Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400061, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955667

RESUMO

Endomucin (MUC14), encoded by EMCN gene, is an O-glycosylated transmembrane mucin that is mainly found in venous endothelial cells (ECs) and highly expressed in type H vessels of bone tissue. Its main biological functions include promoting endothelial generation and migration through the vascular endothelial growth factor (VEGF) signaling pathway and inhibiting the adhesion of inflammatory cells to ECs. In addition, it induces angiogenesis and promotes bone formation. Due to the excellent functions of Endomucin in the above aspects, it provides a new research target for the treatment of vascular inflammatory-related diseases and bone diseases. Based on the current understanding of its function, the research of Endomucin mainly focuses on the above two diseases. As it is known, the progression of cancer is closely related to angiogenesis. Endomucin recently is found to be differentially expressed in a variety of tumors and correlated with survival rate. The biological role of Endomucin in cancer is opaque. This article introduces the research progress of Endomucin in vascular inflammatory-related diseases and bone diseases, discusses its application value and prospect in the treatment, and collects the latest research situation of Endomucin in tumors, to provide meaningful evidence for expanding the research field of Endomucin.

2.
Front Endocrinol (Lausanne) ; 15: 1394785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883597

RESUMO

Osteoporosis (OP) is a chronic systemic bone metabolism disease characterized by decreased bone mass, microarchitectural deterioration, and fragility fractures. With the demographic change caused by long lifespans and population aging, OP is a growing health problem. The role of miRNA in the pathogenesis of OP has also attracted widespread attention from scholars in recent years. Type H vessels are unique microvessels of the bone and have become a new focus in the pathogenesis of OP because they play an essential role in osteogenesis-angiogenesis coupling. Previous studies found some miRNAs regulate type H vessel formation through the regulatory factors, including platelet-derived growth factor-BB (PDGF-BB), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and so on. These findings help us gain a more in-depth understanding of the relationship among miRNAs, type H vessels, and OP to find a new perspective on treating OP. In the present mini-review, we will introduce the role of type H vessels in the pathogenesis of OP and the regulation of miRNAs on type H vessel formation by affecting regulatory factors to provide some valuable insights for future studies of OP treatment.


Assuntos
MicroRNAs , Osteoporose , Animais , Humanos , Osso e Ossos/irrigação sanguínea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microvasos/patologia , Microvasos/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteogênese/genética , Osteogênese/fisiologia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia
3.
J Nanobiotechnology ; 22(1): 112, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491475

RESUMO

The challenges posed by delayed atrophic healing and nonunion stand as formidable obstacles in osteoporotic fracture treatment. The processes of type H angiogenesis and osteogenesis emerge as pivotal mechanisms during bone regeneration. Notably, the preconditioning of adipose-derived stem cell (ADSC) exosomes under hypoxic conditions has garnered attention for its potential to augment the secretion and functionality of these exosomes. In the present investigation, we embarked upon a comprehensive elucidation of the underlying mechanisms of hypo-ADSC-Exos within the milieu of osteoporotic bone regeneration. Our findings revealed that hypo-ADSC-Exos harboured a preeminent miRNA, namely, miR-21-5p, which emerged as the principal orchestrator of angiogenic effects. Through in vitro experiments, we demonstrated the capacity of hypo-ADSC-Exos to stimulate the proliferation, migration, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) via the mediation of miR-21-5p. The inhibition of miR-21-5p effectively attenuated the proangiogenic effects mediated by hypo-ADSC-Exos. Mechanistically, our investigation revealed that exosomal miR-21-5p emanating from hypo-ADSCs exerts its regulatory influence by targeting sprouly1 (SPRY1) within HUVECs, thereby facilitating the activation of the PI3K/AKT signalling pathway. Notably, knockdown of SPRY1 in HUVECs was found to potentiate PI3K/AKT activation and, concomitantly, HUVEC proliferation, migration, and angiogenesis. The culminating stage of our study involved a compelling in vivo demonstration wherein GelMA loaded with hypo-ADSC-Exos was validated to substantially enhance local type H angiogenesis and concomitant bone regeneration. This enhancement was unequivocally attributed to the exosomal modulation of SPRY1. In summary, our investigation offers a pioneering perspective on the potential utility of hypo-ADSC-Exos as readily available for osteoporotic fracture treatment.


