Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045801

RESUMO

Birds, bats and ants are recognised as significant arthropod predators. However, empirical studies reveal inconsistent trends in their relative roles in top-down control across strata. Here, we describe the differences between forest strata in the separate effects of birds, bats and ants on arthropod densities and their cascading effects on plant damage. We implemented a factorial design to exclude vertebrates and ants in both the canopy and understorey. Additionally, we separately excluded birds and bats from the understorey using diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and assessed herbivory damage. Arthropods responded similarly to predator exclusion across forest strata, with a density increase of 81% on trees without vertebrates and 53% without both vertebrates and ants. Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod density or herbivory damage across strata. Our results reveal that the effects of birds and bats on arthropod density and herbivory damage are similar between the forest canopy and understorey in this temperate forest. In addition, ants were not found to be significant predators in our system. Furthermore, birds, bats and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining ecological balance across different strata of a temperate forest.

2.
Preprint em Inglês | SciELO Preprints | ID: pps-1195

RESUMO

Human societies depend on services provided by ecosystems, from local needs as clean water and pest control to global services like ozone layer and the ocean biological pump. Ecosystem services are intrinsically linked to the states of the ecosystem, which are, in turn, governed by a complex web of ecological interactions. These interactions and, consequently, the services they support, are increasingly under threat from environmental changes driven by human activities. Therefore, safeguarding these vital services require an understanding of how the structure and dynamics of ecological interactions are affected by environmental change. A critical step towards this goal is the development of an integrative theoretical framework that can elucidate how ecosystem services are sustained or impaired by interactions within these complex ecosystems in fluctuating environments. Recent years have seen significant progress in quantitatively characterizing the organization and the dynamics of ecological interactions through the study of ecological networks. However, linking temporally varying network structure in fluctuating environments, the seascapes of ecological networks, and their impact on ecosystem services remains a challenge. We propose an approach based upon merging empirical ecological network analysis with Boolean functions and modeling techniques accounting for fluctuating environments to tackle how ecosystem services are affected by the changing structure and dynamics of ecological networks. The approach aims to contribute to the study of how the organization of ecological interactions affects the persistence of ecosystem services. Specifically, we discuss how this approach can be used provide new insights into how environmental change affect the relationship between ecological networks and ecosystem services. The combination of information on ecosystem services, Boolean networks and fluctuating environments might allow to enhance the research around conservation strategies for preserving biodiversity and ecosystem services in the face of ongoing environmental change.

3.
J Anim Ecol ; 93(6): 654-658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708817

RESUMO

Research Highlight: Piccoli, G. C. d. O., Antiqueira, P. A. P., Srivastava, D. S., & Romero, G. Q. (2024). Trophic cascades within and across ecosystems: The role of anti-predatory defences, predator type and detritus quality. Journal of Animal Ecology, 00, 1-14. https://doi.org/10.1111/1365-2656.14063. Ecosystem functioning is controlled by the interplay between bottom-up supply of limiting nutrients and top-down animal feedback effects. However, the degree of animal versus nutrient control is context-dependent. A key challenge lies in characterizing this context dependency which is hypothesized to depend on differences in animal functional traits. Reporting on an important experiment, Piccoli et al. (2014) evaluate how interactions among functionally different predators and decomposer prey create context dependency in top-down control of a model system-tropical bromeliad tank ecosystems. Bromeliad plants hold water in their tanks supporting microcosm ecosystems containing terrestrial and aquatic insect larvae and arachnids. The ecosystems are supported by nutrients in plant litter that rains down from forest canopies into the tanks. Nutrients are released after litter is decomposed by a functionally diverse community of larval insect decomposers that differ in feeding mode and antipredator defence strategy. This decomposer community is preyed upon by an exclusively narrowly ranging aquatic insect larval predator and widely ranging spider predator that crosses between the aquatic and surrounding terrestrial ecosystems. Experimental manipulation of the animal community to test for the degree of control by predators mediated by the functionally diverse prey community included four treatments: (i) a control with the detritivores composing different function groups but without predators, (ii) the cross-ecosystem spider predator added, (iii) the purely aquatic damselfly larvae predator added and (iv) both predator types added to capture their interacting effect on ecosystem function (decomposition, nutrient release, and plant growth). Notably, the study resolved the causal pathways and strengths of direct and indirect control using structural equation modelling. These findings reveal how context dependency arises due to different capacities of the predators alone and together to overcome prey defences and control their abundances, with attendant cascading effects that diminished as well as enhanced decomposition and nutrient release to support bromeliad plant production. The study reveals that predators have a decided, albeit qualitatively and quantitatively different, hand in shaping the degree of bottom-up control through feedback effect on the release of limiting nutrients. This ground-breaking study provides a way forward in understanding the mechanisms determining context dependency in the control over ecosystem functioning.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Insetos/fisiologia , Bromeliaceae/fisiologia , Ecossistema , Larva/fisiologia , Larva/crescimento & desenvolvimento , Aracnídeos/fisiologia
4.
Trends Ecol Evol ; 39(6): 558-570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402007

