Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
1.
Sci Rep ; 14(1): 15116, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956424

RESUMO

Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.


Assuntos
Caspase 9 , Movimento Celular , Organoides , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Caspase 9/metabolismo , Movimento Celular/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Metástase Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Invasividade Neoplásica , Técnicas de Cocultura , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células MDA-MB-231
2.
Clin Transl Med ; 14(7): e1753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967349

RESUMO

BACKGROUND: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS: We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION: Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS: YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.


Assuntos
Epigênese Genética , Neoplasias de Mama Triplo Negativas , Proteína 1 de Ligação a Y-Box , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Feminino , Epigênese Genética/genética , Animais , Progressão da Doença , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Lisina/análogos & derivados
3.
Biochem Pharmacol ; 226: 116408, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969297

RESUMO

Metastatic recurrence is still a major challenge in breast cancer treatment. Patients with triple negative breast cancer (TNBC) develop early recurrence and relapse more frequently. Due to the lack of specific therapeutic targets, new targeted therapies for TNBC are urgently needed. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway is one of the active pathways involved in chemoresistance and survival of TNBC, being considered as a potential target for TNBC treatment. Our present study identified ticagrelor, an anti-platelet drug, as a pan-PI3K inhibitor with potent inhibitory activity against four isoforms of class I PI3K. At doses normally used in clinic, ticagrelor showed weak cytotoxicity against a panel of breast cancer cells, but significantly inhibited the migration, invasion and the actin cytoskeleton organization of human TNBC MDA-MB-231 and SUM-159PT cells. Mechanistically, ticagrelor effectively inhibited PI3K downstream mTOR complex 1 (mTORC1) and mTORC2 signaling by targeting PI3K and decreased the protein expression of epithelial-mesenchymal transition (EMT) markers. In vivo, ticagrelor significantly suppressed tumor cells lung metastasis in 4T1 tumor bearing BALB/c mice model and experimental lung metastasis model which was established by tail vein injection of GFP-labeled MDA-MB-231 cells. The above data demonstrated that ticagrelor can inhibit the migration and invasion of TNBC both in vitro and in vivo by targeting PI3K, suggesting that ticagrelor, a pan-PI3K inhibitor, might represent a promising therapeutic agent for the treatment of metastatic TNBC.

4.
Int J Hematol Oncol Stem Cell Res ; 18(2): 174-182, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38868811

RESUMO

Background: Triple-negative breast cancer (TNBC) with a poor prognosis and survival is the most invasive subtype of breast cancer. Usually, TNBC requires a chemotherapy regimen at all stages, but chemotherapy drugs have shown many side effects. We assumed that combination therapy of vinblastine and silibinin might reduce the vinblastine toxicity and dose of vinblastine. Materials and Methods: The MDA-MB-231 were cells subjected to MTT assay for IC50 determination and combination effects, which were measured based on Chou-Talalay's method. The type of cell death was determined by using a Flow-cytometric assay. Cell death pathway markers, including Bcl-2, Bax, and caspase-3 were analyzed by western blot and Real-Time PCR. Results: The treatment of MDA-MB-231 cells exhibited IC50 and synergism at the combination of 30 µM of silibinin and 4 µm of vinblastine in cell viability assay (CI=0.69). YO-PRO-1/PI double staining results showed a significant induction of apoptosis when MDA-MB-231 cells were treated with a silibinin and vinblastine combination (p<0.01). Protein levels of Bax and cleaved caspase-3 were significantly upregulated, and Bcl-2 downregulated significantly. Significant upregulation of Bax (2.96-fold) and caspase-3 (3.46-fold) while Bcl-2 was downregulated by 2-fold. Conclusion: Findings established a preclinical rationale for the combination of silibinin and vinblastine. This combination produces synergistic effects in MDA-MB-231 cells by altering pro- and anti-apoptotic genes, which may reduce the toxicity and side effects of vinblastine.