Assuntos
Exossomos , Gelatina , Células-Tronco Mesenquimais , Metacrilatos , MicroRNAs , Fraturas por Osteoporose , Humanos , Fraturas por Osteoporose/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Angiogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neovascularização Fisiológica , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo
4.
J Cell Mol Med ; 28(4): e18123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353470

RESUMO

Blood vessels are essential for bone development and metabolism. Type H vessels in bone, named after their high expression of CD31 and Endomucin (Emcn), have recently been reported to locate mainly in the metaphysis, exhibit different molecular properties and couple osteogenesis and angiogenesis. A strong correlation between type H vessels and bone metabolism is now well-recognized. The crosstalk between type H vessels and osteoprogenitor cells is also involved in bone metabolism-related diseases such as osteoporosis, osteoarthritis, fracture healing and bone defects. Targeting the type H vessel formation may become a new approach for managing a variety of bone diseases. This review highlighted the roles of type H vessels in bone-related diseases and summarized the research attempts to develop targeted intervention, which will help us gain a better understanding of their potential value in clinical application.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Humanos , Osteogênese/genética , Osso e Ossos/metabolismo , Osteoporose/metabolismo , Consolidação da Fratura , Neovascularização Fisiológica
5.
Acta Biomater ; 177: 91-106, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311198

RESUMO

Designing scaffolds that can regulate the innate immune response and promote vascularized bone regeneration holds promise for bone tissue engineering. Herein, electrospun scaffolds that combined physical and biological cues were fabricated by anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The topological pore structure of the fiber and the immobilization of exosomes increased the nanoscale roughness and hydrophilicity of the fibrous scaffold. In vitro cell experiments showed that exosomes could be internalized by target cells to promote cell migration, tube formation, osteogenic differentiation, and anti-inflammatory macrophage polarization. The activation of fibrosis, angiogenesis, and macrophage was elucidated during the exosome-functionalized fibrous scaffold-mediated foreign body response (FBR) in subcutaneous implantation in mice. The exosome-functionalized nanofibrous scaffolds also enhanced vascularized bone formation in a critical-sized rat cranial bone defect model. Importantly, histological analysis revealed that the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation. This study elaborated on the complex processes within the cell microenvironment niche during fibrous scaffold-mediated FBR and vascularized bone regeneration to guide the design of implants or devices used in orthopedics and maxillofacial surgery. STATEMENT OF SIGNIFICANCE: How to design scaffold materials that can regulate the local immune niche and truly achieve functional vascularized bone regeneration still remain an open question. Here, combining physical and biological cues, we proposed new insight to cell-free and growth factor-free therapy, anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The exosomes functionalized-scaffold system mitigated foreign body response, including excessive fibrosis, tumor-like vascularization, and macrophage activation. Importantly, the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Osteogênese , Alicerces Teciduais/química , Regeneração Óssea , Engenharia Tecidual , Diferenciação Celular , Macrófagos , Fibrose
6.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686444

