Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Cancer Med ; 13(12): e7351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38925616

RESUMO

BACKGROUND: Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS: This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS: In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS: NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.


Assuntos
Neoplasias , Proteínas de Fusão Oncogênica , Receptor trkA , Humanos , Japão/epidemiologia , Proteínas de Fusão Oncogênica/genética , Receptor trkA/genética , Masculino , Neoplasias/genética , Neoplasias/epidemiologia , Feminino , Criança , Adulto , Receptor trkC/genética , Adolescente , Receptor trkB/genética , Prevalência , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Idoso , Glicoproteínas de Membrana
2.
Expert Opin Ther Pat ; 34(4): 231-244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38785069

RESUMO

INTRODUCTION: The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED: Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION: While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos , Patentes como Assunto , Inibidores de Proteínas Quinases , Transdução de Sinais , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Mutação
3.
Clin Lung Cancer ; 25(3): 215-224.e3, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584068

RESUMO

Pulmonary atypical carcinoid (AC) is an extremely rare neuroendocrine tumor. The neurotrophic tropomyosin receptor kinase (NTRK) fusions are reported in only 0.5% of nonsmall cell lung cancer, and are more rare in AC with only one previously reported case. Currently, there is little established evidence on the optimal therapeutic strategies and prognosis for advanced cases. We present a female patient with metastatic AC after complete resection. Due to low expression of somatostatin receptor in this case, somatostatin analogs and peptide receptor radionuclide therapy were not available. After pursuing other alternative treatments, including chemotherapy (ie, carboplatin, etoposide, capecitabine, temozolomide, and paclitaxel), everolimus, and atezolizumab, she returned with significant progression, including innumerable subcutaneous nodules, left pleura metastasis, multiple bone metastases, and brain metastases. New biopsy analysis revealed an ETV6-NTRK2 fusion. She was immediately administered the first-generation tropomyosin receptor kinase inhibitor entrectinib at a dose of 600 mg q.d. A subsequent month of treatment resulted in a complete response in all of the metastatic lung lesions. To date, she has maintained sustained benefit for at least 1 year from initiation of entrectinib. Here, we present the first case of a female patient with metastatic AC harboring the ETV6-NTRK2 fusion, and successfully treated with entrectinib, providing evidence for the application of entrectinib in patients with NTRK-positive AC, and underscoring the critical role of molecular profiling for such cases.


Assuntos
Benzamidas , Tumor Carcinoide , Indazóis , Neoplasias Pulmonares , Proteínas de Fusão Oncogênica , Humanos , Feminino , Tumor Carcinoide/tratamento farmacológico , Tumor Carcinoide/patologia , Tumor Carcinoide/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Indazóis/uso terapêutico , Benzamidas/uso terapêutico , Pessoa de Meia-Idade , Receptor trkB/genética , Inibidores de Proteínas Quinases/uso terapêutico , Glicoproteínas de Membrana
4.
Ageing Res Rev ; 96: 102211, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38307424

RESUMO

Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.


Assuntos
Doença de Alzheimer , Alucinógenos , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Dietilamida do Ácido Lisérgico/farmacologia , Dietilamida do Ácido Lisérgico/uso terapêutico , Psilocibina/farmacologia , Psilocibina/uso terapêutico , N,N-Dimetiltriptamina
5.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333908

RESUMO

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Assuntos
Fator de Crescimento Neural , Osteogênese , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Polpa Dentária , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , RNA Interferente Pequeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proliferação de Células
6.
Enzyme Microb Technol ; 175: 110406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330706