RESUMO

Despite the development of network science, we lack clear heuristics for how far different disturbance types propagate within and across species interaction networks. We discuss the mechanisms of disturbance propagation in ecological networks, and propose that disturbances can be categorized into structural, functional, and transmission types according to their spread and effect on network structure and functioning. We describe the properties of species and their interaction networks and metanetworks that determine the indirect, spatial, and temporal extent of propagation. We argue that the sampling scale of ecological studies may have impeded predictions regarding the rate and extent that a disturbance spreads, and discuss directions to help ecologists to move towards a predictive understanding of the propagation of impacts across interacting communities and ecosystems.


Assuntos
Ecossistema , Animais , Modelos Biológicos , Ecologia/métodos
5.
Ecology ; 105(1): e4197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897692

RESUMO

A central debate in ecology has been the long-running discussion on the role of apex predators in affecting the abundance and dynamics of their prey. In terrestrial systems, research has primarily relied on correlational approaches, due to the challenge of implementing robust experiments with replication and appropriate controls. A consequence of this is that we largely suffer from a lack of mechanistic understanding of the population dynamics of interacting species, which can be surprisingly complex. Mechanistic models offer an opportunity to examine the causes and consequences of some of this complexity. We present a bioenergetic mechanistic model of a tritrophic system where the primary vegetation resource follows a seasonal growth function, and the herbivore and carnivore species are modeled using two integral projection models (IPMs) with body mass as the phenotypic trait. Within each IPM, the demographic functions are structured according to bioenergetic principles, describing how animals acquire and transform resources into body mass, energy reserves, and breeding potential. We parameterize this model to reproduce the population dynamics of grass, elk, and wolves in northern Yellowstone National Park (USA) and investigate the impact of wolf reintroduction on the system. Our model generated predictions that closely matched the observed population sizes of elk and wolf in Yellowstone prior to and following wolf reintroduction. The introduction of wolves into our basal grass-elk bioenergetic model resulted in a population of 99 wolves and a reduction in elk numbers by 61% (from 14,948 to 5823) at equilibrium. In turn, vegetation biomass increased by approximately 25% in the growing season and more than threefold in the nongrowing season. The addition of wolves to the model caused the elk population to switch from being food-limited to being predator-limited and had a stabilizing effect on elk numbers across different years. Wolf predation also led to a shift in the phenotypic composition of the elk population via a small increase in elk average body mass. Our model represents a novel approach to the study of predator-prey interactions, and demonstrates that explicitly considering and linking bioenergetics, population demography and body mass phenotypes can provide novel insights into the mechanisms behind complex ecosystem processes.


