overall effect. In subgroup analyses, male newborns were more susceptible to mixture exposure than females, whereas the exposure-outcome link was prominent among pregnant women in the first and second trimesters. More evidence is warranted to elucidate the impacts of exposure to mixtures on birth outcomes, as well as the underlying mechanisms.

2.
Molecules ; 29(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064877

RESUMO

Antimicrobial resistance poses a significant challenge to public health, and is worsened by the widespread misuse of antimicrobial agents such as triclosan (TCS) in personal care and household products. Leveraging the electrochemical reactivity of TCS's phenolic hydroxyl group, this study investigates the electrochemical behavior of TCS on a Cu-based nano-metal-organic framework (Cu-BTC) surface. The synthesis of Cu-BTC via a room temperature solvent method, with triethylamine as a regulator, ensures uniform nanoparticle formation. The electrochemical properties of Cu-BTC and the signal enhancement mechanism are comprehensively examined. Utilizing the signal amplification effect of Cu-BTC, an electrochemical sensor for TCS detection is developed and optimized using response surface methodology. The resulting method offers a simple, rapid, and highly sensitive detection of TCS, with a linear range of 25-10,000 nM and a detection limit of 25 nM. This research highlights the potential of Cu-BTC as a promising material for electrochemical sensing applications, contributing to advancements in environmental monitoring and public health protection.

3.
Talanta ; 278: 126503, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38963976

RESUMO

Triclosan (TCS), triclocarban (TCC), and chlorophenols (CPs) are broad-spectrum antibacterials widely used in dermatological and oral hygiene products, which could induce severe liver and intestine injuries. Hence, it is essential to establish a rapid and sensitive method to monitor TCS, TCC, and CPs in various organisms. In this work, fluorine-functionalized covalent organic framework (COF-F) was prepared by using 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tri-aniline and 2,3,5,6-tetrafluoroterephthalaldehyde as two building units and employed as a solid phase microextraction (SPME) probe for the extraction of TCS, TCC and CPs. The COF-F possessed excellent hydrophobicity, a large specific surface area (1354.3 m2 g-1) and high uniform porosity (3.2 nm), which facilitated high selectivity and adsorption properties towards TCS, TCC, and CPs. Therefore, the as-prepared COF-F-SPME in combination with electrospray ionization mass spectrometry has been developed to provide fast and ultrasensitive detection of TCS, TCC, and CPs in biological samples. The established method demonstrated satisfactory linear ranges (0.01-100.00 µg L-1) and low limits of detection (0.003-0.040 µg L-1) for TCS, TCC and CPs. The developed method could be successfully applied to detect TCS, TCC and CPs in the liver and kidney tissues of mice, demonstrating the potential for the detection of chlorinated aromatic pollutants in the biological samples.

4.
Environ Pollut ; 358: 124487, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960121

RESUMO

Low activation performance is a critical issue limiting the practical application of low-cost biochar in the advanced oxidation. Given the high potential of transition metals in the persulfate activation process and abundant oxygen-containing groups of hydrochar, hydrochar derived from cobalt (Co)-modified iron (Fe)-enriched sludge was synthesized and its performance and activation mechanism for the degradation of triclosan were investigated. Co modification significantly altered the morphology of hydrochar, and the increased Co-Fe mass ratios transformed hydrochar from granular to rose-shaped lamellar and then to helical sheet structures. Specific surface area, defect degree, and oxygen-containing groups of hydrochar increased with increasing cobalt-iron mass ratios. The highest removal of triclosan was up to 98% in the hydrochar/peroxymonosulfate (PMS) system under a wide range of pHs (3-10) and still remained higher than 90% after four cycles. Both Radical (mainly hydroxyl radical) and nonradical pathways (singlet oxygen and electron transfer) were evidenced to play roles in the triclosan removal. Fe3+ promoted the regeneration of Co2+ and realized the efficient circulation of Co3+/Co2+. A ternary system consisting of electron donor (triclosan)-electron mediator (hydrochar)-electron acceptor (PMS) provided channels for electron transfer. No measurable Co and Fe were released during the reaction, and the toxicity of degradation intermediates was lower than that of triclosan. Beside triclosan, rhodamine B, bisphenol A, sulfamethoxazole, and phenol were also almost degraded completely in this oxidation system. This study provides a promising way for the enhancement of catalytic activity of carbonaceous material.