RESUMO

Poor tendon-bone interface (TBI) integration is one of the major causes contributing to unsatisfactory healing quality in patients after anterior cruciate ligament (ACL) reconstruction. Type H vessels have been recently found to closely modulate bone formation via regulation of the osteo-angiogenic crosstalk, so the strategies favoring type H vessel formation may be promising therapeutic approaches for improved graft osteointegration. In this study, we reported for the first time the treatment outcome of slit guidance ligand 3 (slit3), a novel proangiogenic factor favoring type H vessel formation, in TBI healing in mice with ACL reconstruction. The mice (n = 87) were divided into three groups for various treatments: hydrogel microparticles (HMP, control group), slit3@HMP, and slit3 neutralizing antibody@HMP (slit3-AB@HMP). Histological analysis, gait performance, radiographic measurement, and biomechanical testing were performed to assess the TBI healing quality. Increased bony ingrowth and reduced fibrous scar tissue was formed at the TBI in the slit3@HMP group when compared to the HMP group. Meanwhile, the slit3-AB@HMP inhibited the osseous ingrowth and increased fibrous scar tissue formation relative to the HMP group. Compared to the HMP group, the slit3@HMP favored type H vessel formation at the TBI while the slit3-AB@HMP impeded it. According to micro-CT assessment, compared to the HMP group, the slit3@HMP significantly increased the peri-tunnel bone mass while the slit3-AB@HMP significantly reduced the peri-tunnel bone mass. The mice in the slit3@HMP group showed the best gait performance in terms of stance time, stride length, paw print area, and stance pressure. Dynamic laxity measurement and tensile testing showed the slit3@HMP group exhibited significantly reduced laxity displacement and improved failure load and stiffness relative to the other two groups. Collectively, the injection of slit3 could be used to enhance tendon-bone integration, which may be ascribed to modulation of angiogenesis-osteogenesis crosstalk coupled by type H vessels.


Assuntos
Cicatriz , Hidrogéis , Animais , Camundongos , Ligantes , Osso e Ossos/diagnóstico por imagem , Tendões
7.
Differentiation ; 134: 20-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37774549

RESUMO

The vascular system plays a crucial role in bone tissue. Angiogenic and osteogenic processes are coupled through a spatial-temporal connection. Recent studies have identified three types of capillaries in the skeletal system. Compared with type L and E vessels, type H vessels express high levels of CD31 and endomucin, and function to couple angiogenesis and osteogenesis. Endothelial cells in type H vessels interact with osteolineage cells (e.g., osteoblasts, osteoclasts, and osteocytes) through cytokines or signaling pathways to maintain bone growth and homeostasis. In imbalanced bone homeostases, such as osteoporosis and osteoarthritis, it may be a new therapeutic strategy to regulate the endothelial cell activity in type H vessels to repair the imbalance. Here, we reviewed the latest progress in relevant factors or signaling pathways in coupling angiogenesis and osteogenesis. This review would contribute to further understanding the role and mechanisms of type H vessels in coupling angiogenic and osteogenic processes. Furthermore, it will facilitate the development of therapeutic approaches for bone disorders by targeting type H vessels.


Assuntos
Células Endoteliais , Osteogênese , Osteogênese/genética , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Osso e Ossos , Homeostase
8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 1042-1048, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37586808

RESUMO

Objective: To summarize the regulatory effect of non-coding RNA (ncRNA) on type H vessels angiogenesis of bone. Methods: Recent domestic and foreign related literature about the regulation of ncRNA in type H vessels angiogenesis was widely reviewed and summarized. Results: Type H vessels is a special subtype of bone vessels with the ability to couple bone formation. At present, the research on ncRNA regulating type H vessels angiogenesis in bone diseases mainly focuses on microRNA, long ncRNA, and small interfering RNA, which can affect the expressions of hypoxia inducible factor 1α, platelet derived growth factor BB, slit guidance ligand 3, and other factors through their own unique ways of action, thus regulating type H vessels angiogenesis and participating in the occurrence and development of bone diseases. Conclusion: At present, the mechanism of ncRNA regulating bone type H vessels angiogenesis has been preliminarily explored. With the deepening of research, ncRNA is expected to be a new target for the diagnosis and treatment of vascular related bone diseases.


