Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 251: 116127, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382272

RESUMO

Owing to advantage in high sensitivity and fast response, aptamer based electrochemical biosensors have attracted much more attention. However, inappropriate interfacial engineering strategy leads to poor recognition performance, which ascribe to the following factors of immobilized oligonucleotide strand including steric hindrance, interchain entanglement, and unfavorable conformation. In this work, we proposed a DNA tetrahedron based diblock aptamer immobilized strategy for the construction of label-free electrochemical biosensor. The diblock aptamer sequence is composite of T-rich anchor domain and recognition domain, where T-rich domain enabling anchored on the edge of DNA tetrahedron via Hoogsteen hydrogen bond at neutral condition. The DNA tetrahedron scaffold offers an appropriate lateral space for target recognition of diblock aptamer. More importantly, this trivalent aptamer recognition interface can be regenerated by simply adjusting the pH environment to alkaline, resulting in the dissociation of diblock aptamer. Under the optimum condition, proposed electrochemical aptasensor manifested a satisfied sensitivity for aminoglycosides antibiotic, kanamycin with a limit of detection of 0.69 nM, which is 45-fold lower than traditional Au-S immobilization strategy. Moreover, the proposed aptasensor had also successfully been extended to ampicillin detection by changing the sequence of recognition domain in diblock aptamer. This work paves a new way for the rational design of aptamer-based electrochemical sensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Antibacterianos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , DNA/química , Canamicina , Técnicas Eletroquímicas , Limite de Detecção , Ouro/química
2.
Biosens Bioelectron ; 230: 115256, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989663

RESUMO

The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.


Assuntos
Técnicas Biossensoriais , Hibridização in Situ Fluorescente/métodos , DNA/química , Cromatina/genética , Microscopia de Fluorescência/métodos
3.
Drug Metab Pharmacokinet ; 42: 100427, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974332

RESUMO

Genome editing has been expected to widely increase the available treatment options for various diseases and permit pharmaceutical interventions in previously untreatable conditions. The availability of genome editing tools was dramatically increased by the development of the CRISPR-Cas9 system. However, a number of issues limit the use of the CRISPR-Cas9 system and other gene-editing tools in the clinical treatment of diseases. This review summarized the history and types of genome editing tools and limitations of their use. In addition, the study addressed several next-generation technologies aiming to overcome the limitations of current gene therapy protocols in an effort to accelerate the clinical development of potential treatment options. This review has provided an extensive foundation of the current state of genome editing technology and its clinical development. This review also indicate that the study additionally highlighted the need for multidisciplinary approaches to overcome current bottlenecks in the development of genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética
4.
Front Pharmacol ; 13: 1007723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618947

RESUMO

Triplex-forming oligonucleotides (TFOs) can bind to the major groove of double-stranded DNA with high specificity and affinity and inhibit gene expression. Triplex-forming oligonucleotides have gained prominence because of their potential applications in antigene therapy. In particular, the target specificity of triplex-forming oligonucleotides combined with their ability to suppress oncogene expression has driven their development as anti-cancer agents. So far, triplex-forming oligonucleotides have not been used for clinical treatment and seem to be gradually snubbed in recent years. But triplex-forming oligonucleotides still represent an approach to down-regulate the expression of the target gene and a carrier of active substances. Therefore, in the present review, we will introduce the characteristics of triplex-forming oligonucleotides and their anti-cancer research progress. Then, we will discuss the challenges in their application.

5.
Chembiochem ; 21(24): 3563-3574, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755000

RESUMO

In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.