5.
Reprod Toxicol ; : 108663, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002938

RESUMO

BACKGROUND: Triclosan (TCS), as an endocrine disrupter, has been found to affect male fertility. However, the potential molecular mechanism is still unknown. We aimed to investigate whether the toxic effects of TCS on spermatocyte cells was mediated by the regulation of microRNA-20a-5P on PTEN. METHODS: GC-2 and TM4 cells were treated with TCS (0.5-80µM) for 24 or 48hours. Effect of TCS on proliferation of GC-2 and TM4 cells was detected using a cell counting kit-8 (CCK8) assay. Expression of miR-17 family and autophagy genes were detected. The interaction between miR-20a-5P and PTEN was determined by a dual-luciferase reporter assay. RESULTS: TCS decreased cell proliferation of GC-2 and TM4 cells. Expression of autophagy-related genes and miR-17 family was altered by TCS. PTEN expression was significantly increased, whereas the expression of miR-20a-5P was significantly decreased in GC-2 and TM4 cells. As predicted in relevant databases, there is a binding site of miR-20a-5P in PTEN. The expression of PTEN was significantly down-regulated by the miR-20a-5P mimic. CONCLUSION: As a downstream target of miR-20a-5P, PTEN functioned in the autophagy process of which TCS inhibited the proliferation of spermatocyte cells. Our results provided new ideas for revealing the molecular mechanism and protective strategy on male infertility.

6.
Chemosphere ; 363: 142822, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986778

RESUMO

The toxicity of triclosan (TCS) to various aquatic organisms has been demonstrated at environmental concentrations. However, the effects and mechanisms of TCS on toxic cyanobacteria remains largely unexplored. This study investigated the physiological and molecular variations in two representative toxic Microcystis species (M. aeruginosa and M. viridis) under exposure to TCS for 12 d. Our findings demonstrated that the median effective concentration (EC50) of TCS for both Microcystis species were close to the levels detected in the environment (M. aeruginosa: 9.62 µg L-1; M. viridis: 27.56 µg L-1). An increased level of reactive oxygen species (ROS) was observed in Microcystis, resulting in oxidative damage when exposed to TCS at concentrations ranging from 10 µg L-1 to 50 µg L-1. The photosynthetic activity of Microcystis had a certain degree of recovery capability at low concentrations of TCS. Compared to M. aeruginosa, the higher recovery capability of the photosynthetic system in M. viridis would be mainly attributed to the increased ability for PSII repair and phycobilisome synthesis. Additionally, the synthesis of microcystins in the two species and the release rate in M. viridis significantly increased under 10-50 µg L-1 TCS. At the molecular level, exposure to TCS at EC50 for 12 d induced the dysregulation of genes associated with photosynthesis and antioxidant system. The upregulation of genes associated with microcystin synthesis and nitrogen metabolism further increased the potential risk of microcystin release. Our results revealed the aquatic toxicity and secondary ecological risks of TCS at environmental concentrations, and provided theoretical data with practical reference value for TCS monitoring.

7.
J Environ Sci (China) ; 146: 176-185, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969446

RESUMO

Microplastics (MPs) are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms. The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis, its toxic effects, and the transmission of resistance genes were evaluated. The results showed that co-exposure to polystyrene (PS-MPs) adsorbed with triclosan (TCS) caused the accumulation of triclosan in the intestine with the following accumulation capacity: TCS + 5 µm PS group > TCS group > TCS + 20 µm PS group > TCS + 0.1 µm PS group. All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes. The TCS + 20 µm PS group exhibited the highest upregulated expression of pro-inflammatory factors (IL-10, IL-1ß). The TCS + 20 µm group showed the highest increase in enzyme activity compared to the control group. PS-MPs and TCS, either alone or together, altered the composition of the intestinal microbial community. In addition, the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes, which may be associated with the development of intestinal inflammation and oxidative stress. This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.


Assuntos
Microplásticos , Tamanho da Partícula , Poliestirenos , Triclosan , Poluentes Químicos da Água , Xenopus , Animais , Triclosan/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Intestinos/efeitos dos fármacos , Adsorção , Expressão Gênica/efeitos dos fármacos
8.
Ecotoxicol Environ Saf ; 282: 116708, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018736