RESUMO

The chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol has attracted increasing attentions in recent years in the field of pharmaceuticals because of its important use as a building block in the synthesis of novel anti-tumor drugs targeting tropomyosin receptor kinases. In the present study, a ω-transaminase (ωTA) library consisting of 21 (R)-enantioselective enzymes was constructed and screened for the asymmetric biosynthesis of (R)-2-(1-aminoethyl)-4-fluorophenol from its prochiral ketone. Using (R)-α-methylbenzylamine, D-alanine, or isopropylamine as amino donor, 18 ωTAs were identified with target activity and the enzyme AbTA, which was originally identified from Arthrobacter sp. KNK168, was found to be a potent candidate. The E. coli whole cells expressing AbTA could be used as catalysts. The optimal temperature and pH for the activity were 35-40 °C and pH8.0, respectively. Simple alcohols (such as ethanol, isopropanol, and methanol) and dimethyl sulfoxide were shown to be good cosolvents. High activities were detected when using ethanol and dimethyl sulfoxide at the concentrations of 5-20%. In the scaled-up reaction of 1-liter containing 13 mM ketone substrate, about 50% conversion was achieved in 24 h. 6.4 mM (R)-2-(1-aminoethyl)-4-fluorophenol was generated. After a simple and efficient process of product isolation and purification (with 98.8% recovery), 0.986 g yellowish powder of the product (R)-2-(1-aminoethyl)-4-fluorophenol with high (R)-enantiopurity (up to 100% enantiomeric excess) was obtained. This study established an overall process for the biosynthesis of the high value pharmaceutical chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol by ωTA. Its applicable potential was exemplified by gram-scale production.


Assuntos
Antineoplásicos , Fenóis , Transaminases , Dimetil Sulfóxido , Escherichia coli , Cetonas , Antineoplásicos/farmacologia , Catálise , Etanol
7.
Bioorg Med Chem ; 99: 117608, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271867

RESUMO

Tropomyosin receptor kinases (TRKs), the superfamily of transmembrane receptor tyrosine kinases, have recently become an attractive method for precision anticancer therapies since the approval of Larotrectinib and Entrectinib by FDA. Herein, we reported the discovery of a series of novel indazolylaminoquinazoline and indazolylaminoindazole as TRK inhibitors. The representative compound 30f exhibited good inhibitory activity against TRKWT, TRKG595R and TRKG667C with IC50 values of 0.55 nM, 25.1 nM and 5.4 nM, respectively. The compound also demonstrated potent superior to Larotrectinib antiproliferative activity against a panel of Ba/F3 cell lines transformed with both NTRK wild type and mutant fusions (IC50 = 10-200 nM). In addition, compound 30f exhibited good in vitro metabolic stability (T1/2 = 73.0 min), indicating that the quinazoline derivatives may have better metabolic stability. Finally, the binding mode of compound 30f predicted by molecular docking well explained the good enzyme inhibitory activity of indazolylaminoquinazoline compounds as TRK inhibitor. Thus, compound 30f can be used as a promising lead molecule for further structural optimization.


Assuntos
Neoplasias , Humanos , Tropomiosina , Simulação de Acoplamento Molecular , Receptores Proteína Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia
8.
J Biomol Struct Dyn ; 42(6): 2965-2975, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184150

RESUMO

Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Doenças do Sistema Nervoso , Humanos , Tropomiosina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
9.
Curr Top Med Chem ; 24(1): 3-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38058091

RESUMO

BACKGROUND: The tropomyosin receptor kinases (TRKs) are crucial for many cellular functions, such as growth, motility, differentiation, and metabolism. Abnormal TRK signalling contributes to a variety of human disorders, most evidently cancer. Comprehensive genomic studies have found numerous changes in the genes that code for TRKs like MET, HER2/ErbB2, and EGFR, among many others. Precision medicine resistance, relapse occurring because of the protein point mutations, and the existence of multiple molecular feedback loops are significant therapeutic hurdles to the long-term effectiveness of TRK inhibitors as general therapeutic agents for the treatment of cancer. OBJECTIVE: This review is carried out to highlight the role of tropomyosin receptor kinase in cancer and the function of TRK inhibitors in the intervention of cancer. METHODS: Literature research has been accomplished using Google Scholar and databases like ScienceDirect, WOS, PubMed, SciFinder, and Scopus. RESULTS: In this review, we provide an overview of the main molecular and functional properties of TRKs and their inhibitors. It also discusses how these advancements have affected the development and use of novel treatments for malignancies and other conditions caused by activated TRKs. Several therapeutic strategies, including the discovery and development of small-molecule TRK inhibitors belonging to various chemical classes and their activity, as well as selectivity towards the receptors, have been discussed in detail. CONCLUSION: This review will help the researchers gain a fundamental understanding of TRKs, how this protein family works, and the ways to create chemical moieties, such as TRK inhibitors, which can serve as tailored therapies for cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor trkB/metabolismo , Receptor trkB/uso terapêutico , Receptor trkA/metabolismo , Receptor trkA/uso terapêutico , Tropomiosina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
10.
J Biomol Struct Dyn ; : 1-11, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975413