Assuntos
Cervos , Lobos , Animais , Ecossistema , Melhoramento Vegetal , Dinâmica Populacional , Comportamento Predatório
6.
Trends Ecol Evol ; 39(1): 52-64, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839906

RESUMO

Predator-prey ecology and the study of animal cognition and culture have emerged as independent disciplines. Research combining these disciplines suggests that both animal cognition and culture can shape the outcomes of predator-prey interactions and their influence on ecosystems. We review the growing body of work that weaves animal cognition or culture into predator-prey ecology, and argue that both cognition and culture are significant but poorly understood mechanisms mediating how predators structure ecosystems. We present a framework exploring how previous experiences with the predation process creates feedback loops that alter the predation sequence. Cognitive and cultural predator-prey ecology offers ecologists new lenses through which to understand species interactions, their ecological consequences, and novel methods to conserve wildlife in a changing world.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Cadeia Alimentar
7.
Ecol Evol ; 13(11): e10665, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920766

RESUMO

The effects of warming on ecological communities emerge from a range of potentially asymmetric impacts on individual physiology and development. Understanding these responses, however, is limited by our ability to connect mechanisms or emergent patterns across the many processes that drive variation in demography. Further complicating this understanding is the gain or loss of predators to many communities, which may interact with changes in temperature to drive community change. Here we conducted a factorial warming and predation experiment to test generalized predictions about responses to warming. We used microcosms with a range of protists, rotifers, and a gastrotrich, with and without the predator Actinosphaerium, to assess changes in diversity, body size, function, and composition in response to warming. We find that community respiration and predator:prey biovolume ratios peak at intermediate temperatures, while species richness declined with temperature. We also found that overall biomass increased with species richness, driven by the effect of temperature on richness. There was little evidence of an interaction between predation and temperature change, likely because the predator was mostly limited to the intermediate temperatures. Overall, our results suggest that general predictions about community change are still challenging to make but may benefit by considering multiple dimensions of community patterns in an integrated way.

8.
Glob Chang Biol ; 29(18): 5122-5138, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386726

RESUMO

The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.


Assuntos
Ecossistema , Extinção Biológica , Humanos , Cadeia Alimentar , Modelos Teóricos , Mudança Climática , Biodiversidade
9.
J Anim Ecol ; 92(6): 1110-1112, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37282670

RESUMO

Research Highlight: Van Scoyoc, A., Smith, J. A., Gaynor, K. M., Barker, K., & Brashares, J. S. (2023) The influence of human activity on predator-prey spatiotemporal overlap. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13892. Few corners of the globe remain untouched by humans, and thus nearly all wildlife communities are influenced by human activity. Van Scoyoc et al. (2023) present a framework that places predator-prey interactions explicitly within an anthropogenic context, revealing that predator-prey dyads fall into one of four categories depending on whether predators and prey are attracted to or avoid human activity. These responses can either increase or decrease overlap among species via divergent pathways, which can help to make sense of seemingly conflicting patterns from prior studies. Their framework facilitates hypothesis testing, which they demonstrate with a meta-analysis of 178 predator-prey dyads from 19 camera trap studies. With evidence for each of the four pathways, yet some unexpected outcomes for temporal overlap among dyads, this review generates exciting questions and lays out a productive path forward to improve our understanding of species interactions in the Anthropocene.


Assuntos
Ecologia , Comportamento Predatório , Animais , Humanos , Comportamento Predatório/fisiologia , Animais Selvagens , Atividades Humanas
10.
Biol Rev Camb Philos Soc ; 98(5): 1829-1844, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311559

RESUMO

In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Suínos , Florestas , Biodiversidade , Animais Selvagens , Sus scrofa
11.
Plant Biol (Stuttg) ; 25(4): 571-578, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920172

