Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.190
Filtrar
1.
Genes Dis ; 11(5): 101150, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947742

RESUMO

The advent of tyrosine kinase inhibitors (TKI) targeting BCR-ABL has drastically changed the treatment approach of chronic myeloid leukemia (CML), greatly prolonged the life of CML patients, and improved their prognosis. However, TKI resistance is still a major problem with CML patients, reducing the efficacy of treatment and their quality of life. TKI resistance is mainly divided into BCR-ABL-dependent and BCR-ABL-independent resistance. Now, the main clinical strategy addressing TKI resistance is to switch to newly developed TKIs. However, data have shown that these new drugs may cause serious adverse reactions and intolerance and cannot address all resistance mutations. Therefore, finding new therapeutic targets to overcome TKI resistance is crucial and the ubiquitin-proteasome system (UPS) has emerged as a focus. The UPS mediates the degradation of most proteins in organisms and controls a wide range of physiological processes. In recent years, the study of UPS in hematological malignant tumors has resulted in effective treatments, such as bortezomib in the treatment of multiple myeloma and mantle cell lymphoma. In CML, the components of UPS cooperate or antagonize the efficacy of TKI by directly or indirectly affecting the ubiquitination of BCR-ABL, interfering with CML-related signaling pathways, and negatively or positively affecting leukemia stem cells. Some of these molecules may help overcome TKI resistance and treat CML. In this review, the mechanism of TKI resistance is briefly described, the components of UPS are introduced, existing studies on UPS participating in TKI resistance are listed, and UPS as the therapeutic target and strategies are discussed.

2.
Plant Sci ; : 112180, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964613

RESUMO

Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.

3.
Sci Rep ; 14(1): 15133, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956194

RESUMO

The goal of this study was to evaluate the intensity of autophagy and ubiquitin-dependent proteolysis processes occurring in myocardium of left ventricle (LV) in subsequent stages of pulmonary arterial hypertension (PAH) to determine mechanisms responsible for LV mass loss in a monocrotaline-induced PAH rat model. LV myocardium samples collected from 32 Wistar rats were analyzed in an early PAH group (n = 8), controls time-paired (n = 8), an end-stage PAH group (n = 8), and their controls (n = 8). Samples were subjected to histological analyses with immunofluorescence staining, autophagy assessment by western blotting, and evaluation of ubiquitin-dependent proteolysis in the LV by immunoprecipitation of ubiquitinated proteins. Echocardiographic, hemodynamic, and heart morphometric parameters were assessed regularly throughout the experiment. Considerable morphological and hemodynamic remodeling of the LV was observed over the course of PAH. The end-stage PAH was associated with significantly impaired LV systolic function and a decrease in LV mass. The LC3B-II expression in the LV was significantly higher in the end-stage PAH group compared to the early PAH group (p = 0.040). The measured LC3B-II/LC3B-I ratios in the end-stage PAH group were significantly elevated compared to the controls (p = 0.039). Immunofluorescence staining showed a significant increase in the abundance of LC3 puncta in the end-stage PAH group compared to the matched controls. There were no statistically significant differences in the levels of expression of all ubiquitinated proteins when comparing both PAH groups and matched controls. Autophagy may be considered as the mechanism behind the LV mass loss at the end stage of PAH.


Assuntos
Autofagia , Ventrículos do Coração , Proteólise , Hipertensão Arterial Pulmonar , Ratos Wistar , Ubiquitina , Animais , Ubiquitina/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Ratos , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Modelos Animais de Doenças , Miocárdio/metabolismo , Miocárdio/patologia , Ecocardiografia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Remodelação Ventricular
4.
Cells ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891087