Assuntos
Cobre/metabolismo , DNA/metabolismo , Endonucleases/metabolismo , Metaloproteínas/metabolismo , Oligonucleotídeos/metabolismo , Química Click , Cobre/química , DNA/química , Metaloproteínas/síntese química , Metaloproteínas/química , Estrutura Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/química
6.
Biomolecules ; 10(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466440

RESUMO

DNA is a very useful molecule for the programmed self-assembly of 3D (three dimension) nanoscale structures. The organised 3D DNA assemblies and crystals enable scientists to conduct studies for many applications such as enzymatic catalysis, biological immune analysis and photoactivity. The first self-assembled 3D DNA single crystal was reported by Seeman and his colleagues, based on a rigid triangle tile with the tile side length of two turns. Till today, successful designs of 3D single crystals by means of programmed self-assembly are countable, and still remain as the most challenging task in DNA nanotechnology, due to the highly constrained conditions for rigid tiles and precise packing. We reported here the use of small circular DNA molecules instead of linear ones as the core triangle scaffold to grow 3D single crystals. Several crystallisation parameters were screened, DNA concentration, incubation time, water-vapour exchange speed, and pH of the sampling buffer. Several kinds of DNA single crystals with different morphologies were achieved in macroscale. The crystals can provide internal porosities for hosting guest molecules of Cy3 and Cy5 labelled triplex-forming oligonucleotides (TFOs). Success of small circular DNA molecules in self-assembling 3D single crystals encourages their use in DNA nanotechnology regarding the advantage of rigidity, stability, and flexibility of circular tiles.


Assuntos
DNA Circular/química , Nanoestruturas/química , Cristalização , Conformação de Ácido Nucleico
7.
Chembiochem ; 21(6): 860-864, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31568630

RESUMO

1,3-Diaza-2-oxophenoxazine ("phenoxazine"), a tricyclic cytosine analogue, can strongly bind to guanine moieties and improve π-π stacking effects with adjacent bases in a duplex. Phenoxazine has been widely used for improving duplex-forming abilities. In this study, we have investigated whether phenoxazine and its analogue, 1,3,9-triaza-2-oxophenoxazine (9-TAP), could improve triplex-forming abilities. A triplex-forming oligonucleotide (TFO) incorporating a phenoxazine component was found to show considerably decreased binding affinity with homopurine/homopyrimidine double-stranded DNA, so the phenoxazine system was considered not to function as either a protonated cytosine or thymine analogue. Alternatively, a 9-TAP-containing artificial nucleobase developed by us earlier as a new phenoxazine analogue functioned as a thymine analogue with respect to AT base pairs in a parallel triplex DNA motif. The fluorescence of the 9-TAP moiety was maintained even in triplex (9-TAP:AT) formation, so 9-TAP might be useful as an imaging tool for various oligonucleotide nanotechnologies requiring triplex formation.


Assuntos
DNA/química , Fluorescência , Oligonucleotídeos/química , Oxazinas/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
8.
Artigo em Inglês | MEDLINE | ID: mdl-28985947

RESUMO

Triplex-Forming oligonucleotides (TFO) bind sequence-specific to the DNA double helix in-vitro and in-vivo and are a promising tool to manipulate genes or gene regulatory elements. TFO as a carrier molecule for short-range particle emitter such as Auger-Electron-Emitters (AEE) bear the potential to introduce radiation-induced site-specific complex DNA lesions, which are known to induce chromosomal translocations. We studied gene expression, translocation frequency and protein expression in SCL-II cells after transfection with the AEE Iodine-125 (I-125) labeled TFO-BCL2 targeting the human BCL2 gene. The TFO-BCL2 binds to the BCL2 gene in close proximity to a known major-breakage-region (mbr). SCL-II cells were transfected with I-125 labeled TFO and stored for decay accumulation. Monitoring of BCL2 translocations was done with the Fluorescence-In-Situ-Hybridization (FISH) method. The utilized FISH probes were designed to detect a t(14;18) translocation of the BCL2 gene, which is a common translocation leading to an overexpression of BCL2 protein. Analysis of BCL2 gene expression levels was done via quantitative Real-Time PCR. Verification of gene expression on the protein level was analyzed by Western blotting. The relative gene expression of BCL2 in I-125-TFO-BCL2 transfected cells showed a significant up-regulation when compared to controls. Analysis of the BCL2 t(14;18) translocation frequency revealed a significant 1.8- to 2-fold increase when compared to control cells. This 2-fold increase was not reflected on the protein level. We conclude that I-125 decays within the BCL2 gene facilitate the t(14;18) chromosomal translocation in the SCL-II cells and that the increased frequency contributes to the observed overall enhanced BCL2 gene expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Radioisótopos do Iodo/farmacologia , Oligonucleotídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Translocação Genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 18 , Dano ao DNA , Loci Gênicos , Humanos , Hibridização in Situ Fluorescente , Regulação para Cima
9.
Mol Cell Biol ; 37(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847847