RESUMO

The residues of glyphosate are found to remain in soils longer than previously reported, affecting rhizosphere microbes. This may adversely affect crop and other non-target plants because the plant's resilience and resistance largely rely on plant-associated microbes. Ubiquitous glyphosate residues in soil and how they impact mutualistic microbes inhabiting the aboveground plant parts are largely unexplored. We studied the effects of herbicide residues in soil on Epichloë sp., which are common endophytic symbionts inhabiting aerial parts of cool-season grasses. In this symbiosis, the obligate symbiont subsists entirely on its host plant, and in exchange, it provides alkaloids conferring resistance to herbivores for the host grass that invests little in its own chemical defence. We first show decreased growth of Epichloë endophytes in vitro when directly exposed to two concentrations of glyphosate or glyphosate-based herbicides. Second, we provide evidence for a reduction of Epichloë-derived, insect-toxic loline alkaloids in endophyte-symbiotic meadow fescue (F. pratensis) plants growing in soil with a glyphosate history. Plants were grown for 2 years in an open field site, and natural herbivore infestation was correlated with the glyphosate-mediated reduction of loline alkaloid concentrations. Our findings indicate that herbicides residing in soil not only affect rhizosphere microbiota but also aerial plant endophyte functionality, which emphasizes the destructive effects of glyphosate on plant symbiotic microbes, here with cascading effects on plant-pest insect interactions.


Assuntos
Alcaloides , Epichloe , Herbicidas , Herbicidas/farmacologia , Solo , Poaceae , Simbiose , Endófitos , Plantas , Epichloe/química
12.
J Anim Ecol ; 92(6): 1124-1134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36710603

RESUMO

Despite growing evidence of widespread impacts of humans on animal behaviour, our understanding of how humans reshape species interactions remains limited. Here, we present a framework that draws on key concepts from behavioural and community ecology to outline four primary pathways by which humans can alter predator-prey spatiotemporal overlap. We suggest that predator-prey dyads can exhibit similar or opposite responses to human activity with distinct outcomes for predator diet, predation rates, population demography and trophic cascades. We demonstrate how to assess these behavioural response pathways with hypothesis testing, using temporal activity data for 178 predator-prey dyads from published camera trap studies on terrestrial mammals. We found evidence for each of the proposed pathways, revealing multiple patterns of human influence on predator-prey activity and overlap. Our framework and case study highlight current challenges, gaps, and advances in linking human activity to animal behaviour change and predator-prey dynamics. By using a hypothesis-driven approach to estimate the potential for altered species interactions, researchers can anticipate the ecological consequences of human activities on whole communities.


Assuntos
Comportamento Animal , Comportamento Predatório , Humanos , Animais , Comportamento Predatório/fisiologia , Atividades Humanas , Dieta , Cadeia Alimentar , Mamíferos
13.
Glob Chang Biol ; 29(6): 1545-1556, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36516354

RESUMO

Despite recurrent emphasis on their ecological and economic roles, the importance of high trophic levels (HTLs) on ocean carbon dynamics, through passive (fecal pellet production, carcasses) and active (vertical migration) processes, is still largely unexplored, notably under climate change scenarios. In addition, HTLs impact the ecosystem dynamics through top-down effects on lower trophic levels, which might change under anthropogenic influence. Here we compare two simulations of a global biogeochemical-ecosystem model with and without feedbacks from large marine animals. We show that these large marine animals affect the evolution of low trophic level biomasses, hence net primary production and most certainly ecosystem equilibrium, but seem to have little influence on the 21st-century anthropogenic carbon uptake under the RCP8.5 scenario. These results provide new insights regarding the expectations for trophic amplification of climate change through the marine trophic chain and regarding the necessity to explicitly represent marine animals in Earth System Models.