RESUMO

Previous studies reported that hemoprotein CYP450 catalyzed triclosan coupling is an "uncommon" metabolic pathway that may enhance toxicity, raising concerns about its environmental and health impacts. Hemoglobin, a notable hemoprotein, can catalyze endogenous phenolic amino acid tyrosine coupling reactions. Our study explored the feasibility of these coupling reactions for exogenous phenolic pollutants in plasma. Both hemoglobin and hemin were found to catalyze triclosan coupling in the presence of H2O2. This resulted in the formation of five diTCS-2 H, two diTCS-Cl-3 H, and twelve triTCS-4 H in phosphate buffer, with a total of nineteen triclosan coupling products monitored using LC-QTOF. In plasma, five diTCS-2 H, two diTCS-Cl-3 H, and two triTCS-4 H were detected in hemoglobin-catalyzed reactions. Hemin showed a weaker catalytic effect on triclosan transformation compared to hemoglobin, likely due to hemin dimerization and oxidative degradation by H2O2, which limits its catalytic efficiency. Triclosan transformation in the human plasma-like medium still occurs with high H2O2, despite the presence of antioxidant proteins that typically inhibit such transformations. In plasma, free H2O2 was depleted within 40 minutes when 800 µM H2O2 was added, suggesting a rapid consumption of H2O2 in these reactions. Antioxidative species, or hemoglobin/hemin scavengers such as bovine serum albumin, may inhibit but not completely terminate the triclosan coupling reactions. Previous studies reported that diTCS-2 H showed higher hydrophobicity and greater endocrine-disrupting effects compared to triclosan, which further underscores the potential health risks. This study indicates that hemoglobin and heme in human plasma might significantly contribute to phenolic coupling reactions, potentially increasing health risks.

9.
Environ Sci Technol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012163

RESUMO

The emerging contaminant triclosan (TCS) is widely distributed both in surface water and in wastewater and poses a threat to aquatic organisms and human health due to its resistance to degradation. The dioxygenase enzyme TcsAB has been speculated to perform the initial degradation of TCS, but its precise catalytic mechanism remains unclear. In this study, the function of TcsAB was elucidated using multiple biochemical and molecular biology methods. Escherichia coli BL21(DE3) heterologously expressing tcsAB from Sphingomonas sp. RD1 converted TCS to 2,4-dichlorophenol. TcsAB belongs to the group IA family of two-component Rieske nonheme iron ring-hydroxylating dioxygenases. The highest amino acid identity of TcsA and the large subunits of other dioxygenases in the same family was only 35.50%, indicating that TcsAB is a novel dioxygenase. Mutagenesis of residues near the substrate binding pocket decreased the TCS-degrading activity and narrowed the substrate spectrum, except for the TcsAF343A mutant. A meta-analysis of 1492 samples from wastewater treatment systems worldwide revealed that tcsA genes are widely distributed. This study is the first to report that the TCS-specific dioxygenase TcsAB is responsible for the initial degradation of TCS. Studying the microbial degradation mechanism of TCS is crucial for removing this pollutant from the environment.

10.
J Adv Res ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009133

RESUMO

INTRODUCTION: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood. OBJECTIVE: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system. METHODS: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy. RESULTS: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control. CONCLUSION: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

11.
J Steroid Biochem Mol Biol ; 243: 106586, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013540

RESUMO

Triclosan (TCS) is a widely used antimicrobial, antifungal, and antiviral agent. To date, it has been reported that TCS can enter the human body and disrupt hormonal homeostasis. Therefore, the aim of our paper was to evaluate the impact of TCS on astrocytes, i.e. a crucial population of cells responsible for steroid hormone production. Our data showed that, in mouse primary astrocyte cultures, TCS can act as an endocrine disrupting chemical through destabilization of the production or secretion of progesterone (P4), testosterone (T), and estradiol (E2). TCS affects the mRNA expression of enzymes involved in neurosteroidogenesis, such as Cyp17a1, 17ß-Hsd, and Cyp19a1. Our data showed that a partial PPARγ agonist (honokiol) prevented changes in Cyp17a1 mRNA expression caused by TCS. Similarly, honokiol inhibited TCS-stimulated P4 release. However, rosiglitazone (classic PPARγ agonist) or GW9662 (PPARγ antagonist) had a much stronger effect. Therefore, we believe that the changes observed in the P4, T, and E2 levels are a result of dysregulation of the activity of the aforementioned enzymes, whose expression can be affected by TCS through a Pparγ-dependent pathway. TCS was found to decrease the aryl hydrocarbon receptor (AhR) and Sirtuin 3 protein levels, which may be the result of the activation of the these proteins. Since our study showed dysregulation of the production or secretion of neurosteroids in astrocytes, it can be concluded that TCS reaching the brain may contribute to the development of neurodegenerative diseases in which an abnormal amount of neurosteroids is observed.