5.
Cancers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893070

RESUMO

BACKGROUND: Breast cancer (BC) remains heterogeneous in terms of prognosis and response to treatment. Metabolic reprogramming is a critical part of oncogenesis and a potential therapeutic target. Glutaminase (GLS), which generates glutamate from glutamine, plays a role in triple-negative breast cancer (TNBC). However, targeting GLS directly may be difficult, as it is essential for normal cell function. This study aimed to determine potential targets in BC associated with glutamine metabolism and evaluate their prognostic value in BC. METHODS: The iNET model was used to identify genes in BC that are associated with GLS using RNA-sequencing data. The prognostic significance of tripartite motif-containing 2 (TRIM2) mRNA was assessed in BC transcriptomic data (n = 16,575), and TRIM2 protein expression was evaluated using immunohistochemistry (n = 749) in patients with early-stage invasive breast cancer with long-term follow-up. The associations between TRIM2 expression and clinicopathological features and patient outcomes were evaluated. RESULTS: Pathway analysis identified TRIM2 expression as an important gene co-expressed with high GLS expression in BC. High TRIM2 mRNA and TRIM2 protein expression were associated with TNBC (p < 0.01). TRIM2 was a predictor of poor distant metastasis-free survival (DMFS) in TNBC (p < 0.01), and this was independent of established prognostic factors (p < 0.05), particularly in those who received chemotherapy (p < 0.05). In addition, TRIM2 was a predictor of shorter DMFS in TNBC treated with chemotherapy (p < 0.01). CONCLUSIONS: This study provides evidence of an association between TRIM2 and poor patient outcomes in TNBC, especially those treated with chemotherapy. The molecular mechanisms and functional behaviour of TRIM2 and the functional link with GLS in BC warrant further exploration using in vitro models.

6.
Int J Pharm ; 660: 124346, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889853

RESUMO

Breast cancer, the second leading global cause of death, affects 2.1 million women annually, with an alarming 15 percent mortality rate. Among its diverse forms, Triple-negative breast cancer (TNBC) emerges as the deadliest, characterized by the absence of hormone receptors. This article underscores the urgent need for innovative treatment approaches in tackling TNBC, emphasizing the transformative potential of polymeric nanomaterials (PNMs). Evolved through nanotechnology, PNMs offer versatile biomedical applications, particularly in addressing the intricate challenges of TNBC. The synthesis methods of PNMs, explored within the tumor microenvironment using cellular models, showcase their dynamic nature in cancer treatment. The article anticipates the future of TNBC therapeutics through the optimization of PNMs-based strategies, integrating them into photothermal (PT), photodynamic (PT), and hyperthermia therapy (HTT), drug delivery, and active tumor targeting strategies. Advancements in synthetic methods, coupled with a nuanced understanding of the tumor microenvironment, hold promise for personalized interventions. Comparative investigations of therapeutic models and a thorough exploration of polymeric nanoplatforms toxicological perspectives become imperative for ensuring efficacy and safety. We have explored the interdisciplinary collaboration between nanotechnology, oncology, and molecular biology as pivotal in translating PNMs innovations into tangible benefits for TNBC patients.

7.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895265

RESUMO

Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.

8.
Oncol Rep ; 52(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847271

RESUMO

Subsequently to the publication of the article, an interested reader drew to the authors' attention that, in Fig. 2A on p. 5, the 'Control  (24 h)' and 'MTH­3 (1 µM; 24 h)' data panels contained partially overlapping data, such that they appeared to have been derived from the same original source. The authors have examined their original data, and realized that this error arose inadvertently as a consequence of having compiled this figure incorrectly. The revised version of Fig. 2, featuring the data from one of the repeated experiments in Fig. 2A, is shown below. The revised data shown for this figure do not affect the overall conclusions reported in the paper. The authors apologize to the Editor of Oncology Reports and to the readership for any inconvenience caused. [Oncology Reports 46: 133, 2021; DOI: 10.3892/or.2021.8084].

9.
Discov Oncol ; 15(1): 202, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822944

RESUMO

BACKGROUNDS: Microfibril-associated protein 2 (MFAP2) is a protein presenting in the extracellular matrix that governs the activity of microfibrils through its interaction with fibrillin. While the involvement of MFAP2 in metabolic disorders has been documented, its expression and prognostic significance in triple-negative breast cancer (TNBC) remain unexplored. METHODS: We acquired datasets pertaining to breast cancer (BC) from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Next, a Venn diagram was used to identify the differentially expressed genes (DEGs). The DEGs were used to perform Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), immune and survival analysis. The expressions of MFAP2, PD-1 and PD-L1 were examined by immunohistochemistry and western blot and their relationship with clinical pathological parameters were analyzed by clinical specimen samples from patients with TNBC. Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/ ) was adopted to calculate the immune infiltration level of TNBC. The link between gene expression and tumor mutational burden (TMB) was described using Spearman's correlation analysis. RESULTS: We identified 66 differentially expressed genes (DEGs) that were up-regulated. Among these DEGs, MFAP2 was found to be overexpressed in TNBC and was associated with a lower probability of survival. This finding was confirmed through the use of immunohistochemistry and western blot techniques. Additionally, MFAP2 was found to be related to various pathological parameters in TNBC patients. Mechanistically, gene set enrichment analysis (GSEA) revealed that MFAP2 primarily influenced cellular biological behavior in terms of epithelial mesenchymal transition, glycolysis, and apical junction. Notably, MFAP2 expression was positively correlated with the abundance of macrophages, while a negative correlation was observed with the abundance of B cells, CD4 + T cells, CD8 + T cells, neutrophils and dendritic cells through immune analysis. Furthermore, it was observed that MFAP2 displayed a negative correlation not only with tumor mutational burden (TMB), a recognized biomarker for PD-1/PD-L1 immunotherapy, but also with PD-L1 in samples of TNBC. CONCLUSION: MFAP2 may be an important prognostic biomarker for TNBC, as well as a viable target for immunotherapy in this disease.

