Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.294
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2320709121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985760

RESUMO

The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-ß2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.


Assuntos
Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas de Membrana , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Transporte Proteico , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Camundongos Knockout , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Immunol Med ; : 1-11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952099

RESUMO

Type I interferons (IFN-Is) play a significant role in systemic lupus erythematosus (SLE) pathogenesis. Double-filtration plasmapheresis (DFPP) is a treatment option for SLE; however, its effect on IFN-Is remains unclear. Therefore, we investigated the effects of DFPP on IFN-Is. Plasma from patients with SLE (n = 11) who regularly underwent DFPP was analysed using a cell-based reporter system to detect the bioavailability and inducing activity of IFN-I. The concentration of plasma dsDNA was measured, and western blotting analysis was used to assess the phosphorylation of the STING pathway. A higher IFN-I bioavailability and inducing activity were observed in patients compared to healthy controls, and both parameters decreased after DFPP. The reduction in IFN-I-inducing activity was particularly prominent in patients with high disease activity. Notably, this reduction was not observed in STING-knockout reporter cells. Additionally, plasma dsDNA levels decreased after DFPP treatment, suggesting that inhibition of the STING pathway was responsible for the observed decrease in activity. Western blotting analysis revealed suppression of STING pathway phosphorylation after DFPP. DFPP reduced IFN-I bioavailability and the inducing activity of plasma. This reduction is likely attributable to the inhibition of the STING pathway through the elimination of dsDNA.

3.
Ocul Surf ; 34: 96-107, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002721

RESUMO

PURPOSE: To investigate the toxicity of type I interferons (IFNs) on the ocular surface and assess their efficacy in ocular surface tumors. METHODS: We examined the effects of IFN-α2a, IFN-α2b and IFN-ß on corneal epithelial cells and stromal fibroblasts in vitro as well as the impact of IFN-α2a on the ocular surface in mice. Additionally, we analyzed the therapeutic and adverse effects of topically administered IFN-α2a and IFN-α2b in patients with ocular surface tumors. Risk factors contributing to side effects were explored. RESULTS: IFN-α2a, IFN-α2b or IFN-ß reduced cell viability and induced pro-inflammatory cytokines in corneal epithelial cells and stromal fibroblasts. Furthermore, IFNs enhanced the expression of major histocompatibility complex class II and CD40 in corneal epithelial cells. In mice, subconjunctival IFN-α2a injection did not induce corneal epithelial defects or opacity, nor did it reduce aqueous tears or conjunctival goblet cells. In patients, topical IFN-α2a or IFN-α2b administration decreased tumor size and prevented recurrence; however, it was associated with mild side effects, including corneal epitheliopathy and conjunctival hyperemia. These complications were associated with longer IFN use, the presence of underlying ocular surface disease and concurrent use of mitomycin C or anti-glaucoma eye drops. CONCLUSION: Although type I IFNs cause direct toxicity on corneal cells, they do not induce significant side effects on the healthy ocular surface. Considering its therapeutic and preventive effects, topical type I IFN is safe and effective for treating ocular surface tumors. The potential for ocular side effects should be considered in eyes with identified risk factors.

4.
J Exp Clin Cancer Res ; 43(1): 196, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020402

RESUMO

Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.


Assuntos
Células Dendríticas , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais
5.
Oncoimmunology ; 13(1): 2377830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005546

RESUMO

Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.


Assuntos
Técnicas de Cocultura , Macrófagos , Vírus do Sarampo , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Humanos , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Microambiente Tumoral/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Vírus Oncolíticos/genética , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Mesotelioma Maligno/patologia , Mesotelioma Maligno/terapia , Interferon Tipo I/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Diferenciação Celular
6.
Immunol Cell Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009814

RESUMO

Chronic viral infections cause thymic involution yet the potential for broader, longer-term impact on thymic composition remains unexplored. Here we show that chronic, but not acute, lymphocytic choriomeningitis virus infection promotes a unique population of immature B cells in the thymus. We show that chronic viral infection promotes signals within the thymus, including the expression of B-cell activating factor (BAFF), that favor the maturation of this population as these cells acquire expression of CD19 and immunoglobulin M. Mechanistically, type I interferon (IFN-I), predominantly IFNß, signals to thymic hematopoietic cells, strongly delaying T-cell development at the earliest precursor stage. Furthermore, IFN-I signaling to the nonhematopoietic compartment provides a second signal essential to favor B-cell differentiation and maturation within the thymus. Importantly, chronic infection yields changes in the B-cell population for at least 50 days following infection, long after thymic atrophy has subsided. Thus, the inflammatory milieu induced by chronic viral infection has a profound, and long-lasting, effect on thymic composition leading to the generation of a novel population of thymic B cells.