12.
Ecotoxicol Environ Saf ; 282: 116766, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39047361

RESUMO

In recent years, exposure to triclosan (TCS) has been linked to an increase in psychiatric disorders. Nonetheless, the precise mechanisms of this occurrence remain elusive. Therefore, this study developed a long-life TCS-exposed rat model, an SH-SY5Y cell model, and an atomoxetine hydrochloride (ATX) treatment model to explore and validate the neurobehavioral mechanisms of TCS from multiple perspectives. In the long-life TCS-exposed model, pregnant rats received either 0 mg/kg (control) or 50 mg/kg TCS by oral gavage throughout pregnancy, lactation, and weaning of their offspring (up to 8 weeks old). In the ATX treatment model, weanling rats received daily injections of either 0 mg/kg (control) or 3 mg/kg ATX via intraperitoneal injection until they reached 8 weeks old. Unlike the TCS model, ATX exposure only occurred after the pups were weaned. The results indicated that long-life TCS exposure led to attention-deficit hyperactivity disorder (ADHD)-like behaviors in male offspring rats accompanied by dopamine-related mRNA and protein expression imbalances in the prefrontal cortex (PFC). Moreover, in vitro experiments also confirmed these findings. Mechanistically, TCS reduced dopamine (DA) synthesis, release, and transmission, and increased reuptake in PFC, thereby reducing synaptic gap DA levels and causing dopaminergic deficits. Additional experiments revealed that increased DA concentration in PFC by ATX effectively alleviated TCS-induced ADHD-like behavior in male offspring rats. These findings suggest that long-life TCS exposure causes ADHD-like behavior in male offspring rats through dopaminergic deficits. Furthermore, ATX treatment not only reduce symptoms in the rats, but also reveals valuable insights into the neurotoxic mechanisms induced by TCS.

13.
Future Med Chem ; 16(10): 949-961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910577

RESUMO

Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.


[Box: see text].


Assuntos
Cobre , Testes de Sensibilidade Microbiana , Triclosan , Triclosan/farmacologia , Triclosan/química , Triclosan/síntese química , Cobre/química , Cobre/farmacologia , Estrutura Molecular , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Mycobacterium abscessus/efeitos dos fármacos , Simulação por Computador , Relação Estrutura-Atividade , Humanos , Bases de Mannich/química , Bases de Mannich/farmacologia , Bases de Mannich/síntese química
14.
Chemosphere ; 362: 142629, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885766

RESUMO

The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC50, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.

15.
Antibiotics (Basel) ; 13(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927206

RESUMO

Dental caries is a global health problem that requires better prevention measures. One of the goals is to reduce the prevalence of the cariogenic Gram-positive bacterium Streptococcus mutans. We have recently shown that naturally occurring arachidonic acid (AA) has both anti-bacterial and anti-biofilm activities against this bacterium. An important question is how these activities are affected by other anti-bacterial compounds commonly used in mouthwashes. Here, we studied the combined treatment of AA with chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, and fluoride. Checkerboard microtiter assays were performed to determine the effects on bacterial growth and viability. Biofilms were quantified using the MTT metabolic assay, crystal violet (CV) staining, and live/dead staining with SYTO 9/propidium iodide (PI) visualized by spinning disk confocal microscopy (SDCM). The bacterial morphology and the topography of the biofilms were visualized by high-resolution scanning electron microscopy (HR-SEM). The effect of selected drug combinations on cell viability and membrane potential was investigated by flow cytometry using SYTO 9/PI staining and the potentiometric dye DiOC2(3), respectively. We found that CHX and CPC had an antagonistic effect on AA at certain concentrations, while an additive effect was observed with triclosan and fluoride. This prompted us to investigate the triple treatment of AA, triclosan, and fluoride, which was more effective than either compound alone or the double treatment. We observed an increase in the percentage of PI-positive bacteria, indicating increased bacterial cell death. Only AA caused significant membrane hyperpolarization, which was not significantly enhanced by either triclosan or fluoride. In conclusion, our data suggest that AA can be used together with triclosan and fluoride to improve the efficacy of oral health care.

16.
Arch Microbiol ; 206(7): 324, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913239

RESUMO

Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.


Assuntos
Monoterpenos Acíclicos , Antibacterianos , Biofilmes , Sinergismo Farmacológico , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Triclosan , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Triclosan/farmacologia , Biofilmes/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Antibacterianos/farmacologia , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Piocianina/metabolismo
17.
J Mater Sci Mater Med ; 35(1): 35, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900360

RESUMO

Bioabsorbable sutures can improve the medical functions of existing non-absorbable sutures, and may produce new medical effects, and are expected to become a new generation of medical degradable materials. In this study, the cytocompatibility of triclosan coated polyglactin910 sutures (CTS-PLGA910) was analyzed and different concentrations of sutures were prepared. The effects of sutures on the cytotoxicity and cell proliferation of HUVEC were studied by CCK-8 assay. The hemolysis, total antioxidant capacity (T-AOC) activity and nitric oxide (NO) content were investigated to improve the blood compatibility of sutures. The results showed that the hemolysis rate of CTS-PLGA910 was less than 5%. After treatment on HUVEC cells for 48 and 72 h, there was no significant change in NO content in CTS-PLGA910 groups compared with the control group, while T-AOC activity and antioxidant capacity were significantly increased in medium and high dose groups. In summary, the blood compatibility and cell compatibility were significantly improved, which provided a basis for the clinical application of sutures in the future.