10.
Drug Dev Res ; 85(4): e22215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837718

RESUMO

Breast cancer is the second most frequent cancer among women. Out of various subtypes, triple-negative breast cancers (TNBCs) account for 15% of breast cancers and exhibit more aggressive characteristics as well as a worse prognosis due to their proclivity for metastatic progression and limited therapeutic strategies. It has been demonstrated that AMP-activated protein kinase (AMPK) has context-specific protumorigenic implications in breast cancer cells. A set of glucosyltriazole amphiphiles, consisting of acetylated (9a-h) and unmodified sugar hydroxyl groups (10a-h), were synthesized and subjected to in vitro biological evaluation. Among them, 9h exhibited significant anticancer activity against MDA-MB-231, MCF-7, and 4T1 cell lines with IC50 values of 12.5, 15, and 12.55 µM, respectively. Further, compound 9h was evaluated for apoptosis and cell cycle analysis in in vitro models (using breast cancer cells) and antitumour activity in an in vivo model (orthotopic mouse model using 4T1 cells). Annexin-V assay results revealed that treatment with 9h caused 34% and 28% cell death at a concentration of 15 or 7.5 µM, respectively, while cell cycle analysis demonstrated that 9h arrested the cells at the G2/M or G1 phase in MCF-7, MDA-MB-231 and 4T1 cells, respectively. Further, in vivo, investigation showed that compound 9h exhibited equipotent as doxorubicin at 7.5 mg/kg, and superior efficacy than doxorubicin at 15 mg/kg. The mechanistic approach revealed that 9h showed potent anticancer activity in an in vivo orthotopic model (4T1 cells) partly by suppressing the AMPK activation. Therefore, modulating the AMPK activation could be a probable approach for targeting breast cancer and mitigating cancer progression.


Assuntos
Proteínas Quinases Ativadas por AMP , Antineoplásicos , Apoptose , Transdução de Sinais , Triazóis , Humanos , Feminino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Triazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos Endogâmicos BALB C , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Life (Basel) ; 14(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38929666

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is associated with high recurrence rates, a high incidence of distant metastases and poor overall survival. The aim of this study was to investigate the role of PD-L1, EGFR and AR expression in TNBC promotion and progression. To that end, we analyzed the immunohistochemical expression of these genes in 125 TNBC patients and their relation to clinicopathological parameters and survival. An elevated expression of PD-L1 was significantly correlated with higher tumor and nuclear grade, while a low expression was correlated with loco-regional recurrence without any influence on survival. Contrary to this, the expression of AR showed a positive impact on the DFI and a negative association with tumor grade. Furthermore, PD-L1 and AR demonstrated simultaneous expression, and further co-expression analysis revealed that a positive expression of PD-L1/AR notably correlates with tumor and nuclear grade and has a significant impact on a longer DFI and OS, while a negative PD-L1/AR expression is significantly associated with metastases. Therefore, our results suggest that positive PD-L1/AR expression is beneficial for TNBC patients. In addition, an elevated expression of EGFR contributes to metastases and a worse DFI and OS. In conclusion, we think that low PD-L1/low AR/high EGFR expression followed by high Ki67 expression constitutes a 'high risk' profile of TNBC.