Assuntos
Mudança Climática , Ecossistema , Animais , Retroalimentação , Biomassa , Oceanos e Mares
14.
Biol Rev Camb Philos Soc ; 98(3): 775-791, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36572536

RESUMO

Wildlife trade is a key driver of extinction risk, affecting at least 24% of terrestrial vertebrates. The persistent removal of species can have profound impacts on species extinction risk and selection within populations. We draw together the first review of characteristics known to drive species use - identifying species with larger body sizes, greater abundance, increased rarity or certain morphological traits valued by consumers as being particularly prevalent in trade. We then review the ecological implications of this trade-driven selection, revealing direct effects of trade on natural selection and populations for traded species, which includes selection against desirable traits. Additionally, there exists a positive feedback loop between rarity and trade and depleted populations tend to have easy human access points, which can result in species being harvested to extinction and has the potential to alter source-sink dynamics. Wider cascading ecosystem repercussions from trade-induced declines include altered seed dispersal networks, trophic cascades, long-term compositional changes in plant communities, altered forest carbon stocks, and the introduction of harmful invasive species. Because it occurs across multiple scales with diverse drivers, wildlife trade requires multi-faceted conservation actions to maintain biodiversity and ecological function, including regulatory and enforcement approaches, bottom-up and community-based interventions, captive breeding or wildlife farming, and conservation translocations and trophic rewilding. We highlight three emergent research themes at the intersection of trade and community ecology: (1) functional impacts of trade; (2) altered provisioning of ecosystem services; and (3) prevalence of trade-dispersed diseases. Outside of the primary objective that exploitation is sustainable for traded species, we must urgently incorporate consideration of the broader consequences for other species and ecosystem processes when quantifying sustainability.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Comércio de Vida Silvestre , Animais Selvagens , Biodiversidade
15.
Ecol Appl ; 33(3): e2804, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565243

RESUMO

Extensive land conversion to agriculture in drylands and associated resource use have wide-ranging impacts on desert ecosystems globally. Incorporating the impacts of human-social aspects is thus imperative in examining ecological interactions. The provision of agricultural inputs in these resource-scarce regions supports invasive and pest species, negatively impacting both agricultural productivity and native desert ecosystems. Understanding the spatial dynamics of invasive and pest species requires analyzing both bottom-up resource availability factors underlying animal distributions and top-down biological controls. Here, we evaluate the social-ecological cascading effects of dryland agriculture on vertebrate pest communities in dryland agricultural communities of Israel. Our study region is characterized by 18 agricultural cooperatives with distinct crop regimes due to contrasting social decision-making and resource allocation schemes (i.e., communal kibbutzim vs. privatized moshavim). Crop choices further affect land management (e.g., enclosed vs. open farm systems) and resource intensity. This system is ideal for studying trophic mechanisms underlying animal assemblages between agricultural regimes. We examine the role of agricultural land-use practices on pest spatial distributions based on multiyear vertebrate pest observations with agricultural data sets. We use structural equation modeling (SEM) to quantify the relative importance of added agricultural resources underlying bottom-up and top-down trophic processes regulating vertebrate pest assemblages. Results reveal that crop choices determine pest distributions through bottom-up processes directly, while simultaneously driving pest competitive interactions through indirect top-down cascades impacting pest communities. For example, due to the indirect negative effect of wolves on mesopredators (foxes and jackals) mediated by livestock, the total positive effect of livestock on the abundance of mesopredators is reduced. Our study illustrates the social-ecological cascading effects of agricultural regimes on pest community assemblages mediated by contrasting agricultural land-use practices. Considering the expansion of dryland agroecological systems globally, understanding the intricate cascading pathways of predator- and prey-pest communities has important implications for agricultural management, biological invasions in drylands, and fragile desert environments.