7.
Adv Sci (Weinh) ; : e2310108, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900071

RESUMO

New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.

8.
Immunity ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38908373

RESUMO

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.

9.
World J Pediatr ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914753

RESUMO

BACKGROUND: The role of type I interferon (IFN-I) signaling in systemic lupus erythematosus (SLE) has been well established. However, unanswered questions remain regarding the applicability of these findings to pediatric-onset SLE. The aim of this review is to provide an overview of the novel discoveries on IFN-I signaling in pediatric-onset SLE. DATA SOURCES: A literature search was conducted in the PubMed database using the following keywords: "pediatric systemic lupus erythematosus" and "type I interferon". RESULTS: IFN-I signaling is increased in pediatric SLE, largely due to the presence of plasmacytoid dendritic cells and pathways such as cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase 1 and Toll-like receptor (TLR)4/TLR9. Neutrophil extracellular traps and oxidative DNA damage further stimulate IFN-I production. Genetic variants in IFN-I-related genes, such as IFN-regulatory factor 5 and tyrosine kinase 2, are linked to SLE susceptibility in pediatric patients. In addition, type I interferonopathies, characterized by sustained IFN-I activation, can mimic SLE symptoms and are thus important to distinguish. Studies on interferonopathies also contribute to exploring the pathogenesis of SLE. Measuring IFN-I activation is crucial for SLE diagnosis and stratification. Both IFN-stimulated gene expression and serum IFN-α2 levels are common indicators. Flow cytometry markers such as CD169 and galectin-9 are promising alternatives. Anti-IFN therapies, such as sifalimumab and anifrolumab, show promise in adult patients with SLE, but their efficacy in pediatric patients requires further investigation. Janus kinase inhibitors are another treatment option for severe pediatric SLE patients. CONCLUSIONS: This review presents an overview of the IFN-I pathway in pediatric SLE. Understanding the intricate relationship between IFN-I and pediatric SLE may help to identify potential diagnostic markers and targeted therapies, paving the way for improved patient care and outcomes.

10.
Int J Biol Macromol ; 274(Pt 2): 133297, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925170

RESUMO

Type I interferon (IFN-I) is a potent immune modulator intricately involved in regulating tumor immunity. Meanwhile, the integrity of the IFN-I signaling pathway is essential for radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the clinical application of IFN-I remains challenging due to its non-specific cytotoxicity and limited half-life. To overcome these limitations, we developed a gene delivery platform, CRISPR-V, enabling the rapid creation of novel HSV-1 oncolytic viruses. Utilizing this platform, we created an oncolytic virus, OVH-IFNß, in which the IFNß gene was incorporated into the HSV-1 genome. However, exogenous IFNß expression significantly inhibited OVH-IFNß replication. Through transcriptome data analyses, we identified several ISG genes inhibiting OVH-IFNß replication. By gene knockout and functional studies of the downstream effectors, we confirmed the prominent antiviral activities of protein kinase R (PKR). To balance the antitumor and antiviral immunity of IFNß, we developed a novel HSV-1 oncolytic virus, OVH-IFNß-iPKR, which can express IFNß while inhibiting PKR, leading to a potent antitumor immunity while reducing the antiviral capacity of IFNß. OVH-IFNß-iPKR shows a strong ability to induce immunogenic cell death and activate tumor-specific CD8+ T cells, leading to de novo immune responses and providing a novel strategy for tumor immunotherapy.

11.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941603

RESUMO

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Assuntos
COVID-19 , Células Dendríticas , Imunidade Inata , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , COVID-19/imunologia , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores Toll-Like/metabolismo , Diferenciação Celular , Linhagem da Célula
12.
Phytomedicine ; 130: 155373, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850630

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS: Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS: QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS: The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.


Assuntos
Anti-Inflamatórios , Interferon Tipo I , Lipopolissacarídeos , Proteínas de Membrana , Síndrome do Desconforto Respiratório , Animais , Interferon Tipo I/metabolismo , Camundongos , Anti-Inflamatórios/farmacologia , Proteínas de Membrana/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Humanos , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente
13.
J Innate Immun ; 16(1): 354-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38852581

RESUMO

INTRODUCTION: Inactivated parapoxvirus ovis (iPPVO) exerts strong immunomodulatory effects on innate immune cells, making it an attractive therapeutic candidate. However, little is known about the signaling pathways that are involved in iPPVO-induced immune responses. METHODS: In this study, we systematically analyzed how different types of dendritic cells (DCs) react to iPPVO (Zylexis, strain D1701) in both BALB/c and C57BL/6 mice by flow cytometry and ELISAs, and investigated which signaling pathway is related to DC activation by Western blotting and protein profiling. RESULTS: We demonstrated that bone marrow-derived conventional DCs (BM-cDCs) and bone marrow-derived plasmacytoid DCs (BM-pDCs) matured and secreted type I interferons in response to Zylexis stimulation in both mouse strains. Similarly, Zylexis promoted the secretion of IL-12/23p40 and TNF by pDCs. However, IL-12/23p40 and TNF secretion by cDCs were induced in BALB/c mice but not in C57BL/6 mice. Analyzing the underlying signaling pathways revealed that iPPVO-induced maturation of cDCs was Toll-like receptor 9 (TLR9) independent, while the maturation of pDCs partially depended on the TLR9 pathway. Moreover, the production of proinflammatory cytokines by cDCs and the secretion of IFN-α/ß by pDCs partially depended on the TLR9 pathway in both mouse strains. Therefore, other signaling pathways seem to participate in the response of DCs to iPPVO, supported by protein profiling. CONCLUSION: Our data provide useful insights into the diversity of iPPVO sensors and their varying effects across different strains and species.


Assuntos
Células Dendríticas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Parapoxvirus , Transdução de Sinais , Receptor Toll-Like 9 , Animais , Células Dendríticas/imunologia , Camundongos , Parapoxvirus/imunologia , Receptor Toll-Like 9/metabolismo , Células Cultivadas , Imunidade Inata , Células da Medula Óssea/imunologia , Camundongos Knockout , Infecções por Poxviridae/imunologia , Feminino , Vacinas de Produtos Inativados/imunologia , Especificidade da Espécie , Inativação de Vírus
14.
J Biol Chem ; 300(7): 107472, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879005

RESUMO

African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.

15.
Vet Microbiol ; 295: 110107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838382

RESUMO

Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of ß-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/ß levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.


Assuntos
Herpesvirus Suídeo 1 , Interferon Tipo I , Lectinas Tipo C , Pseudorraiva , beta-Glucanas , Animais , beta-Glucanas/farmacologia , beta-Glucanas/administração & dosagem , Camundongos , Suínos , Lectinas Tipo C/imunologia , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Interferon Tipo I/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Antivirais/farmacologia , Vacinas Virais/imunologia , Feminino
16.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917796

RESUMO

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Assuntos
Fator Regulador 3 de Interferon , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ubiquitinação , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fosforilação , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Animais , Células HEK293 , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/virologia , Imunidade Inata , Interações Hospedeiro-Patógeno , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Retroalimentação Fisiológica , Camundongos Endogâmicos C57BL , Exodesoxirribonucleases , Fosfoproteínas
17.
Int Immunopharmacol ; 137: 112478, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901243

RESUMO

Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Interferon Tipo I , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like , Receptor 7 Toll-Like/agonistas , Animais , Interferon Tipo I/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Administração Oral , Sinergismo Farmacológico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos
18.
Anticancer Res ; 44(6): 2577-2585, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38821598

RESUMO

BACKGROUND/AIM: Nuclear factor erythroid-derived 2-related factor-2 (NRF2) is a transcription factor that regulates stress response genes. It negatively regulates the immune system by acting as a transcriptional repressor of inflammatory genes or suppressing type I interferon (IFN) production pathways. NRF2 is often over-expressed in some tumors, including non-small cell lung cancer, and modulates these tumors via an immune-cold microenvironment. Thus, strategies to convert cold tumors into hot tumors are effective for cancer treatment. MATERIALS AND METHODS: NRF2 was knocked-down or over-expressed in human cancer cells (A549, HeLa, H1299, H1650) and mouse mammary adenocarcinoma TS/A cells. Cells were irradiated or transfected with poly(I:C), and changes in type I IFN levels were examined using quantitative real-time polymerase chain reaction and western blotting. Cytosolic DNA was assayed via PicoGreen staining and immune and cancer cells were co-cultured. RESULTS: Regulation of NRF2 expression altered type I IFN levels in the human lung cancer cell line A549 and several solid tumors. Down-regulation of NRF2 resulted in increased levels of cytosolic DNA and activated the cGAS-STING pathway. We confirmed that type I IFN was induced in NRF2-down-regulated tumor cells using ionizing radiation (IR). Furthermore, when dendritic cells and macrophages were co-cultured with IR-exposed NRF2 knockdown tumor cells, the immune cells produced more IFNB1 and CXCL10. CONCLUSION: The immunosuppressive tumor cell environment is improved by NRF2 down-regulation, and IR treatment may promote immune cell signaling activation.


Assuntos
Interferon Tipo I , Fator 2 Relacionado a NF-E2 , Radiação Ionizante , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Interferon Tipo I/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Células A549 , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microambiente Tumoral/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
19.
J Clin Immunol ; 44(6): 129, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773012

RESUMO

Mutations in genes of the DNA polymerase complex have been linked to impaired immunological function next to distinct syndromic features. Biallelic mutations in PRIM1 are associated with a primordial dwarfism syndrome with variable hypogammaglobulinemia. The disease is mostly lethal in infancy due to pulmonary infections as well as hepatic cirrhosis. We studied 3 novel patients with PRIM1-deficiency with a focus on immunological consequences. All three shared dysmorphic features including a prominent forehead, triangular face and bilateral cryptorchidism. P1 carried the novel homozygous PRIM1 splice variant c.103+2T>G, allowing residual protein expression and associated with a mild clinical phenotype. P2 and P3 carried the known homozygous variant c.638+36C>G and died in infancy. Paradoxically, B cell lymphopenia was most pronounced in P1. No other significant lymphocyte abnormalities were detected. Interestingly, all 3 patients showed variable, but intermittently excessive Type I interferon signatures. In summary, the B-cell deficiency in PRIM1-deficiency is markedly variable and the severity of syndromic manifestations is not predictive of the immunological phenotype. We highlight a potential contribution of pathological type I interferon activation to disease pathogenesis which warrants further investigations.


Assuntos
Alelos , Linfócitos B , Mutação , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Linfócitos B/imunologia , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/diagnóstico , Interferon Tipo I/metabolismo , Mutação/genética , Fenótipo
20.
J Autoimmun ; 147: 103248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797048

RESUMO

OBJECTIVES: - Janus Kinase inhibitors (JAKi) are a new class of drugs available for pediatric rheumatic diseases. This study aimed to describe the safety and effectiveness of JAKi in these diseases, with a focus on longitudinal interferon-stimulated genes (ISG) assessment. METHODS: - We present a single-center retrospective study of children with refractory pediatric rheumatic diseases including connective tissue diseases, monogenic type I interferonopathies or juvenile idiopathic arthritis, receiving JAKi. According to physicians' assessment, treatment effectiveness was classified at 12 months as a complete response in the total absence of disease activity, partial response in case of significant (>50%) but incomplete improvement or no response in the case of non-response or improvement of less than 50% of the clinical and biological parameters. ISG were monitored longitudinally using Nanostring technology. RESULTS: - 22 children were retrospectively included in this study, treated either by baricitinib or ruxolitinib. Complete response was achieved at 12 months in 9/22 (41%) patients. 6/22 (27%) patients were non-responders and treatment had been discontinued in five of them. Within the interferon (IFN)-related diseases group, ISG-score was significantly reduced 12 months after JAKi onset (p = 0.0068). At 12 months, daily glucocorticoid doses had been reduced with a median dose of 0.16 mg/kg/day (IQR 0.11; 0.33) (p = 0.0425). 7/22 (32%) patients had experienced side effects, infections being the most common. Increase of the body mass index was also recorded in children in the first 6 months of treatment. CONCLUSION: - JAKi represent a promising treatment of immune-mediated pediatric diseases, enabling to decrease type-I IFN transcriptomic signature in responding patients, especially in the context of juvenile dermatomyositis. JAKi represent steroid-sparing drugs but they induce metabolic changes linked to weight gain, posing a concern in the treatment of young patients and teenagers. More data are required to define the efficacy and safety of JAKi in the management of refractory pediatric rheumatic diseases.


Assuntos
Interferon Tipo I , Inibidores de Janus Quinases , Humanos , Estudos Retrospectivos , Criança , Masculino , Feminino , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/efeitos adversos , Adolescente , Resultado do Tratamento , Interferon Tipo I/metabolismo , Pré-Escolar , Pirazóis/uso terapêutico , Pirazóis/efeitos adversos , Purinas/uso terapêutico , Pirimidinas/uso terapêutico , Azetidinas/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Sulfonamidas/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , Nitrilas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...