RESUMO

The long noncoding RNA (lncRNA) MEG3 is significantly downregulated in pancreatic neuroendocrine tumors (PNETs). MEG3 loss corresponds with aberrant upregulation of the oncogenic hepatocyte growth factor (HGF) receptor c-MET in PNETs. Meg3 overexpression in a mouse insulin-secreting PNET cell line, MIN6, downregulates c-Met expression. However, the molecular mechanism by which MEG3 regulates c-MET is not known. Using chromatin isolation by RNA purification and sequencing (ChIRP-Seq), we identified Meg3 binding to unique genomic regions in and around the c-Met gene. In the absence of Meg3, these c-Met regions displayed distinctive enhancer-signature histone modifications. Furthermore, Meg3 relied on functional enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), to inhibit c-Met expression. Another mechanism of lncRNA-mediated regulation of gene expression utilized triplex-forming GA-GT rich sequences. Transfection of such motifs from Meg3 RNA, termed triplex-forming oligonucleotides (TFOs), in MIN6 cells suppressed c-Met expression and enhanced cell proliferation, perhaps by modulating other targets. This study comprehensively establishes epigenetic mechanisms underlying Meg3 control of c-Met and the oncogenic consequences of Meg3 loss or c-Met gain. These findings have clinical relevance for targeting c-MET in PNETs. There is also the potential for pancreatic islet ß-cell expansion through c-MET regulation to ameliorate ß-cell loss in diabetes.


Assuntos
Insulinoma/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-met/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Camundongos , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Transcrição Gênica
10.
Toxicol Sci ; 155(1): 101-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660205

RESUMO

Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.


Assuntos
Guanina/metabolismo , Mutagênicos/farmacologia , Oligonucleotídeos/farmacologia , Animais , Células COS , Chlorocebus aethiops , Vetores Genéticos , Mutação , Ligação Proteica
11.
Beilstein J Org Chem ; 12: 1348-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559384

RESUMO

Efficient protocols based on Cu(I)-catalyzed azide-alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole-imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable triple helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs.

12.
Int J Radiat Biol ; 92(11): 679-685, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27022855

RESUMO

PURPOSE: The efficacy of DNA-targeting radionuclide therapies might be strongly enhanced by employing short range particle-emitters. However, the gain of effectiveness is not yet well substantiated. We compared the Auger electron emitter I-125 to the ß--emitter P-32 in terms of biological effectiveness per decay and radiation dose when located in the close proximity to DNA using DNA Triplex-forming oligonucleotides (TFO). The clonogenicity and the induction of DNA double-strand breaks (DSB) were investigated in SCL-II cells after exposure to P-32- or I-125-labeled TFO targeting the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene and after external homogeneous exposure to gamma-rays as reference radiation. MATERIALS AND METHODS: TFO were labeled with P-32 or I-125 using the primer extension method. Cell survival was analyzed by colony-forming assay and DNA damage was assessed by microscopic quantification of protein 53 binding protein 1 (53BP1) foci in SCL-II cells. RESULTS: I-125-TFO induced a pronounced decrease of cell survival (D37 at ∼360 accumulated decays per cell, equivalent to 1.22 Gy cell nucleus dose) and a significant increase of 53BP1 foci with increasing decays. The P-32-labeled TFO induced neither a strong decrease of cell survival nor an increase of 53BP1 foci up to ∼4000 accumulated decays per cell, equivalent to ∼1 Gy cell nucleus dose. The RBE for I-125-TFO was in the range of 3-4 for both biological endpoints. CONCLUSIONS: I-125-TFO proved to be much more radiotoxic than P-32-TFO per decay and per unit dose although targeting the same sequence in the GAPDH gene. This might be well explained by the high number of low energy Auger electrons emitted by I-125 per decay, leading to a high ionization density in the immediate vicinity of the decay site, probably producing highly complex DNA lesions overcharging DNA repair mechanisms.