RESUMO

Ubiquitin-specific protease 14 (USP14), one of the three major proteasome-associated deubiquitinating enzymes (DUBs), is known to be activated by the AKT-mediated phosphorylation at Ser432. Thereby, AKT can regulate global protein degradation by controlling the ubiquitin-proteasome system (UPS). However, the exact molecular mechanism of USP14 activation by AKT phosphorylation at the atomic level remains unknown. By performing the molecular dynamics (MD) simulation of the USP14 catalytic domain at three different states (inactive, active, and USP14-ubiquitin complex), we characterized the change in structural dynamics by phosphorylation. We observed that the Ser432 phosphorylation induced substantial conformational changes of USP14 in the blocking loop (BL) region to fold it from an open loop into a ß-sheet, which is critical for USP14 activation. Furthermore, phosphorylation also increased the frequency of critical hydrogen bonding and salt bridge interactions between USP14 and ubiquitin, which is essential for DUB activity. Structural dynamics insights from this study pinpoint the important local conformational landscape of USP14 by the phosphorylation event, which would be critical for understanding USP14-mediated proteasome regulation and designing future therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-akt , Ubiquitina Tiolesterase , Fosforilação , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Ubiquitina/metabolismo , Ativação Enzimática , Domínio Catalítico , Ligação Proteica , Conformação Proteica
5.
Trends Biochem Sci ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945729

RESUMO

The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.

6.
Kidney Dis (Basel) ; 10(3): 167-180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835407

RESUMO

Introduction: IgA nephropathy (IgAN) is a leading cause of end-stage renal disease. The exact pathogenesis of IgAN is not well defined, but some genetic studies have led to a novel discovery that the (immuno)proteasome probably plays an important role in IgAN. Methods: We firstly analyzed the association of variants in the UBE2L3 region with susceptibility to IgAN in 3,495 patients and 9,101 controls, and then analyzed the association between lead variant and clinical phenotypes in 1,803 patients with regular follow-up data. The blood mRNA levels of members of the ubiquitin-proteasome system including UBE2L3 were analyzed in peripheral blood mononuclear cells from 53 patients and 28 healthy controls. The associations between UBE2L3 and the expression levels of genes involved in Gd-IgA1 production were also explored. Results: The rs131654 showed the most significant association signal in UBE2L3 region (OR: 1.10, 95% CI: 1.04-1.16, p = 2.29 × 10-3), whose genotypes were also associated with the levels of Gd-IgA1 (p = 0.04). The rs131654 was observed to exert cis-eQTL effects on UBE2L3 in various tissues and cell types, particularly in immune cell types in multiple databases. The UBE2L3, LUBAC, and proteasome subunits were highly expressed in patients compared with healthy controls. High expression levels of UBE2L3 were not only associated with higher proteinuria (r = 0.34, p = 0.01) and lower eGFR (r = -0.28, p = 0.04), but also positively correlated with the gene expression of LUBAC and other proteasome subunits. Additionally, mRNA expression levels of UBE2L3 were also positively correlated with IL-6 and RELA, but negatively correlated with the expression levels of the key enzyme in the process of glycosylation including C1GALT1 and C1GALT1C1. Conclusion: In conclusion, by combined genetic association and differed expression analysis of UBE2L3, our data support a role of genetically conferred dysregulation of the (immuno)proteasome in regulating galactose-deficient IgA1 in the development of IgAN.

7.
Nutr Res ; 127: 97-107, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38909568

RESUMO

Muscle atrophy is the waste or loss of muscle mass and is caused by physical inactivity, aging, or diseases such as diabetes, cancer, and heart failure. The number of patients suffering from musculoskeletal disorders is expected to increase in the future. However, intervention for muscle atrophy is limited, so research on treatment for muscle wasting is needed. This study hypothesized that guava leaf (Psidium guajava L. [GL]) would have ameliorative effects on muscle atrophy by regulation of protein degradation pathways in a dexamethasone (DEX)-induced muscle atrophy mice model. Muscle atrophy was induced by DEX injection for 28 days in 7 week-old-male ICR mice. Then, low-dose GL (LGL, 200 mg/kg) or high-dose GL (HGL, 500 mg/kg) extract (GLE) was supplemented by oral gavage for 21 days. Muscle strength, calf thickness, and body composition were analyzed. Histopathological changes in the gastrocnemius muscle were examined using hematoxylin and eosin staining, and molecular pathways related to muscle degradation were analyzed by western blots. GLE treatment regardless of dose increased muscle strength in mice with muscle atrophy accompanied by attenuating autophagy related pathway in the DEX-induced muscle atrophy mice. Moreover, a high dose of GLE treatment ameliorated ubiquitin proteasome system and apoptosis in the DEX-induced muscle atrophy mice. This study suggested that GLE could be helpful to improve muscle health and alleviate proteolysis by regulation of the ubiquitin-proteasome system, autophagy, and apoptosis, which are involved in muscle degradation. In conclusion, GLE could be a potential nutraceutical to prevent muscle atrophy.