RESUMO

Ameloblastoma is a benign odontogenic jawbone tumor. The binding of Nerve growth factor (NGF) to receptor tyrosine kinase A (TrkA) promotes cell survival, proliferation, and differentiation via PI3K/AKT and Ras/MAPK signaling. Although the exact cause of ameloblastoma remains unknown, elevated levels of NGF and TrkA expression in ameloblastoma are associated with aggressive tumor behavior and poor patient outcomes. It is previously demonstrated that His 4, Arg 9, and Glu 11 residues of NGF made crucial interactions with the TrkA subunit. The main aim of our present study to develop potential therapeutic strategies by identifying promising peptide candidates. The objectives include starting with a detailed in silico analysis to identify a crucial peptide sequence of NGF that is bound by TrkA, creating a library of novel peptides from the identified peptide sequence through a single-point mutation on interacting residues (His 4, Arg 9, and Glu 11), and selecting the top peptides based on docking score, interactions analysis, and desirable pose analysis. The study ultimately designed a hybrid peptide candidate through the simultaneous and continuous mutation of the top residues, resulting in a peptide that exhibited a more specific interaction with TrkA, blocking the binding site and preventing the interaction between NGF and TrkA.Communicated by Ramaswamy H. Sarma.

11.
Front Mol Neurosci ; 16: 1237458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900943

RESUMO

Degeneration of basal forebrain cholinergic neurons (BFCNs) is a hallmark of Alzheimer's disease (AD). However, few mouse models of AD recapitulate the neurodegeneration of the cholinergic system. The p75 neurotrophin receptor, p75NTR, has been associated with the degeneration of BFCNs in AD. The senescence-accelerated mouse prone number 8 (SAMP8) is a well-accepted model of accelerated and pathological aging. To gain a better understanding of the role of p75NTR in the basal forebrain during aging, we generated a new mouse line, the SAMP8-p75exonIII-/-. Deletion of p75NTR in the SAMP8 background induces an increase in the number of BFCNs at birth, followed by a rapid decline during aging compared to the C57/BL6 background. This decrease in the number of BFCNs correlates with a worsening in the Y-maze memory test at 6 months in the SAMP8-p75exonIII-/-. We found that SAMP8-p75exonIII-/- and C57/BL6-p75exonIII-/- mice expressed constitutively a short isoform of p75NTR that correlates with an upregulation of the protein levels of SREBP2 and its targets, HMGCR and LDLR, in the BF of both SAMP8-p75exonIII-/- and C57/BL6-p75exonIII-/- mice. As the neurodegeneration of the cholinergic system and the dysregulation of cholesterol metabolism are implicated in AD, we postulate that the generated SAMP8-p75exonIII-/- mouse strain might constitute a good model to study long-term cholinergic neurodegeneration in the CNS. In addition, our results support the role of p75NTR signaling in cholesterol biosynthesis regulation.

12.
J Agric Food Chem ; 71(42): 15582-15592, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819167

RESUMO

Neurogenesis is crucial during the human lifespan for the maintenance of synaptic plasticity and normal function. The impairment of hippocampal neurogenesis in adults may lead to neurodegenerative disease, such as Alzheimer's disease. Miquelianin (quercetin-3-O-ß-d-glucuronide, Q3GA) is a constituent of the nuciferine leaf polyphenol extract (NLPE), and it has protective effects against neurodegeneration. In this study, we examined the effect of the NLPE on neurogenesis and the mechanisms underlying Q3GA on neurogenesis. We fed 24-week-old male C57BL/6 mice with 0.1 or 0.25% NLPE for 2 weeks. NLPE treatment increased small spindle-shaped stem cell numbers in the subgranular zone and the number of doublecortin (DCX)- and neuron-specific nuclear protein (NeuN)-expressing neurons. HT22, a hippocampal cell line, treated with Q3GA revealed significant neurite growth and upregulated TrkR and PI3K/Akt levels. The evidence from a model of retinoic acid-induced SH-SY5Y cell differentiation showed that Q3GA or NLPE increases neurite growth significantly. Taken together, the NLPE containing Q3GA to promote neurogenesis involving the upregulation of TrkR and the PI3K/Akt signaling pathway might be potentiated as an alternative strategy for the treatment of neurodegeneration.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Masculino , Quercetina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glucuronídeos/metabolismo , Tropomiosina , Fosfatidilinositol 3-Quinase/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismo , Doenças Neurodegenerativas/metabolismo , Regulação para Cima , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Transdução de Sinais , Neurogênese , Hipocampo , Folhas de Planta/metabolismo
13.
Expert Opin Drug Saf ; 22(11): 1073-1089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869783