12.
J Steroid Biochem Mol Biol ; 243: 106518, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734115

RESUMO

Breast cancer incidence has been steadily rising and is the leading cause of cancer death in women due to its high metastatic potential. Individual breast cancer subtypes are classified by both cell type of origin and receptor expression, namely estrogen, progesterone and human epidermal growth factor receptors (ER, PR and HER2). Recently, the importance and context-dependent role of glucocorticoid receptor (GR) expression in the natural history and prognosis of breast cancer subtypes have been uncovered. In ER-positive breast cancer, GR expression is associated with a better prognosis as a result of ER-GR crosstalk. GR appears to modulate ER-mediated gene expression resulting in decreased tumor cell proliferation and a more indolent cancer phenotype. In ER-negative breast cancer, including GR-positive triple-negative breast cancer (TNBC), GR expression enhances migration, chemotherapy resistance and cell survival. In invasive lobular carcinoma, GR function is relatively understudied, and more work is required to determine whether lobular subtypes behave similarly to their invasive ductal carcinoma counterparts. Importantly, understanding GR signaling in individual breast cancer subtypes has potential clinical implications because of the recent development of highly selective GR non-steroidal ligands, which represent a therapeutic approach for modulating GR activity systemically.

13.
J Transl Med ; 22(1): 450, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741146

RESUMO

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Assuntos
Movimento Celular , Estetrol , Regulação Neoplásica da Expressão Gênica , Inibidor 2 de Ativador de Plasminogênio , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrogênio/metabolismo , Estetrol/farmacologia , Estetrol/metabolismo , Feminino , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Ligação Proteica/efeitos dos fármacos , Invasividade Neoplásica
14.
Artigo em Inglês | MEDLINE | ID: mdl-38751669

RESUMO

Breast cancer (BC) is the most common neoplasm in women worldwide and one of the leading causes of female death. The triple-negative subtype, characterized by the absence of hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2), tends to occur in younger patients, be more aggressive and less differentiated. Furthermore, this subtype is considered the most immunogenic and associated with higher levels of tumor cell infiltration, mainly lymphocytes. Tumor-infiltrating lymphocytes (TILs) play a crucial role in the interaction of the host's immune system and cancer cells. The microenvironment is critical in tumor development and progression. Assessment of infiltrating lymphocytes can provide valuable information about the immune response and, given the lack of biomarkers to guide treatment decisions and predict outcomes in triple-negative tumors and can be considered as a potential biomarker. Some evidence suggests that higher levels of these lymphocytes are associated with better responses to systemic treatment, longer progression-free survival and overall survival (OS). However, treatment escalation or de-escalation strategies for triple-negative BC (TNBC) currently do not consider the presence or density of TILs for therapeutic decisions. TILs appear to be useful predictive and prognostic indicators. Further clinical studies are needed to confirm these relationships and integrate TILs as a biomarker consistently into clinical practice. This article summarizes key concepts relating to the role of the immune infiltrate in BC, along with the current status and future prospects regarding TILs as a predictive and prognostic biomarker.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38751675

RESUMO

Toripalimab (JS001) is a monoclonal antibody against programmed cell death-1 (PD-1), independently developed by Shanghai Junshi Biosciences Co., LTD, which is the first domestic original PD-1 inhibitor approved in China. TORCHLIGHT is the first phase III trial of PD-1 inhibitor combined chemotherapy in advanced triple-negative breast cancer (TNBC) in China, evaluating the efficacy and safety of toripalimab plus nab-paclitaxel as first- or second-line therapy. Nab-paclitaxel has significant advantages over other chemotherapy drugs, as paclitaxel nanoparticles combine with natural albumin to increase drug delivery and bioavailability of paclitaxel. Firstly, nab-paclitaxel has a higher therapy response; Secondly, albumin carries paclitaxel out of the blood circulation faster, reducing the damage to normal tissues, ensuring the survival of more normal immune cells and exerting immune efficacy. Finally, nab-paclitaxel does not cause allergic reactions caused by organic solvents and does not require glucocorticoid pretreatment, avoiding immune suppression and ensuring the maximum efficacy of immune checkpoint inhibitors (ICIs). In TORCHLIGHT trial, 95% of subjects were on the first line treatment, with only 5% being on the second line, and 56% patients were programmed death-ligand 1 (PD-L1) positive in total population. It achieved the survival benefits of progression-free survival (PFS) and overall survival (OS) dual efficacy end points, which stood out among numerous ICIs in advanced TNBC. TORCHLIGHT trial, as the name of it, like a torch to more patients with advanced TNBC, lighting up their lives. We described the design background of TORCHLIGHT trial and reviewed primary trials of PD-1 or PD-L1 inhibitor in advanced TNBC both domestically and internationally.