Assuntos
Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Dano ao DNA , Radioisótopos do Iodo/uso terapêutico , Radioisótopos de Fósforo/uso terapêutico , Apoptose/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , DNA/efeitos da radiação , Humanos , Masculino , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Resultado do Tratamento
13.
Bioorg Med Chem ; 23(15): 4472-4480, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26118338

RESUMO

Neomycin-conjugated homopyrimidine oligo 2'-deoxyribonucleotides have been synthesized on a solid phase and their potential as triplex forming oligonucleotides (TFOs) with DNA-duplexes has been studied. For the synthesis of the conjugates, C-5, C-2' and C-4'-tethered alkyne-modified nucleoside derivatives were used as an integral part of the standard automated oligonucleotide chain elongation. An azide-derived neomycin was then conjugated to the incorporated terminal alkynes by Cu(I)-catalyzed 1,3-dipolar cycloaddition (the click chemistry). Concentrated ammonia released the desired conjugates in acceptable purity and yields. The site of conjugation was expectedly important for the Hoogsteen-face recognition: C-5-conjugation showed a notable positive effect, whereas the influence of the C-2' and C-4'-modification remained marginal. In addition to conventional characterization methods (UV- and CD-spectroscopy), (19)F NMR spectroscopy was applied for the monitoring of triplex/duplex/single strand-conversions.


Assuntos
DNA/química , Neomicina/química , Oligonucleotídeos/química , Alcinos/química , Azidas/química , Catálise , Dicroísmo Circular , Química Click , Cobre/química , Reação de Cicloadição , DNA/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Temperatura de Transição , Raios Ultravioleta
14.
Artif DNA PNA XNA ; 5(1): e27792, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483840

RESUMO

Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis.


Assuntos
DNA/química , Nucleosídeos/química , Oligonucleotídeos/química , Pirimidinonas/química , Animais , Sítios de Ligação , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Marcação de Genes , Genes Reporter , Guanina/química , Camundongos , Mutagênese , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Potássio/química
15.
Bioorg Med Chem Lett ; 24(14): 3046-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24865415

RESUMO

Several triplex-forming oligonucleotides (TFOs) partially modified with 2'-O-(2-aminoethyl)- or 2'-O-(2-guanidinoethyl)-nucleotides were synthesized and their association rate constants (kon) with double-stranded DNA were estimated by UV spectrophotometry. Introduction of cationic modifications in the 5'-region of the TFOs significantly increased the kon values compared to that of natural TFO, while no enhancement in the rate of triplex DNA formation was observed when the modifications were in the middle and at the 3'-region. The kon value of a TFO with three adjacent cationic modifications at the 5'-region was found to be 3.4 times larger than that of a natural one. These results provide useful information for overcoming the inherent sluggishness of triplex DNA formation.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Sítios de Ligação , Cátions/química , DNA/síntese química , Cinética
16.
Chempluschem ; 79(1): 58-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31986766

RESUMO

In this study the position of the thiazole orange derivative in triplex-forming oligonucleotides (TFOs) is varied and the fluorescence of the resulting complexes with DNA duplexes, single-stranded DNAs and RNAs are evaluated. Under similar conditions single attachment of the TO-dye to 2'-O-propargyl nucleotides in the TFOs (assembly dependent fluorescence enhancing nucleic acids, AFENA) led to probes with low fluorescent intensity in the single-stranded state with fluorescence quantum yield (ΦF ) of 0.9 %-1.5 %. Significant increase in fluorescence intensity was detected after formation of DNA triplexes (ΦF =23.5 %-34.9 %). Under similar conditions, Watson-Crick-type duplexes formed by the probes with single stranded (ss) RNA and ssDNA showed lower fluorescence intensities. Bugle insertions of twisted intercalating nucleic acid (TINA) monomers were shown to improve the fluorescent characteristics of GT/GA-containing antiparallel AFENA-TFOs. Self-aggregation of TFOs caused by guanosines was eliminated by TINA insertion which also promoted DNA triplex formation at pH 7.2. Importantly these AFENA-TINA-TFOs can bind to the duplex in the presence of complementary RNA at 37 °C.