8.
Exp Neurol ; 379: 114869, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901755

RESUMO

The protein homeostasis, or proteostasis, is maintained through the coupling of two pivotal systems: the ubiquitin-proteasome and autophagy. Cumulative evidence has suggested E3 ubiquitin ligases specifically play a central role in this coupling, ensuring the regulation of synaptic and cognitive functions. Defects in these ligases have been identified as hallmarks in a range of neurodevelopmental and neurodegenerative disorders. Recent literature has spotlighted the E3 ubiquitin ligase, UBE3A, as a key player in this domain. Dysregulation or loss of UBE3A function has been linked to disrupted proteostasis, leading to synaptic and cognitive anomalies. Notably, such defects are prominently observed in conditions like Angelman syndrome, a neurodevelopmental disorder characterized by severe cognitive impairments. The emerging understanding of UBE3A's role in bridging the ubiquitin-proteasome and autophagy systems offers a promising therapeutic avenue. Targeting the defective pathways caused by UBE3A loss could pave the way for innovative treatments, potentially ameliorating the cognitive deficits observed in neurological disorders like Angelman syndrome. As the scientific community delves deeper into the molecular intricacies of E3 ubiquitin ligases, there is burgeoning hope for devising effective interventions for associated neurological conditions.

9.
Exp Neurol ; 378: 114822, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823676

RESUMO

Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.


Assuntos
Depressão , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina , Acidente Vascular Cerebral , Animais , Ratos , Masculino , Depressão/etiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/psicologia , Acidente Vascular Cerebral/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Humanos , Regulação para Baixo/efeitos dos fármacos , Pessoa de Meia-Idade , Modelos Animais de Doenças , Feminino , Idoso , Proteína Sequestossoma-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Hormônio Liberador da Corticotropina/metabolismo
10.
BMC Med Genomics ; 17(1): 164, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898455

RESUMO

BACKGROUND: Immunoregulatory drugs regulate the ubiquitin-proteasome system, which is the main treatment for multiple myeloma (MM) at present. In this study, bioinformatics analysis was used to construct the risk model and evaluate the prognostic value of ubiquitination-related genes in MM. METHODS AND RESULTS: The data on ubiquitination-related genes and MM samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The consistent cluster analysis and ESTIMATE algorithm were used to create distinct clusters. The MM prognostic risk model was constructed through single-factor and multiple-factor analysis. The ROC curve was plotted to compare the survival difference between high- and low-risk groups. The nomogram was used to validate the predictive capability of the risk model. A total of 87 ubiquitination-related genes were obtained, with 47 genes showing high expression in the MM group. According to the consistent cluster analysis, 4 clusters were determined. The immune infiltration, survival, and prognosis differed significantly among the 4 clusters. The tumor purity was higher in clusters 1 and 3 than in clusters 2 and 4, while the immune score and stromal score were lower in clusters 1 and 3. The proportion of B cells memory, plasma cells, and T cells CD4 naïve was the lowest in cluster 4. The model genes KLHL24, HERC6, USP3, TNIP1, and CISH were highly expressed in the high-risk group. AICAr and BMS.754,807 exhibited higher drug sensitivity in the low-risk group, whereas Bleomycin showed higher drug sensitivity in the high-risk group. The nomogram of the risk model demonstrated good efficacy in predicting the survival of MM patients using TCGA and GEO datasets. CONCLUSIONS: The risk model constructed by ubiquitination-related genes can be effectively used to predict the prognosis of MM patients. KLHL24, HERC6, USP3, TNIP1, and CISH genes in MM warrant further investigation as therapeutic targets and to combat drug resistance.


Assuntos
Biologia Computacional , Mieloma Múltiplo , Ubiquitinação , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Biologia Computacional/métodos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Nomogramas , Análise por Conglomerados
11.
Curr Med Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38939997

RESUMO

Tripartite-motif protein family member 65 (TRIM65) belongs to the tripartite motif (TRIM) protein family. Its typical structure consists of the RING, B-Box motif, and coiled-coil domains, which are highly conserved at the N-terminus and the variable SPRY domain at the C-terminus. TRIM65 is an E3 ubiquitin ligase that participates in physiological and pathological processes through the ubiquitination pathway, including intracellular signal transduction, protein degradation, cell proliferation, apoptosis, carcinogenesis, autophagy, and phenotypic transformation. Evidence shows that TRIM65 plays a remarkable and obscure role in diseases, including multisystem tumours, neurodegenerative diseases, immune system diseases, and inflammatory diseases. This review is devoted to elaborating on the relationship between TRIM65 and diseases and its pathogenic mechanism, providing a theoretical basis for TRIM65 as a possible pathogenic target of diseases and exploring the possible future research direction of TRIM65 and the challenges it may face.

12.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931449

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.

13.
Heliyon ; 10(9): e30284, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707379

RESUMO

E3 ubiquitin ligases comprise a family of ubiquitination-catalyzing enzymes that have been extensively researched and are considered crucial components of the ubiquitin-proteasome system involved in various diseases. The ubiquitin-protein ligase E3 component n-recognition 5 (UBR5) is an E3 ubiquitin-protein ligase that has garnered considerable interest of late. Recent studies demonstrate that UBR5 undergoes high-frequency mutations, chromosomal amplification, and/or abnormalities during expression of various malignant tumors. These alterations correlate with the biological behaviors and prognoses of malignancies, such as tumor invasion, metastasis, and resistance to chemotherapeutic agents. This study aimed to comprehensively elucidate the biological functions of UBR5, and its role and relevance in the context of gastrointestinal cancers. Furthermore, this article expounds a scientific basis to explore the molecular mechanisms underlying gastrointestinal cancers and developing targeted therapeutic strategies for their remediation.

14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732146

RESUMO

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.


Assuntos
Arritmias Cardíacas , Cálcio , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Cálcio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Fisiológico , Transporte Proteico , Ratos , Aminoácidos/metabolismo
15.
Biochim Biophys Acta Rev Cancer ; 1879(4): 189119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761982

RESUMO

Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.


Assuntos
Recidiva Local de Neoplasia , Neoplasias , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Ubiquitina/metabolismo , Recidiva Local de Neoplasia/patologia , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
16.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788716

RESUMO

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Assuntos
Proliferação de Células , Hidroximetilglutaril-CoA Sintase , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ácido Mevalônico/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Transdução de Sinais , Degrons , Proteínas Adaptadoras de Transdução de Sinal
17.
Bioessays ; 46(7): e2300247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769702

RESUMO

Dormancy or hibernation is a non-proliferative state of cells with low metabolic activity and gene expression. Dormant cells sequester ribosomes in a translationally inactive state, called dormant/hibernating ribosomes. These dormant ribosomes are important for the preservation of ribosomes and translation shut-off. While recent studies attempted to elucidate their modes of formation, the regulation and roles of the diverse dormant ribosomal populations are still largely understudied. The mechanistic details of the formation of dormant ribosomes in stress and especially their disassembly during recovery remain elusive. In this review, we discuss the roles of dormant ribosomes and their potential regulatory mechanisms. Furthermore, we highlight the paradigms that need to be answered in the field of ribosomal dormancy.


Assuntos
Homeostase , Biossíntese de Proteínas , Ribossomos , Ribossomos/metabolismo , Humanos , Animais , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética
18.
Mol Cell Proteomics ; 23(7): 100791, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797438

RESUMO

Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To investigate the age-selectivity of cellular pathways, we developed a methodology termed "proteome birthdating" that barcodes proteins based on their time of synthesis. We demonstrate that this approach provides accurate measurements of protein turnover kinetics from a single biological sample encoding multiple labeling time-points. As a first application of the birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly synthesized proteins and that these young proteins constitute the bulk of the degradative flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in cytosolic subunits of large protein complexes. Conversely, proteins destined for the secretory pathway and vesicular transport have older ubiquitinated populations. Our data also identify a smaller subset of older ubiquitinated cellular proteins that do not appear to be targeted to the proteasome for rapid degradation. Together, our data provide an age census of the human ubiquitinome and establish proteome birthdating as a robust methodology for investigating the protein age-selectivity of diverse cellular pathways.

19.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38805398

RESUMO

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Assuntos
Células-Tronco Pluripotentes Induzidas , Xeroderma Pigmentoso , Xeroderma Pigmentoso/patologia , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular , Dano ao DNA , Modelos Biológicos , Multiômica
20.
Front Mol Biosci ; 11: 1351641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774235

RESUMO

Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...