RESUMO

INTRODUCTION: Oncogenic NTRK fusions have been found in multiple cancer types affecting adults and/or children, including rare tumors with pathognomonic fusions and common cancers in which fusions are rare. The tropomyosin receptor kinase inhibitors (TRKi) larotrectinib and entrectinib are among the first agents with tissue agnostic FDA approvals for cancer treatment, and additional TRKi are undergoing development. As experience with TRKi grow, novel mechanisms of resistance and on/off target side effects have become increasingly important considerations. AREAS COVERED: Authors reviewed literature published through July 2023 on platforms such as PubMed, clinicaltrials.gov, and manufacturer/FDA drug labels, focusing on the development of TRKi, native functions of TRK, phenotype of congenital TRK aberrancies, efficacy, and safety profile of TRKi in clinical trials and investigator reports, and on/off target adverse effects associated with TRKi (Appendix A). EXPERT OPINION: TRKi have histology-agnostic activity against tumors with NTRK gene fusions. TRKi are generally well tolerated with a side effect profile that compares favorably to cytotoxic chemotherapy. There are numerous ongoing studies investigating TRKi as frontline, adjuvant, and salvage therapy. It will be critical to continue to gather long-term safety data on the use of these agents, particularly in children.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Criança , Adulto , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Terapia de Salvação
14.
Front Urol ; 22023.
Artigo em Inglês | MEDLINE | ID: mdl-37701183

RESUMO

IC/BPS is a chronic inflammatory pelvic pain syndrome characterized by lower urinary tract symptoms including unpleasant sensation (pain, pressure, or discomfort) in the suprapubic or bladder area, as well as increased urinary frequency and urgency, and decreased bladder capacity. While its etiology remains unknown, increasing evidence suggests a role for changes in nerve growth factor (NGF) signaling. However, NGF signaling is complex and highly context dependent. NGF activates two receptors, TrkA and p75NTR, which activate distinct but overlapping signaling cascades. Dependent on their coexpression, p75NTR facilitates TrkA actions. Here, we show effects of CYP treatment and pharmacological inhibition of p75NTR (via LM11A-31) and TrkA (ARRY-954) on NGF signaling-related proteins: NGF, TrkA, phosphorylated (p)-TrkA, p75NTR, p-ERK1/2, and p-JNK. Cystitis conditions were associated with increased urothelial NGF expression and decreased TrkA and p75NTR expression as well as altering their co-expression ratio; phosphorylation of ERK1/2 and JNK were also altered. Both TrkA and p75NTR inhibition affected the activation of signaling pathways downstream of TrkA, supporting the hypothesis that NGF actions during cystitis are primarily TrkA-mediated. Our findings, in tandem with our recent companion paper demonstrating the effects of TrkA, TrkB, and p75NTR inhibition on bladder function in a mouse model of cystitis, highlight a variety of potent therapeutic targets and provide further insight into the involvement of NGF signaling in sustained conditions of bladder inflammation.

15.
Expert Opin Ther Pat ; 33(7-8): 503-521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37735897

RESUMO

INTRODUCTION: Trk inhibitors are significant in the realm of personalized medicine as they target specific genetic alterations, such as NTRK gene fusions, leading to improved treatment outcomes for cancer patients. By tailoring the treatment to the genetic characteristics of the tumor rather than the tumor type, Trk inhibitors offer the potential for more effective and precise therapies, resulting in enhanced response rates and prolonged survival for patients with NTRK fusion-positive cancers. AREAS COVERED: Patents covering type I inhibitors targeting the Trk family are discussed, building upon our prior review series on Trk inhibitors. Relevant patents were identified through the Web of Science database, Google, and Google Patents. EXPERT OPINION: The field of Trk inhibitors has evolved significantly, as reflected in the current patent literature, which emphasizes the selective structural refinement of clinical champions. Efforts now concentrate on enhancing efficacy against on-target resistance mechanisms, with modifications made to improve potency, reduce toxicity, and enhance pharmacokinetics. Combination therapies show potential to address off-target resistance mechanisms and improve treatment outcomes. Challenges remain in accurately diagnosing NTRK gene alterations and integrating screening into routine clinical practice. Trk inhibitors have surpassed their conventional role of inhibition and are now seeing new applications in radiopharmaceutical development and as molecular targeting agents.


Assuntos
Neoplasias , Receptor trkA , Humanos , Tropomiosina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Patentes como Assunto , Neoplasias/tratamento farmacológico
16.
Front Mol Neurosci ; 16: 1214150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609072

RESUMO

Aims: Huntingtin-associated protein 1 (HAP1) is a neuronal protein closely associated with microtubules and might facilitate neurological function rehabilitation. This study aimed to investigate the effects of HAP1 on SCI and the underlying mechanisms. Methods: the spinal cord injury (SCI) mouse model was induced by Allen's method. Then recombinant-HAP1 (r-HAP1) was administrated by intrathecal injection, and the BMS, Thermal nociceptive thresholds, tactile nociceptive thresholds, and neurofibrillary regeneration were identified to inspect the therapy outcome. Then NSCs were isolated from mice on embryonic day 14.5 and induced to differentiate into neurons. The efficiency of axon growth was calculated. Signaling pathway array was conducted to examine the signaling pathways in NSCs treated with r-HAP1. Antagonists and activators of TrkA were used to confirm the role of TrkA of HAP1 intervention both in vitro and in vivo. Results: r-HAP1 ameliorates the neurological function rehabilitation after SCI, and benefits the regain of Tuj in injury spinal cord. Also significantly enhances neurite growth during neuronal differentiation of NSCs; Signaling pathway array and Western blot revealed that r-HAP1 significantly activates the phosphorylation of TrkA-MAPK/ERK in NSCs. TrkA selective inhibitor GW441756 blocks r-HAP1 on TrkA-MAPK/ERK signaling pathway and detracts from axonal growth after neuronal differentiation. TrkA selective activator gambogic amide can mimic the function of r-HAP1 by activating the foregoing pathway. ERK activator U-46619 reverses the blocking effect of GW441756 on r-HAP1. Conclusion: HAP1 activates the TrkA-MAPK signaling pathway and is conducive to neurite elongation during NSC neuronal differentiation; by which to improve the prognosis of spinal cord injury in mice.

17.
J Thorac Dis ; 15(7): 3811-3817, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37559603

RESUMO

Background: We performed a retrospective analysis to determine the incidence of neurotrophic tropomyosin-receptor kinase (NTRK) fusion in non-small cell lung cancer (NSCLC). Methods: Archival NSCLC tissues between 2018-2020 were screened by immunohistochemistry (IHC) with IHC-positive cases undergoing confirmatory molecular analysis. Correlative clinicopathologic parameters were collected. Results: Of 289 samples analyzed, 10 (3.5%) cases had NTRK expression on IHC. The median age of patients with NTRK-positivity on IHC was 74.9 (range, 44-88) years and 70% had a smoking history. The cohort included seven adenocarcinomas and one each squamous cell carcinoma, large-cell neuroendocrine and not otherwise specified histologies. PDL1 expression was ≤50% in five cases. Concurrent EGFR mutations were detected in three cases, with two cases also showing a PIK3CA E542K mutation and MET amplification, respectively. Due to insufficient tumor material, RNA-sequencing was undertaken in only one IHC-positive case, with the other nine cases analyzed by Fluorescent in-situ Hybridisation. A NTRK fusion, EML4-NTRK3 gene fusion was detected in one patient, a frequency of 0.35%. Conclusions: NTRK fusions in NSCLC are rare. This study highlights real world diagnostic challenges regarding NTRK testing, such as requirements of adequate tumor tissue and appropriate testing methodologies.

18.
Behav Brain Res ; 453: 114615, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37558167

RESUMO

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Assuntos
Acetilcolinesterase , Disfunção Cognitiva , Animais , Masculino , Ratos , Acetilcolinesterase/metabolismo , Aspartame/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Ratos Wistar , Receptor trkB/metabolismo , Transdução de Sinais , Tropomiosina/metabolismo
19.
Expert Rev Anticancer Ther ; 23(8): 865-874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434345

RESUMO

BACKGROUND: NTRK gene fusions have been identified in various tumors; some requiring aggressive therapy and sometimes new TRK inhibitors (TRKi). We aimed to describe a national, unselected, retrospective, multicenter cohort. RESEARCH DESIGN AND METHODS: Patients were identified through the French sarcoma diagnostic laboratory at Institut Curie through samples analyzed by RT-qPCR or whole-transcriptome sequencing. RESULTS: From 2001 to 2019, 65 NTRK fusion tumors were identified within 2120 analyses (3.1%): 58 by RNA sequencing (including 20 after RT-qPCR analysis) and 7 exclusively by RT-qPCR. Of the 61 patients identified, 37 patients had infantile soft tissue or kidney fibrosarcomas (IFS), 15 other mesenchymal (Other-MT) and nine central nervous system (CNS) tumors. They encompassed 14 different tumor types with variable behaviors. Overall, 53 patients had surgery (3 mutilating), 38 chemotherapy (20 alkylating agents/anthracycline), 11 radiotherapy, two 'observation strategy' and 13 received TRKi. After a median follow-up of 61.0 months [range, 2.5-226.0], 10 patients died. Five-year overall survival is, respectively, 91.9% [95%CI, 83.5-100.0], 61.1% [95%CI, 34.2-100.0] and 64.8% [95%CI, 39.3-100.0] for IFS, Other-MT, and CNS groups. CONCLUSIONS: NTRK-fusion positive tumors are rare but detection is improved through RNA sequencing. TRKi could be considered at diagnosis for CNS NTRK-fusion positive tumors, some IFS, and Other-MT. TRIAL REGISTRATION: Not adapted.


Assuntos
Neoplasias do Sistema Nervoso Central , Fibrossarcoma , Neoplasias , Sarcoma , Humanos , Receptor trkA/genética , Receptor trkA/uso terapêutico , Tropomiosina/uso terapêutico , Estudos Retrospectivos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sarcoma/patologia , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/genética , Fibrossarcoma/patologia , Proteínas de Fusão Oncogênica/genética
20.
Iran J Basic Med Sci ; 26(6): 701-707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275761

RESUMO

Objectives: To investigate the potential of Tropomyosin receptor kinase A (TrkA) for the treatment of interstitial cystitis/ bladder pain syndrome (IC/BPS). Materials and Methods: Sixty-four female rats were randomly assigned to the control and cyclophosphamide (CYP) groups. Quantitative reverse transcription polymerase chain reaction was utilized to detect the mRNA level of TrkA. Western blot analysis was used to measure the protein levels of TNF-α, IL-6, and TrkA. Immunostaining was used to detect the expression of TrkA in bladder sections. Contractility studies and urodynamic measurements were utilized to test the spontaneous contractions of detrusor muscle strips and the global bladder activity, respectively. Results: Rat models of chronic cystitis were successfully established. The mRNA and protein levels of TrkA were significantly increased in the bladders of CYP-treated rats. Also, results of immunohistochemical staining and immunofluorescence staining showed that increased TrkA expression in the CYP group was mainly observed in the urothelium layer and bladder interstitial Cajal-like cells (ICC-LCs) but not in the detrusor smooth muscle cells. The specific inhibitor of TrkA, GW441756 (10 µM), significantly suppressed the robust spontaneous contractions of detrusor muscle strips in the CYP group and alleviated the overall bladder overactivity of CYP-treated rats. However, the inhibitory effects of GW441756 (10 µM) on the spontaneous contractions of detrusor muscle strips and the overall bladder activity were eliminated after pretreatments with the specific blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, ZD7288 (50 µM). Conclusion: Our results suggested that increased TrkA expression during chronic cystitis promotes the development of bladder overactivity by targeting the HCN channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...