17.
Transl Cancer Res ; 13(4): 1707-1720, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737702

RESUMO

Background: Triple-negative breast cancer (TNBC), a type of breast cancer, lacks immune-related markers that can be used for prognosis or prediction. Therefore, we created a predictive framework for TNBC using a risk assessment. Methods: Our previous study group consisted of 360 individuals who were diagnosed with TNBC through pathology using RNA sequencing and had clinical data from Fudan University Shanghai Cancer Center (FUSCC). A risk scoring model was constructed using the Cox regression method with the least absolute shrinkage and selection operator (LASSO). A multivariate Cox regression analysis was utilized to develop the prediction model, which was then assessed using the consistency index and calibration plots. The validation cohort of The Cancer Genome Atlas (TCGA) TNBC confirmed the strength of the signatures' predictive value. Results: The prognostic risk score model included 12 genes: TDO2, CHIT1, CARML2, HLA-C, ADIRF, C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and NEBL. The receiver operator characteristic (ROC) curves for survivability values at 1, 3, and 5 years in the FUSCC TNBC cohort demonstrated area under the curve (AUC) values of 0.78, 0.83, and 0.75, respectively. These results indicated a high level of accuracy in predicting outcomes, which was further confirmed through validation using TCGA database. The patients in the high-risk group showed worse prognoses and lower levels of immune cell infiltration, specifically CD8+ T cells, than those in the low-risk group. Furthermore, the low-risk group exhibited a significant upregulation of genes that encode immune checkpoints, including CD274 and CTLA4, suggesting that immunotherapy may yield enhanced efficacy within this particular group. Conclusions: In conclusion, the prognostic signature consisting of 12 genes can assist in the choice of immunotherapy for TNBC.

18.
Front Oncol ; 14: 1364663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715773

RESUMO

The main known function of Nudix hydrolase 2 (Nudt2) is to hydrolyze the secondary messenger diadenosine 5', 5'''-p1, p4-tetraphosphate (Ap4A). In this study we examined the role of Nudt2 in breast carcinoma through its expression in human invasive ductal carcinoma tissues, and its functions in human triple negative breast cancer (TNBC) cell lines. A significantly higher expression of Nudt2 was observed in human invasive ductal carcinoma tissues compared to that in normal breast tissue. Knockdown of Nudt2 in TNBC cell lines resulted in a significant reduction in cellular proliferation via the Ki67 marker, accompanied by G0/G1 phase cell cycle arrest, in the migration and invasion of these cells and in tumorigenicity and anchorage-independent growth. It can therefore be concluded that Nudt2 plays a significant role in promoting TNBC growth.

19.
Int J Biol Macromol ; 270(Pt 1): 131949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749890

RESUMO

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.


Assuntos
Células Supressoras Mieloides , Reishi , Esporos Fúngicos , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , beta-Glucanas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Camundongos , beta-Glucanas/farmacologia , beta-Glucanas/química , Reishi/química , Feminino , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Lectinas Tipo C
20.
Front Oncol ; 14: 1341665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817906

RESUMO

Aim: To examine clinical characteristics, real-world treatment patterns, and health outcomes among patients with germline BRCA1/2-mutated, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer (ABC). Methods: A retrospective analysis was conducted using medical records from patients with HER2-negative ABC with BRCA1/2 mutation who received cytotoxic chemotherapy. Data were stratified into groups with triple-negative breast cancer (TNBC) or hormone receptor-positive (HR+)/HER2-negative diagnoses. Time-to-event outcomes (i.e., real-world progression-free survival [rwPFS] and overall survival [OS]) were calculated to summarize health outcomes. Results: When diagnosed with ABC, most patients were younger than 60 years (mean age = 57.3 years), were white (76.4%), and had a family history of BRCA-related cancer (71.5%). A total of 305 patient records were examined; 194 patients (63.6%) had advanced TNBC, and 111 patients (36.4%) had HR+/HER2-negative ABC. Chemotherapy was primarily used as first-line treatment for both subgroups, but the TNBC subgroup received poly (ADP-ribose) polymerase (PARP) inhibitors at triple the rate as a second-line treatment and double the rate as a third-line treatment compared with the HR+/HER2-negative subgroup. Two-year OS rates were similar between the TNBC (73.9%) and the HR+/HER2-negative subgroups (77.0%), and anemia, nausea, and neutropenia were the most commonly reported toxicities across all treatments. Conclusion: Clinicians should consider the use of targeted agents such as PARP inhibitors in earlier lines of therapy for ABC given the growing evidence that PARP inhibitors may improve PFS compared with chemotherapy while potentially offering a more manageable toxicity profile and improved quality of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...