Assuntos
Ecossistema , Lobos , Animais , Humanos , Agricultura , Fazendas , Raposas
16.
Ecology ; 104(2): e3903, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36310413

RESUMO

Bats suppress insect populations in agricultural ecosystems, yet the question of whether bats initiate trophic cascades in forests is mainly unexplored. We used a field experiment to test the hypothesis that insectivorous bats reduce defoliation through the top-down suppression of forest-defoliating insects. We excluded bats from 20 large, subcanopy forest plots (opened daily to allow birds access), each paired with an experimental control plot, during three summers between 2018 and 2020 in the central hardwood region of the United States. We monitored leaf area changes and insect density for nine to 10 oak or hickory seedlings per plot. Insect density was three times greater on seedlings in bat-excluded versus control plots. Additionally, seedling defoliation was five times greater with bats excluded, and bats' impact on defoliation was three times greater for oaks than for hickories. We show that insectivorous bats drive top-down trophic cascades, play an integral role in forest ecosystems, and may ultimately influence forest health, structure, and composition. This work demonstrates insectivorous bats' ecological and economic value and the importance of conserving this highly imperiled group of predators.


Assuntos
Quirópteros , Insetos , Quercus , Animais , Agricultura , Aves , Ecossistema , Folhas de Planta , Plântula
17.
Glob Chang Biol ; 28(23): 7023-7037, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172863

RESUMO

Tropical savannas are globally extensive and ecologically invaluable ecosystems. As most ecosystems however, they are subject to serious anthropogenic stress. Defaunation, and especially the loss of large mammals, is pervasive in tropical savannas and known to trigger wide-ranging ecological effects, from vegetation changes to the loss of ecosystem function. Despite what is currently known about the terrestrial consequences of defaunation, and the potential cross-ecosystem influence of large mammals, virtually no research has investigated associated effects on small adjacent water bodies. This research gap persists because (1) tropical savannas have been historically neglected, (2) the ecological value of small water bodies (e.g. ponds) is only recently being recognized, and (3) empirical baseline data are often lacking. In this paper, we compared a rare pre-change dataset with newly collected data on 213 freshwater assemblages, to investigate community structure and composition before and after a major defaunation event. Our research focused on a diverse species assemblage of amphibian larvae (i.e. tadpoles) in temporary savanna ponds. We found that pond vegetation cover increased from 16.0% to 45.6% post-defaunation, that is, a near three-fold increase. Such habitat changes seemed to have benefitted those species that use vegetation during reproduction (e.g. the leaf-folding Afrixalus spp.), while others have declined. Interestingly, we found a strong correlation between tadpole community shifts and other freshwater organisms, which indicates that habitat changes have affected a wide variety of aquatic organisms. Given that organisms inhabiting temporary aquatic habitats often have complex life histories with terrestrial adult life stages, we propose that the terrestrial effects of defaunation have indirectly led to distinct aquatic communities, in addition to direct habitat effects. These results shed new light on the potential role of large-bodied mammals in shaping adjacent ecosystems, and raise important questions concerning the functioning of temporary aquatic systems in the Anthropocene.


Les savanes tropicales sont des écosystèmes étendus à l'échelle mondiale et d'une valeur écologique inestimable, mais qui sont soumis à une pression anthropique croissante. La défaunation, en particulier la perte de grands mammifères, est omniprésente dans les savanes tropicales et pouvant déclencher des effets écologiques de grande envergure allant des changements de végétation à la perte des fonctions écosystémiques. Malgré ce qui est connu des conséquences terrestres de la défaunation, presque aucune recherche n'a étudié les effets de la défaunation sur les plans d'eau temporaires adjacents qui sont utilisés par les grands mammifères. Cette lacune persiste parce que (1) les savanes tropicales ont été historiquement négligées, (2) la valeur écologique des plans d'eau temporaires a souvent été sous-estimée et (3) les données empiriques de référence sont souvent absentes. Dans l'étude présente, nous avons utilisé des données pré/post-défaunation sur 213 assemblages aquatiques de savane, dans le but d'étudier la structure et la composition de ces communités avant et après qu'un événement majeur de défaunation ait eu lieu. Notre recherche se focalise sur des plans d'eau temporaire comptant un nombre important d'espèces de larves d'amphibiens (têtards). Nous avons détecté une multiplication moyenne par près de trois de la couverture végétale des plans d'eau après la défaunation (16,0% à 45,6%). Ces changements d'habitat semblent avoir profité aux espèces qui utilisent la végétation pour leur reproduction (par exemple, Afrixalus spp.), tandis que d'autres espèces avec d'autres préférences d'habitat ont décliné. Nous avons calculé une forte corrélation entre la composition des têtards et celle de leurs prédateurs, ce qui indique que les changements d'habitat ont affecté la plupart des membres de ces communautés aquatiques. Étant donné que les organismes d'habitats aquatiques temporaires ont pour la plupart un cycle biologique complexe figurant à la fois un stade larvaire aquatique et un stade adulte terrestre, nous proposons qu'en plus des effets directs sur l'habitat aquatique (augmentation de la végétation), les effets terrestres de la défaunation ont indirectement altéré les communautés. Ces résultats suggèrent un rôle important des grands mammifères par leur influence sur les écosystèmes aquatique adjacents et soulèvent des questions urgentes concernant la fonctionnalité des systèmes aquatiques temporaires dans l'Anthropocène.


Assuntos
Ecossistema , Pradaria , Animais , Água Doce , Organismos Aquáticos , Mamíferos , Larva , Água
18.
J Anim Ecol ; 91(12): 2348-2357, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871769

RESUMO

Introduced large herbivores have partly filled ecological gaps formed in the late Pleistocene, when many of the Earth's megafauna were driven extinct. However, extant predators are generally considered incapable of exerting top-down influences on introduced megafauna, leading to unusually strong disturbance and herbivory relative to native herbivores. We report on the first documented predation of juvenile feral donkeys Equus africanus asinus by cougars Puma concolor in the Mojave and Sonoran Deserts of North America. We then investigated how cougar predation corresponds with differences in feral donkey behaviour and associated effects on desert wetlands. Focusing on a feral donkey population in the Death Valley National Park, we used camera traps and vegetation surveys to compare donkey activity patterns and impacts between wetlands with and without cougar predation. Donkeys were primarily diurnal at wetlands with cougar predation, thereby avoiding cougars. However, donkeys were active throughout the day and night at sites without predation. Donkeys were ~87% less active (measured as hours of activity a day) at wetlands with predation (p < 0.0001). Sites with predation had reduced donkey disturbance and herbivory, including ~46% fewer access trails, 43% less trampled bare ground and 192% more canopy cover (PERMANOVA, R2  = 0.22, p = 0.0003). Our study is the first to reveal a trophic cascade involving cougars, feral equids and vegetation. Cougar predation appears to rewire an ancient food web, with diverse implications for modern ecosystems. Our results suggest that protecting apex predators could have important implications for the ecological effects of introduced megafauna.


Assuntos
Puma , Animais , Equidae , Ecossistema
19.
Ecology ; 103(12): e3828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35861103

RESUMO

When herbivore abundance is controlled by predators there may be an indirect positive effect on primary producers due to reduced grazing pressure, but the potential of predation refuges to modify such trophic cascades has rarely been studied. By experimentally manipulating substrate particle size and fish predation regime, we assessed the outcome of invertebrate grazer-biofilm interactions in streams. Locations at the center of larger substrate particles were predicted to pose a higher predation risk, and therefore be subjected to a lower grazing pressure. In our 52-day experiment in a New Zealand stream, small-sized substrates (terracotta tiles) remained virtually free of periphyton across their entire upper surface, whereas a thick periphyton mat was formed across large tiles with only edges remaining free. In channels containing fish (either native Galaxias vulgaris or exotic Salmo trutta), grazing on tiles was lower than in the absence of fish. A preference for grazing near to the edge of tiles was clearest in fish channels but was also evident even in the absence of fish, probably reflecting fish presence and/or fish kairomones in the stream from where the colonizing invertebrates had been derived. Total grazer density was similar across treatments with or without fish, suggesting that our results can be explained mostly by changes in the behavior of grazers. We suggest that refuge availability, interacting with grazer predator-avoidance behavior, may produce a context-dependent patchwork of trophic cascades in streams and other ecosystems.


Assuntos
Ecossistema , Rios , Animais , Invertebrados , Truta , Biofilmes
20.
J Anim Ecol ; 91(10): 2023-2036, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839141

RESUMO

The emphasis on mechanisms governing the interaction among predators (e.g. cooperation, competition or intraguild predation) has driven the understanding of multiple-predator effects on prey survival and dynamics. However, overwhelming evidence shows that prey can adaptively respond to predators, exhibiting multiple defensive phenotypes to cope with predation. Nevertheless, there is still a relatively scarce theory connecting the emergence of prey defences in complex multi-predator scenarios and their ecological consequences. Using a mathematical approach, we evaluated the prevalence of defended prey phenotypes as a function of predator-induced mortality in a two-predator system, and how prey and phenotype dynamics affect trophic cascades. We also evaluated such responses when prey manifests a general defence against both predators (i.e. risk reducing) or a specialized defence against one predator at the expense of defence against the other predator (i.e. risk trade-off), and when such phenotypes induce fitness and foraging costs. We showed that the emergence of defended phenotypes under multiple predators depends on predator-induced mortality rates, the magnitude of phenotype costs and the effect of the defensive phenotype on the performance of all predators. Risk-reducing phenotypes enhance prioritized responses to predators with high killing rates, but prioritized responses are diminished when prey manifest risk trade-off phenotypes. Finally, we showed that resource abundance across the predation gradient directly depends on the prevalence of certain prey phenotypes and their effect on foraging costs. Ultimately, our results depict the implications of prey defences on prey and basal resources abundance in a multiple predators' environment, highlighting the role of the identity of defensive strategies in mediating the strength and nature of trophic cascades, via consumptive or non-consumptive effects.


A ênfase nos mecanismos que governam a interação entre predadores (por exemplo, cooperação, competição ou predação intra-guilda) tem impulsionado a compreensão dos efeitos de múltiplos predadores na sobrevivência e dinâmica de presas. No entanto, fortes evidências mostram que as presas podem responder de forma adaptativa aos predadores, exibindo vários fenótipos de defesa para lidar com a predação. No entanto, ainda há uma teoria relativamente escassa conectando a manifestação de defesas em presas em cenários com múltiplos predadores e suas consequências ecológicas. Usando uma abordagem matemática, avaliamos a prevalência de fenótipos de defesa de presas em função da mortalidade induzida por predadores em um sistema de dois predadores, e como a dinâmica de presas e dos fenótipos afeta a cascata trófica. Também avaliamos tais respostas quando a presa manifesta uma defesa geral contra ambos os predadores (ou seja, redução de risco) ou uma defesa especializada contra um predador em detrimento da defesa contra o outro predador (ou seja, trade-off de risco), e quando tais fenótipos induzem custos ao fitness e ao forrageamento. Nós mostramos que a manifestação de fenótipos de defesa sob múltiplos predadores depende das taxas de mortalidade induzidas pelo predador, da magnitude dos custos do fenótipo e do efeito do fenótipo no desempenho dos predadores. Os fenótipos de redução de risco aumentam as respostas priorizadas aos predadores com altas taxas de predação, mas as respostas priorizadas são reduzidas quando as presas manifestam fenótipos de trade-off de risco. Finalmente, mostramos que a abundância de recursos ao longo do gradiente de predação depende diretamente da prevalência de determinados fenótipos e seus efeitos no forrageamento da presa. Em última análise, nossos resultados retratam as implicações das defesas contra predadores na abundância de presas e recursos basais em um ambiente com múltiplos predadores, destacando o papel da identidade de estratégias de defesa na mediação da força e natureza das cascatas tróficas, via efeitos de consumo ou comportamentais.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Fenótipo , Comportamento Predatório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...