Assuntos
Proliferação de Células , Materiais Revestidos Biocompatíveis , Células Endoteliais da Veia Umbilical Humana , Teste de Materiais , Poliglactina 910 , Suturas , Triclosan , Humanos , Triclosan/farmacologia , Triclosan/química , Poliglactina 910/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Materiais Biocompatíveis/química , Óxido Nítrico/metabolismo , Sobrevivência Celular/efeitos dos fármacos
18.
Environ Int ; 190: 108827, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908274

RESUMO

Triclosan is a potent antibacterial compound widely used in everyday products. Whether triclosan affects Leydig cell function in adult male rats remains unknown. In this study, 0, 50, 100, or 200 mg/kg/day triclosan was gavaged to Sprague-Dawley male rats from 56 to 63 days postpartum. Triclosan significantly reduced serum testosterone levels at ≥ 50 mg/kg/day via downregulating the expression of Leydig cell gene Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3 and regulatory transcription factor Nr3c2 at 100-200 mg/kg. Further analysis showed that triclosan markedly increased autophagy as shown by increasing LC3II and BECN1 and decreasing SQSTM1. The mRNA m6A modification analysis revealed that triclosan significantly downregulated Fto expression at 200 mg/kg while upregulating Ythdf1 expression at 100 and 200 mg/kg, leading to methylation of Becn1 mRNA as shown by MeRIP assay. Triclosan significantly inhibited testosterone output in rat R2C Leydig cells at ≥ 5 µM via downregulating Fto and upregulating Ythdf1. SiRNA Ythdf1 knockdown can reverse triclosan-mediated mitophagy in R2C cells, thereby reversing the reduction of testosterone output. In summary, triclosan caused Becn1 m6A methylation by downregulating Fto and upregulating Ythdf1, which accelerated Becn1 translation, thus leading to the occurrence of autophagy and the decrease of testosterone biosynthesis.

19.
Sci Total Environ ; 942: 173739, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38839007

RESUMO

Triclosan (TCS), a commonly used antibacterial agent, is associated with various harmful effects on mammalian neurodevelopment, particularly when exposed prenatally. This study investigated the impact of long-term exposure to TCS on the prefrontal cortex development in adolescent mice. We evaluated the motor ability, motor coordination, and anxiety behavior of mice using open field tests (OFT) and elevated cross maze tests (EPM). An increase in movement distance, number of passes through the central area, and open arm retention time was observed in mice treated with TCS. Hematoxylin eosin staining and Nissl staining also showed significant adverse reactions in the brain tissue of TCS-exposed group. TCS induced microglia activation and increased inflammatory factors expression in the prefrontal cortex. TCS also increased the expression of pyruvate kinase M2 (PKM2), thereby elevating the levels of PKM2 dimer, which entered the nucleus. Treatment with TEPP46 (PKM2 dimer nuclear translocation inhibitor) blocked the expression of inflammatory factors induced by TCS. TCS induced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro, upregulating the levels of inflammatory cytokines. The results also demonstrated the binding of PKM2 to STAT3, which promoted STAT3 phosphorylation at the Tyr705 site, thereby regulating the expression of inflammatory factors. These findings highlight the role of PKM2-regulated STAT3 phosphorylation in TCS-induced behavioral disorders in adolescents and propose a reliable treatment target for TCS.


Assuntos
Microglia , Doenças Neuroinflamatórias , Piruvato Quinase , Fator de Transcrição STAT3 , Triclosan , Animais , Triclosan/toxicidade , Camundongos , Microglia/efeitos dos fármacos , Piruvato Quinase/metabolismo , Fator de Transcrição STAT3/metabolismo , Fosforilação , Doenças Neuroinflamatórias/induzido quimicamente , Anti-Infecciosos Locais/toxicidade , Masculino
20.
Sci Total Environ ; 946: 173858, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38876353

RESUMO

Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with 14C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to 14CO2 was inhibited by 48.2-79.3 % in 500 mg kg-1 RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of 14C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.


Assuntos
Grafite , Nanoestruturas , Poluentes do Solo , Solo , Triclosan , Grafite/química , Solo/química , Microbiologia do Solo , Radioisótopos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...