Assuntos
Doenças Ósseas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , Doenças Ósseas/genética , MicroRNAs/genética , RNA Interferente Pequeno
9.
ACS Nano ; 17(16): 15942-15961, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566558

RESUMO

Orthopedic implants have a high failure rate due to insufficient interfacial osseointegration, especially under osteoporotic conditions. Type H vessels are CD31+EMCN+ capillaries with crucial roles in mediating new bone formation, but their abundance in osteoporotic fracture site is highly limited. Herein, we report a nanoengineered composite coating to improve the in situ osseointegration of a Ti implant for osteoporotic fracture repair, which is realized through inhibiting the stimulator of interferon genes (STING) in endothelial cells (ECs) to stimulate type H vessel formation. Autonomously catalytic DNAzyme-ZnO nanoflowers (DNFzns) were prepared through rolling circle amplification (RCA) of STING mRNA-degrading DNAzymes, which were then integrated on the Ti surface and further sequentially complexed with thioketal-bridged polydopamine and naringenin (Ti/DNFzn/PDA-Nar). ECs and mesenchymal stem cells (MSCs) can be recruited to the implant surface by galvanotaxis, accounting for the negative charges of DNFzn/PDA-Nar, subsequently released Nar under reactive oxygen species (ROS) stimulation to upregulate endothelial nitric oxide synthase (eNOS) in recruited ECs, leading to enhanced local angiogenesis. Meanwhile, the coordinately released DNFzns would abolish STING expression in ECs to transform the newly formed vessels into Type H vessels, thus substantially promoting the osseointegration of Ti implants. This study provides application prospects for improving implant osteointegration for osteoporotic fracture treatment.


Assuntos
DNA Catalítico , Fraturas por Osteoporose , Ratos , Animais , Titânio/farmacologia , Células Endoteliais , Ratos Sprague-Dawley , Osteogênese , Propriedades de Superfície
10.
J Biomed Mater Res B Appl Biomater ; 111(7): 1434-1446, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880538

RESUMO

One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation. The object of this review is to summary the current utilizes of bone tissue engineering to regulate type H vessels through various signal pathways including Notch, PDGF-BB, Slit3, HIF-1α, and VEGF signaling. Moreover, we give an insightful overview of recent research progress about the morphological, spatial and age-dependent characteristics of type H blood vessels. Their unique role in tying angiogenesis and osteogenesis together via blood flow, cellular microenvironment, immune system and nervous system are also summarized. This review article would provide an insight into the combination of tissue engineering scaffolds with type H vessels and identify future perspectives for vasculized tissue engineering research.


Assuntos
Osteogênese , Engenharia Tecidual , Humanos , Animais , Osso e Ossos/irrigação sanguínea , Engenharia Tecidual/métodos , Neovascularização Fisiológica , Transdução de Sinais
11.
Adv Sci (Weinh) ; 10(16): e2207089, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999832

RESUMO

The formation of a calcified cartilaginous callus (CACC) is crucial during bone repair. CACC can stimulate the invasion of type H vessels into the callus to couple angiogenesis and osteogenesis, induce osteoclastogenesis to resorb the calcified matrix, and promote osteoclast secretion of factors to enhance osteogenesis, ultimately achieving the replacement of cartilage with bone. In this study, a porous polycaprolactone/hydroxyapatite-iminodiacetic acid-deferoxamine (PCL/HA-SF-DFO) 3D biomimetic CACC is developed using 3D printing. The porous structure can mimic the pores formed by the matrix metalloproteinase degradation of the cartilaginous matrix, HA-containing PCL can mimic the calcified cartilaginous matrix, and SF anchors DFO onto HA for the slow release of DFO. The in vitro results show that the scaffold significantly enhances angiogenesis, promotes osteoclastogenesis and resorption by osteoclasts, and enhances the osteogenic differentiation of bone marrow stromal stem cells by promoting collagen triple helix repeat-containing 1 expression by osteoclasts. The in vivo results show that the scaffold significantly promotes type H vessels formation and the expression of coupling factors to promote osteogenesis, ultimately enhancing the regeneration of large-segment bone defects in rats and preventing dislodging of the internal fixation screw. In conclusion, the scaffold inspired by biological bone repair processes effectively promotes bone regeneration.


Assuntos
Biomimética , Osteogênese , Ratos , Animais , Osso e Ossos , Cartilagem , Canais de Cloreto/farmacologia
12.
Biomater Adv ; 147: 213307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746099

RESUMO

Type H vessel, a vascular subtype in bone, is a critical regulator of osteogenesis, but how material properties affect this organ-specific vessel remains unknown. Here, titania nanotubes were fabricated on bone implant surface to investigate the effects of nano-topography on type H vessels. In vivo, surface nanotubes with 20-100 nm diameters promoted the angiogenesis of type H vessels and bone regeneration in mouse femurs to different extents, with the best effects induced by 70 nm diameter. In vitro, bone-specific endothelial cells (BECs) and artery endothelial cells (AECs) presented significantly different behaviors on the same material. Nanotubes with 20 nm small diameters significantly improved the adhesion, proliferation, type H differentiation of BECs and their paracrine function to regulate pre-osteoblasts (POBs), possibly via binding integrin ß1 on the cell membrane, but these effects weakened when tube diameter increased, which conflicted with the results in vivo. Further study suggested that the better in vivo effects by larger diameters of 70-100 nm might be exerted indirectly through remodeling the regulation from POBs to BECs, highlighting the underappreciated indirect bio-effects of materials via intercellular communication. These suggest that nanoscale material topography makes significant impact on the angiogenesis of type H vessels, directly via binding integrins on the cell membrane of BECs and indirectly via modulating the regulation from osteoblastic cells to BECs, both in a size-dependent manner. Cells of the same type but from different tissues may show different responses to the same material, thus material properties should be tailored to the specific cell population. In research on material-tissue interactions, conclusions from in vitro experiments exposing a single type of cell to material might deviate from the truth in vivo, because materials may indirectly influence the targeted cells through modulating intercellular communication. These provide new insights into material-tissue interactions.


Assuntos
Comunicação Celular , Células Endoteliais , Camundongos , Animais , Regeneração Óssea , Diferenciação Celular , Osteogênese
13.
Macromol Biosci ; 23(4): e2200502, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36637816

RESUMO

The regeneration strategy for bone defects is greatly limited by the bone microenvironment, and excessive reactive oxygen species (ROS) seriously hinder the formation of new bone. Reduced graphene oxide (rGO) is expected to meet the requirements because of its ability to scavenge free radicals through electron transfer. Antioxidant hydrogels based on gelatine methacrylate (GM), acrylyl-ß-cyclodextrin (Ac-CD), and rGO functionalized with ß-cyclodextrin (ß-CD) are developed for skull defect regeneration, but the mechanism of how rGO-based hydrogels enhance bone repair remains unclear. In this work, it is confirmed that the GM/Ac-CD/rGO hydrogel has good antioxidant capacity, and promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). The rGO-based hydrogel affects ZEB1/Notch1 to promote tube formation. Furthermore, two-photon laser scanning microscopy is used to observe the ROS in a skull defect. The rGO-based hydrogel promotes type H vessel formation in a skull defect. In conclusion, the hydrogel neutralizes ROS in the vicinity of a skull defect and stimulates ZEB1/Notch1 to promote the coupling of osteogenesis and angiogenesis, which may be a possible approach for bone regeneration.


Assuntos
Grafite , Osteogênese , Humanos , Grafite/farmacologia , Espécies Reativas de Oxigênio , Hidrogéis/farmacologia , Antioxidantes , Regeneração Óssea , Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Gelatina/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Receptor Notch1
14.
Rheumatology (Oxford) ; 62(4): 1436-1444, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36179083

RESUMO

Recent studies have shed light on the cellular and molecular mechanisms that link subchondral bone remodelling and angiogenesis in knee osteoarthritis (OA). Type H vessels are a newly identified bone blood vessel characterized by high expression of CD31 and endomucin that are coupled with osteogenesis. Factors including mechanical loading, TGF-ß1, platelet-derived growth factor type BB, the osteoprotegerin-RANK ligand-RANK system, osteopontin, mechanistic target of rapamycin, VEGF, stromal cell-derived factor l and prostaglandin E2 participate in the formation of type H vessels in osteoarthritic subchondral bone. In this review, we summarize the current understanding of type H vessels in knee OA, as well as the signalling pathways involved and potential therapeutic medicines. In future, the pathogenesis of knee OA could be further clarified by connecting type H vessels and the design of new disease-modifying osteoarthritis drugs. However, further experiments are needed to determine the upstream signals regulating type H vessel formation in osteoarthritic subchondral bone.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Cartilagem Articular/metabolismo , Osteoartrite do Joelho/patologia , Remodelação Óssea , Osso e Ossos/patologia , Osteogênese
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1009021

RESUMO

OBJECTIVE@#To summarize the regulatory effect of non-coding RNA (ncRNA) on type H vessels angiogenesis of bone.@*METHODS@#Recent domestic and foreign related literature about the regulation of ncRNA in type H vessels angiogenesis was widely reviewed and summarized.@*RESULTS@#Type H vessels is a special subtype of bone vessels with the ability to couple bone formation. At present, the research on ncRNA regulating type H vessels angiogenesis in bone diseases mainly focuses on microRNA, long ncRNA, and small interfering RNA, which can affect the expressions of hypoxia inducible factor 1α, platelet derived growth factor BB, slit guidance ligand 3, and other factors through their own unique ways of action, thus regulating type H vessels angiogenesis and participating in the occurrence and development of bone diseases.@*CONCLUSION@#At present, the mechanism of ncRNA regulating bone type H vessels angiogenesis has been preliminarily explored. With the deepening of research, ncRNA is expected to be a new target for the diagnosis and treatment of vascular related bone diseases.


Assuntos
Humanos , RNA não Traduzido/genética , RNA Longo não Codificante , Doenças Ósseas/genética , MicroRNAs/genética , RNA Interferente Pequeno
16.
Front Pharmacol ; 13: 1010937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467080

RESUMO

Ginsenoside Rg1 (Rg1) has been demonstrated to have antidiabetic and antiosteoporotic activities. The aim of this study was to investigate the protective effect of Rg1 against diabetic osteoporosis and the underlying mechanism. In vitro, we found that Rg1 increased the number of osteoprogenitors and alleviated high glucose (HG) induced apoptosis of osteoprogenitors by MTT assays and flow cytometry. qRT‒PCR and western blot analysis suggested that Rg1 can also promote the secretion of vascular endothelial growth factor (VEGF) by osteoprogenitors and promote the coupling of osteogenesis and angiogenesis. Rg1 can also promote the proliferation of human umbilical vein endothelial cells (HUVECs) cultured in high glucose, enhance the angiogenic ability of endothelial cells, and activate the Notch pathway to promote endothelial cells to secrete the osteogenesis-related factor Noggin to regulate osteogenesis, providing further feedback coupling of angiogenesis and osteogenesis. Therefore, we speculated that Rg1 may have similar effects on type H vessels. We used the Goto-Kakizaki (GK) rat model to perform immunofluorescence staining analysis on two markers of type H vessels, Endomucin (Emcn) and CD31, and the osteoblast-specific transcription factor Osterix, and found that Rg1 stimulates type H angiogenesis and bone formation. In vivo experiments also demonstrated that Rg1 promotes VEGF secretion, activates the Noggin/Notch pathway, increases the level of coupling between type H vessels and osteogenesis, and improves the bone structure of GK rats. All of these data reveal that Rg1 is a promising candidate drug for treating diabetic osteoporosis as a potentially bioactive molecule that promotes angiogenesis and osteointegration coupling.

17.
Bone ; 157: 116346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114427

RESUMO

Bone vasculature influences osteogenesis and haematopoiesis in the bone microenviroment. Mechanical loading has been shown to stimulate the formation of osteogenesis-related type H vessels in an ovariectomy (OVX)-induced osteoporosis mouse model. To determine the loading-driven mechanism of angiogenesis and the formation of type H vessels in bone, we evaluated the roles of PI3K/Akt signaling and erythropoiesis in the bone marrow. The daily application of mechanical loading (1 N at 5 Hz for 6 min/day) for 2 weeks on OVX mice inhibited osteoclast activity, associated with an increase in the number of osteoblasts and trabecular volume ratio. Mechanical loading enhanced bone vasculature and vessel formation, as well as PI3K/Akt phosphorylation and erythropoiesis in the bone marrow. Notably, LY294002, an inhibitor of PI3K signaling, blocked the tube formation by endothelial progenitor cells, as well as their migration and wound healing. The conditioned medium, derived from erythroblasts, also promoted the function of HUVECs with elevated levels of VEGF, CD31, and Emcn. Collectively, this study demonstrates that mechanical loading prevents osteoporotic bone loss by promoting angiogenesis and type H vessel formation. This load-driven preventing effect is in part mediated by PI3K/Akt signaling and erythropoiesis in the bone marrow.


Assuntos
Osteogênese , Osteoporose Pós-Menopausa , Animais , Eritropoese , Feminino , Humanos , Camundongos , Neovascularização Patológica , Neovascularização Fisiológica , Osteoporose Pós-Menopausa/prevenção & controle , Ovariectomia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
18.
Bone ; 154: 116200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534711

RESUMO

Macrophages are progenitors of osteoclasts as well as regulators of bone metabolism. Macrophages mediate not only bone formation by osteoblasts under physiological conditions, but also bone regeneration after fracture. The mechanisms of macrophages regulation of bone formation and regeneration remain unclear, however. Here, we demonstrate that the liposome-encapsulated Clodronate (Clod-lip) injected mouse model with cortical bone defect induced by drill-hole injury and targeted depletion of phagocytic macrophages exhibits impaired angiogenesis of type H vessels that couple angiogenesis and osteogenesis. Moreover, we identify Tgfbi (encoding TGFBI), Plau (encoding uPA) and Tgfb1 (encoding TGF-ß1), through RNA-seq analysis, as genes of macrophage-secreted factors mediating angiogenesis and wound healing. The relevant mRNA was highly expressed in bone marrow-derived macrophages among bone cells, as determined through qRT-PCR. Finally, we disclose that treatment with uPA inhibitor or TGF-ß receptor I, receptor II inhibitor impairs bone regeneration after injury, confirming the importance of uPA and TGF-ß1 during bone regeneration. Our findings reveal a novel mechanism of bone regeneration mediated by macrophages.


Assuntos
Regeneração Óssea , Osteogênese , Animais , Macrófagos/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo
19.
Bioact Mater ; 9: 491-507, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820585

RESUMO

The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) - osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a rat femoral bone defect, the PFE scaffold demonstrated early vascular infiltration and enhanced bone regeneration by microangiography (µ-AG) and micro-computational tomography (µ-CT). Based on the immunofluorescence studies, PFE mediated the endogenous angiogenesis and osteogenesis with a substantial number of type H vessels and osteoprogenitors. In addition, superior osseointegration was observed by a direct host bone-PCL interface, which was likely attributed to the formation of type H vessels. The bio-instructive microenvironment created by our innovative PFE scaffold made possible superior osseointegration and type H vessel-related bone regeneration. It could become an alternative solution of improving the osseointegration of bone substitutes with the help of induced type H vessels, which could compensate for the inherent biological inertness of synthetic polymers.

20.
Front Immunol ; 13: 1095577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741390

RESUMO

The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-ß signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , NF-kappa B/metabolismo , Antivirais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Osteoporose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...