17.
Mol Carcinog ; 53(9): 744-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23681918

RESUMO

Antimetabolite chemotherapy remains an essential cancer treatment modality, but often produces only marginal benefit due to the lack of tumor specificity, the development of drug resistance, and the refractoriness of slowly proliferating cells in solid tumors. Here, we report a novel strategy to circumvent the proliferation-dependence of traditional antimetabolite-based therapies. Triplex-forming oligonucleotides (TFOs) were used to target site-specific DNA damage to the human c-MYC oncogene, thereby inducing replication-independent, unscheduled DNA repair synthesis (UDS) preferentially in the TFO-targeted region. The TFO-directed UDS facilitated incorporation of the antimetabolite, gemcitabine (GEM), into the damaged oncogene, thereby potentiating the anti-tumor activity of GEM. Mice bearing COLO 320DM human colon cancer xenografts (containing amplified c-MYC) were treated with a TFO targeted to c-MYC in combination with GEM. Tumor growth inhibition produced by the combination was significantly greater than with either TFO or GEM alone. Specific TFO binding to the genomic c-MYC gene was demonstrated, and TFO-induced DNA damage was confirmed by NBS1 accumulation, supporting a mechanism of enhanced efficacy of GEM via TFO-targeted DNA damage-induced UDS. Thus, coupling antimetabolite chemotherapeutics with a strategy that facilitates selective targeting of cells containing amplification of cancer-relevant genes can improve their activity against solid tumors, while possibly minimizing host toxicity.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias do Colo/prevenção & controle , DNA de Neoplasias/genética , Desoxicitidina/análogos & derivados , Sinergismo Farmacológico , Oligonucleotídeos/farmacologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Imunoprecipitação da Cromatina , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Desoxicitidina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
18.
Yale J Biol Med ; 86(4): 471-8, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24348211

RESUMO

Cellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis. The response elicited is dependent upon the type and extent of damage sustained, with the ultimate goal of preventing propagation of the damaged DNA. A major focus of our studies is to determine the cellular pathways involved in processing damage induced by altered helical structures, specifically triplexes. Our lab has demonstrated that the TFIIH factor XPD occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. We have shown that XPD co-localizes with γH2AX, and its presence is required for the phosphorylation of H2AX tyrosine142, which stimulates the signaling pathway to recruit pro-apoptotic factors to the damage site. Herein, we examine the cellular pathways activated in response to triplex formation and discuss our finding that suggests that XPD-dependent apoptosis plays a role in preserving genomic integrity in the presence of excessive structurally induced DNA damage.


Assuntos
Apoptose/genética , Dano ao DNA , Reparo do DNA , DNA/genética , Transdução de Sinais/genética , Sobrevivência Celular/genética , DNA/química , DNA/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Modelos Genéticos , Fosforilação , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
19.
Bioorg Med Chem ; 21(17): 5583-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23830701

RESUMO

Phosphoramidites containing 2-propynyloxy or 1-butyn-4-yl as nucleobase precursors were synthesized and introduced into oligonucleotides using an automated DNA synthesizer. Copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of the oligonucleotides with various azides gave the corresponding triazolylated oligonucleotides, triplex-forming ability of these synthetic oligonucleotides with double-stranded DNA targets was evaluated by UV melting experiments. It was found that nucleobases containing 2-(1-m-carbonylaminophenyl-1,2,3-triazol-4-yl)ethyl units likely interacted with A of a TA base pair in a parallel triplex DNA.


Assuntos
DNA/química , Nucleosídeos/química , Oligonucleotídeos/química , Triazóis/química , Pareamento de Bases , Catálise , Cobre/química , Reação de Cicloadição , Nucleosídeos/síntese química , Oligonucleotídeos/síntese química , Transição de Fase , Temperatura de Transição , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA