Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.209
Filtrar
1.
Life Sci ; : 123118, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39384147

RESUMO

AIM: Sepsis results in high mortality and is associated with organ dysfunction caused by infection. The present study aimed to elucidate whether early-stage sympathetic activation is associated with the prognosis of sepsis and its possible mechanisms. METHODS: Patients with sepsis and healthy controls were included. Sepsis in rats was induced by lipopolysaccharide. Dexmedetomidine, a α2-adrenergic receptor agonist, was used in patients and rats with sepsis to evaluate the role of the sympathetic nervous system in sepsis. Holter monitoring was used to detect heart rate variability, while plasma samples were obtained to measure levels of norepinephrine and inflammatory markers. Mean arterial pressure, heart rate, and renal sympathetic nerve activity were recorded. Immunofluorescence was used to detect the activation of neurons in the rostral ventrolateral medulla (RVLM). RESULTS: In patients with sepsis, plasma levels of norepinephrine and interleukin-1ß were higher compared with those in controls and positively correlated with acute physiology and chronic health evaluation (APACHEII). SDNN and SDANN were significantly reduced as well as negatively correlated with APACHEII. Meanwhile, rats with sepsis showed increased of sympathetic outflow and plasma levels of norepinephrine, with increased c-fos levels in the RVLM. Treatment with dexmedetomidine could improve prognosis. Lesion of tyrosine hydroxylase-positive neurons in the RVLM attenuated sympathetic activation and target organs damage in septic rats as well as improved survival. CONCLUSION: The results suggest that tyrosine hydroxylase-positive neurons in the RVLM might contribute to the prognosis of sepsis via activation of the sympathetic nervous system, while dexmedetomidine could ameliorate sepsis via inhibiting sympathetic activation.

2.
Exp Neurol ; 382: 114969, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332798

RESUMO

The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.

3.
Brain Sci ; 14(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39335357

RESUMO

This study investigates the protective effects of magnesium sulfate on dopamine neurons in the retinas of rats with 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD). Rapidly progressing cognitive decline often precedes or coincides with the motor symptoms associated with PD. PD patients also frequently exhibit visual function abnormalities. However, the specific mechanisms underlying visual dysfunction in PD patients are not yet fully understood. Therefore, this study aims to investigate whether magnesium homeostasis affects dopaminergic neurons in the retina of PD rats. Thirty-six rats were divided into four groups: (1) control, (2) control with magnesium sulfate (control/MgSO4), (3) Parkinson's disease (PD), and (4) Parkinson's disease with magnesium sulfate (PD/MgSO4). The apomorphine-induced (APO) rotation test assessed the success of the PD models. The open-field experiment measured the rats' anxiety levels. Tyrosine hydroxylase (TH) and glutamate levels, indicators of dopamine neuron survival, were detected using immunofluorescence staining. Protein levels of solute carrier family 41 A1 (SCL41A1), magnesium transporter 1 (MagT1), and cyclin M2 (CNNM2) in the retina were analyzed using Western blot. Results showed that, compared to the PD group, rats in the PD/MgSO4 group had improved psychological states and motor performance at two and four weeks post-surgery. The PD/MgSO4 group also exhibited significantly higher TH fluorescence intensity in the left retinas and lower glutamate fluorescence intensity than the PD group. Additional experiments indicated that the protein levels of SLC41A1, MagT1, and CNNM2 were generally higher in the retinas of the PD/MgSO4 group, along with an increase in retinal magnesium ion content. This suggests that magnesium sulfate may reduce glutamate levels and protect dopamine neurons in the retina. Thus, magnesium sulfate might have therapeutic potential for visual functional impairments in PD patients.

4.
Mol Biol Rep ; 51(1): 996, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298057

RESUMO

BACKGROUND: The insoluble tangles of alpha-synuclein (α-syn) protein in the nigrostriatal circuit, characteristic of synucleinopathy, originate from low molecular weight oligomers, whose appearance and dissemination are related to neuroinflammation. These oligomeric forms of α-syn are considered highly cytotoxic but transient, so knowing the timing in which they appear remains challenging. Therefore, this study aimed to analyze the abundance of oligomeric forms of α-syn and tyrosine hydroxylase (TH) between 3 and 7 days after inducing neuroinflammation with lipopolysaccharide (LPS). METHODS AND RESULTS: LPS (2.5 µg/2.5 µL) was stereotaxically injected in the substantia nigra (SN) of adult male Wistar rats, which were sacrificed 3, 5 and 7 days after this intervention. The brains were processed for semi quantitative Western blot, along with brains from control and sham animals. Our results show an increased expression of α-syn monomer (15 kDa) only 3 days after LPS infusion, and the formation of 50 KDa and 60 kDa α-syn oligomers in the SN and striatum (STR) between 3 and 7 days after LPS infusion. Furthermore, the presence of these oligomers was accompanied by a decrease in the expression of nigral TH. CONCLUSION: These findings highlight the rapidity with which potentially toxic forms of α-syn appear in the nigrostriatal circuit after a neuroinflammatory challenge, in addition to allowing us to identify specific oligomers and a temporal relation with neurodegeneration of TH-positive cells. Knowledge of the timing and location in which these small oligomers appear is essential to developing therapeutic strategies to prevent its formation.


Assuntos
Lipopolissacarídeos , Ratos Wistar , Substância Negra , Tirosina 3-Mono-Oxigenase , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo
5.
Methods Enzymol ; 704: 345-361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300655

RESUMO

The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.


Assuntos
Fenilalanina Hidroxilase , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Fenilalanina Hidroxilase/genética , Humanos , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/química , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/química , Animais , Ensaios Enzimáticos/métodos
6.
Brain Res ; 1846: 149227, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255903

RESUMO

CD34 is a well-known cell marker of hematopoietic stem/ progenitor cells, endothelial cells, and fibrocytes. In the peripheral nervous system, a certain type of primary sensory neuron C-fiber low threshold mechanoreceptors (C-LTMRs) are reported to express CD34 mRNA. Here, we investigated the distribution of CD34 protein among putative C-LTMRs (pC-LTMR) using pC-LTMR markers such as VGLUT3 and TH in the dorsal root ganglion (DRG) and spinal cord. CD34 was frequently observed in DRG neurons double-positive for VGLUT3 and TH and single-positive for VGLUT3 in C8 and L4 levels, however, in C4 and L1 levels most of CD34-positive DRG neurons were demonstrated to be double-positive for VGLUT3 and TH. As for the termination, CD34-positive DRG neurons terminated in the ventral part of inner lamina II (lamina IIiv). At C4 and L1 levels of the dorsal horn, CD34 was observed in the entire region of lamina IIiv, however, in C8 and L4 levels of the dorsal horn CD34 was not detected in the medial part of lamina IIiv, which receives neural inputs from DRG neurons that innervate palm or sole skin. These results indicate that CD34 is expressed in pC-LTMRs and suggest that CD34 may play a role in providing C-LTMRs with a specific sensation by maintaining neural circuits.

7.
Neurochem Int ; 179: 105830, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128625

RESUMO

Discrete components of tea possess multitude of health advantages. Escalating evidence advocate a consequential association between habitual tea consumption and a subsided risk of Parkinson's disease (PD). l-theanine is a non-protein amino acid inherent in tea plants, which exhibits structural resemblance with glutamate, the copious excitatory neurotransmitter in brain. Neuromodulatory effects of l-theanine are evident from its competency in traversing the blood brain barrier, promoting a sense of calmness beyond enervation, and enhancing cognition and attention. Despite the multifarious reports on antioxidant properties of l-theanine and its potential to regulate brain neurotransmitter levels, it is obligatory to understand its exact contribution in ameliorating the pathophysiology of PD. In this study, MPTP-induced mouse model was established and PD-like symptoms were developed in test animals where an increasing dosage of l-theanine (5, 25, 50, 100 and 250 mg/kg) was intraperitoneally administered for 23 days. 50 and 100 mg/kg dosage of l-theanine alleviated motor impairment and specific non-motor symptoms in Parkinsonian mice. The dosage of 100 mg/kg of l-theanine also improved striatal dopamine and serotonin level and tyrosine-hydroxylase positive cell count in the substantia nigra. Most crucial finding of the study is the proficiency of l-theanine to diminish astroglial injury as well as nitric oxide synthesis, which suggests its possible credential to prevent neurodegeneration by virtue of its anti-inflammatory attribute.


Assuntos
Glutamatos , Chá , Animais , Glutamatos/farmacologia , Camundongos , Chá/química , Masculino , Camundongos Endogâmicos C57BL , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia
8.
Front Neuroendocrinol ; 75: 101153, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128801

RESUMO

The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.

9.
Front Mol Neurosci ; 17: 1444629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092202

RESUMO

The Ca2+-dependent activator protein for secretion (CAPS/CADPS) family protein facilitates catecholamine release through the dense-core vesicle exocytosis in model neuroendocrine cell lines. However, it remains unclear if it induces dopamine release in the central neurons. This study aimed to examine the expression and function of CADPS2, one of the two CADPS paralogs, in dopamine neurons of the mouse midbrain. This study shows that CADPS2 was expressed in tyrosine hydroxylase and the vesicular monoamine transporter 2 (VMAT2)-positive dopaminergic neurons of the midbrain samples and primary mesencephalic cell cultures. Subcellular fractions rich in dopamine were collected using immunoaffinity for CADPS2 from midbrain protein extracts. Cell imaging using fluorescent false neurotransmitter FFN511 as a substrate for VMAT2 showed decreased activity-dependent dopamine release in Cadps2-deficient cultures, compared to that in wild-type cultures. These results suggest that CADPS2 is involved in dopamine release from the central neurons, indicating its involvement in the central dopamine pathway.

10.
J Chem Neuroanat ; 140: 102449, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084478

RESUMO

Locus coeruleus (LC) neurons send their noradrenergic axons across multiple brain regions, including neocortex, subcortical regions, and spinal cord. Many aspects of cognition are known to be dependent on the noradrenergic system, and it has been suggested that dysfunction in this system may play central roles in cognitive decline associated with both normative aging and neurodegenerative disease. While basic anatomical and biochemical features of the LC have been examined in many species, detailed characterizations of the structure and function of the LC across the lifespan are not currently available. This includes the rhesus macaque, which is an important model of human brain function because of their striking similarities in brain architecture and behavioral capacities. In the present study, we describe a method to combine structural MRI, Nissl, and immunofluorescent histology from individual monkeys to reconstruct, in 3 dimensions, the entire macaque LC nucleus. Using these combined methods, a standardized volume of the LC was determined, and high-resolution confocal images of tyrosine hydroxylase-positive neurons were mapped into this volume. This detailed representation of the LC allows definitions to be proposed for three distinct subnuclei, including a medial region and a lateral region (based on location with respect to the central gray, inside or outside, respectively), and a compact region (defined by densely packed neurons within the medial compartment). This enabled the volume to be estimated and cell density to be calculated independently in each LC subnucleus for the first time. This combination of methods should allow precise characterization of the LC and has the potential to do the same for other nuclei with distinct molecular features.


Assuntos
Locus Cerúleo , Macaca mulatta , Imageamento por Ressonância Magnética , Animais , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/metabolismo , Locus Cerúleo/citologia , Imageamento por Ressonância Magnética/métodos , Masculino , Imuno-Histoquímica , Neurônios/metabolismo , Feminino , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/análise
11.
J Neurochem ; 168(9): 3116-3131, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032068

RESUMO

The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 µg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.


Assuntos
Camundongos Endogâmicos C57BL , Núcleo Accumbens , Núcleo Solitário , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiologia , Camundongos , Masculino , Ratos , Ratos Sprague-Dawley , Potenciais Pós-Sinápticos Excitadores/fisiologia , Colecistocinina/metabolismo , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Transdução de Sinais/fisiologia
12.
Heliyon ; 10(13): e34082, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071603

RESUMO

Parkinson's disease (PD) is a severe neurodegenerative disease that disturbs human health. In the laboratory researches about PD, the mice model induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was widely used. However, there has been controversy about the model effectiveness to simulate PD symptoms and pathology, and the time-varying development of behavioral and pathological characteristic after MPTP treatment remains unclear. In order to solve these problems, we designed a series of experiments to evaluate this PD model at different time points. We constructed the subacute PD mouse model by intraperitoneal injection of MPTP for 5 consecutive days. The rotarod test, open field test and the immunohistochemical staining of tyrosine hydroxylase were conducted at -5, 1, 5, 7, 14, 21 and 28 days after the last injection of MPTP. The results showed that 5 days after the last MPTP administration, typical motor disorders with significant balance function damage in rotarod test began to appear and remained stable throughout the entire experiment. Simultaneously, we also observed the loss of tyrosine hydroxylase (TH) positive cells in the substantia nigra compacta and reduction of TH content in the striatum but this pathological change in the substantia nigra compacta reversed 21 days after injection. Besides, the spontaneous movement of mice in open field test remained unchanged by MPTP. This research indicated the time-dependence of MPTP neurotoxicity that impair the motor function and histological features and confirmed the symptom occurrence time after MPTP injection, which provides a reference for the future research about MPTP-induced PD.

13.
Neuropharmacology ; 258: 110095, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084597

RESUMO

Stress is a major risk factor for several neuropsychiatric disorders in women, including postpartum depression. During the postpartum period, diminished ovarian hormone secretion increases susceptibility to developing depressive symptoms. Pleiotropic peptide hormones, like prolactin, are markedly released during lactation and suppress hypothalamic-pituitary-adrenal axis responses in women and acute stress-induced behavioral responses in female rodents. However, the effects of prolactin on chronic stress-induced maladaptive behaviors remain unclear. Here, we used chronic variable stress to induce maladaptive physiology in ovariectomized female rats and concurrently administered prolactin to assess its effects on several depression-relevant behavioral, endocrine, and neural characteristics. We found that chronic stress increased sucrose anhedonia and passive coping in saline-treated, but not prolactin-treated rats. Prolactin treatment did not alter stress-induced thigmotaxis, corticosterone (CORT) concentrations, hippocampal cell activation or survival. However, prolactin treatment reduced basal CORT concentrations and increased dopaminergic cells in the ventral tegmental area. Further, prolactin-treated rats had reduced microglial activation in the ventral hippocampus following chronic stress exposure. Together, these data suggest prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in hypogonadal females. Moreover, these findings imply neuroendocrine-immune mechanisms by which peptide hormones confer stress resilience during periods of low ovarian hormone secretion.


Assuntos
Corticosterona , Ovariectomia , Prolactina , Estresse Psicológico , Animais , Feminino , Prolactina/farmacologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Corticosterona/sangue , Ratos , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Ratos Sprague-Dawley , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
14.
Brain Sci ; 14(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39061373

RESUMO

Cysteamine hydrochloride (Cys-HCl) has been established as a potent ulcerogenic agent of the gastrointestinal (GI) system. GI dysfunction and olfactory deficits are the most common clinical symptoms of many movement disorders, including Parkinson's disease (PD). Cys-HCl has been shown to interfere with dopamine, a neurotransmitter crucial for motor, olfactory, and cognitive functions. However, the reports on the effect of Cys-HCl treatment on the behavioral aspects and functions of the dopamine system appear to be inconsistent. Therefore, we revisited the impact of Cys-HCl on the motor function in experimental mice using a battery of behavioral tests, such as the pole test (PT), beam-walking test (BWT), and rotarod test (RDT), while the olfactory ability and cognitive functions were examined through the buried-food test (BFT) and Y-maze test. Furthermore, we investigated the effect of Cys-HCl on the number of dopaminergic tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and olfactory bulb (OB) of the experimental mice using immunohistochemistry. The results revealed that Cys-HCl administration in the mice induced significant impairments in their motor balance and coordination, as their movement-related performances were markedly reduced in terms of the behavioral tasks. Mice exposed to Cys-HCl showed pronounced reductions in their odor discrimination abilities as well as cognitive impairments. Strikingly, the number of TH-positive neurons was found to be reduced in the SN and OB of the Cys-HCl-treated group, which is a bonafide neuropathogenic hallmark of PD. This study highlights the potential neurotoxic effects of Cys-HCl in experimental brains and suggests further investigation into its role in the pathogenesis of Parkinsonism.

15.
Biochemistry (Mosc) ; 89(6): 1024-1030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981698

RESUMO

Tyrosine hydroxylase (TH) catalyzes hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine, the initial and rate-limiting step in the synthesis of dopamine, noradrenaline, and adrenaline. Mutations in the human TH gene are associated with hereditary motor disorders. The common C886T mutation identified in the mouse Th gene results in the R278H substitution in the enzyme molecule. We investigated the impact of this mutation on the TH activity in the mouse midbrain. The TH activity in the midbrain of Mus musculus castaneus (CAST) mice homozygous for the 886C allele was higher compared to C57BL/6 and DBA/2 mice homozygous for the 886T allele. Notably, this difference in the enzyme activity was not associated with changes in the Th gene mRNA levels and TH protein content. Analysis of the TH activity in the midbrain in mice from the F2 population obtained by crossbreeding of C57BL/6 and CAST mice revealed that the 886C allele is associated with a high TH activity. Moreover, this allele showed complete dominance over the 886T allele. However, the C886T mutation did not affect the levels of TH protein in the midbrain. These findings demonstrate that the C886T mutation is a major genetic factor determining the activity of TH in the midbrain of common laboratory mouse strains. Moreover, it represents the first common spontaneous mutation in the mouse Th gene whose influence on the enzyme activity has been demonstrated. These results will help to understand the role of TH in the development of adaptive and pathological behavior, elucidate molecular mechanisms regulating the activity of TH, and explore pharmacological agents for modulating its function.


Assuntos
Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase , Animais , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos , Mutação , Encéfalo/metabolismo , Camundongos Endogâmicos DBA , Mesencéfalo/metabolismo , Mesencéfalo/enzimologia , Masculino , Alelos
16.
Environ Pollut ; 356: 124383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897282

RESUMO

Parkinson's disease (PD) is one of the fastest-growing neurodegenerative diseases and has been linked to the exposure to numerous environmental neurotoxins. Although lead (Pb) exposure has been related to the development of PD, the molecular target of Pb to cause the onset of PD is insufficiently investigated. Herein, we explored the effects of Pb exposure on behavior, pathophysiology, and gene expression of wild-type (WT) fly (Drosophila melanogaster) by comparison with its PD model. After exposure to Pb, the WT flies showed PD-like locomotor impairments and selective loss of dopaminergic (DAergic) neurons, displaying similar phenotypes to fly PD model (PINK1). Transcriptomic analysis showed the similarity in gene expression profiles between Pb treatment WT flies and PINK1 mutant flies. Moreover, Pb exposure resulted in endogenous dopamine deficits in WT flies. Analyses of gene expression and enzyme activity confirmed that Pb exposure reduced tyrosine hydroxylase (TH) activity and led to failure of dopamine synthesis. Furthermore, molecular dynamics simulation confirmed that Pb was adsorbed by TH and subsequently inhibited the enzymatic activity. Exogenous injection of L-dopa and melatonin could partially rescue the pathological phenotypes of Pb-exposed flies and PD fly model. Antagonist injection of microRNA-133, which negatively regulated the expression of TH gene, ultimately rescued in the manifestation of PD phenotypes in flies. Involvement of TH overexpression mutants of fly strongly promoted the resistance to Pb exposure and rescued both behavior and the number of DAergic neurons. Therefore, our study elucidates the Pb molecular target in dopamine pathway and mechanism underlying the risks of Pb exposure on the occurrence of PD at environmentally-relevant concentrations.


Assuntos
Dopamina , Drosophila melanogaster , Chumbo , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Animais , Drosophila melanogaster/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Chumbo/toxicidade , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
17.
Trends Mol Med ; 30(9): 800-803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38926032

RESUMO

Innovative therapeutic strategies are urgently needed for Parkinson's disease due to limited efficacy of current treatments and a weak therapeutic pipeline. In this forum article, we propose targeting tyrosine hydroxylase phosphorylation as a novel mechanism of action to address this critical need.


Assuntos
Dopamina , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Humanos , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Animais , Fosforilação
18.
J Neurol ; 271(8): 5687-5695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904783

RESUMO

Following reports of low striatal dopamine content in Parkinson's disease, levodopa was shown to rapidly reverse hypokinesis, establishing the model of disease as one of dopamine deficiency. Dopaminergic therapy became standard of care, yet it failed to reverse the disease, suggesting the understanding of disease was incomplete. The literature suggests the potential for toxicity of dopamine and its metabolites, perhaps more relevant given the recent evidence for elevated cytosolic dopamine levels in the dopaminergic neurons of people with Parkinson's. To understand the relevance of these data, multiple investigations are reviewed that tested dopamine reduction therapy as an alternative to dopaminergic agents. The data from use of an inhibitor of dopamine synthesis in experimental models suggest that such an approach could reverse disease pathology, which suggests that cytosolic dopamine excess is a primary driver of disease. These data support clinical investigation of dopamine reduction therapy for Parkinson's disease. Doing so will determine whether these experimental models are predictive and this treatment strategy is worth pursuing further. If clinical data are positive, it could warrant reconsideration of our disease model and treatment strategies, including a shift from dopaminergic to dopamine reduction treatment of the disease.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Dopaminérgicos/farmacologia , Dopaminérgicos/administração & dosagem , Levodopa/farmacologia , Levodopa/administração & dosagem
19.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895239

RESUMO

Post-Acute Sequelae of COVID-19 (PASC) encompasses persistent neurological symptoms, including olfactory and autonomic dysfunction. Here, we report chronic neurological dysfunction in mice infected with a virulent mouse-adapted SARS-CoV-2 that does not infect the brain. Long after recovery from nasal infection, we observed loss of tyrosine hydroxylase (TH) expression in olfactory bulb glomeruli and neurotransmitter levels in the substantia nigra (SN) persisted. Vulnerability of dopaminergic neurons in these brain areas was accompanied by increased levels of proinflammatory cytokines and neurobehavioral changes. RNAseq analysis unveiled persistent microglia activation, as found in human neurodegenerative diseases. Early treatment with antivirals (nirmatrelvir and molnupiravir) reduced virus titers and lung inflammation but failed to prevent neurological abnormalities, as observed in patients. Together these results show that chronic deficiencies in neuronal function in SARS-CoV-2-infected mice are not directly linked to ongoing olfactory epithelium dysfunction. Rather, they bear similarity with neurodegenerative disease, the vulnerability of which is exacerbated by chronic inflammation.

20.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854057

RESUMO

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA