Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Se Pu ; 42(5): 420-431, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736385

RESUMO

The consumption of poultry eggs has increased in recent years owing to the abundance of production and improvements in living standards. Thus, the safety requirements of poultry eggs have gradually increased. At present, few reports on analytical methods to determine banned veterinary drugs during egg-laying period in poultry eggs have been published. Therefore, establishing high-throughput and efficient screening methods to monitor banned veterinary drugs during egg-laying period is imperative. In this study, an analytical method based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with QuEChERS-based techniques was developed for the simultaneous determination of 31 banned veterinary drugs encompassing nine drug classes (macrolides, antipyretic and analgesic drugs, sulfonamides, antibacterial synergists, anticoccidials, antinematodes, quinolones, tetracyclines, amphenicols) in different types of poultry eggs. The main factors affecting the response, recovery, and sensitivity of the method, such as the extraction solvent, purification adsorbent, LC separation conditions, and MS/MS parameters, were optimized during sample pretreatment and instrumental analysis. The 31 veterinary drug residues in 2.00 g eggs were extracted with 2 mL of 0.1 mol/L ethylene diamine tetraacetic acid disodium solution and 8 mL 3% acetic acid acetonitrile solution, and salted out with 2 g of sodium chloride. After centrifugation, 5 mL of the supernatant was cleaned-up using the QuEChERS method with 100 mg of octadecylsilane-bonded silica gel (C18), 50 mg of N-propylethylenediamine (PSA), and 50 mg of NH2-based sorbents. After nitrogen blowing and redissolution, the 31 target analytes were separated on a Waters CORTECS UPLC C18 analytical chromatographic column (150 mm×2.1 mm, 1.8 µm) at a flow rate, column temperature, and injection volume of 0.4 mL/min, 30 ℃, and 5 µL, respectively. Among these analytes, 26 analytes were acquired in dynamic multiple reaction monitoring (MRM) mode under positive electrospray ionization (ESI+) conditions using (A) 5 mmol/L ammonium acetate (pH 4.5) and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-30%B; 2.0-7.5 min, 30%B-50%B; 7.5-10.0 min, 50%B; 10.0-10.1 min, 50%B-100%B; 10.1-12.0 min, 100%B; 12.0-12.1 min, 100%B-12%B; The five other target analytes were acquired in MRM mode under negative electrospray ionization (ESI-) conditions using (A) H2O and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-40%B; 2.0-6.0 min, 40%B-80%B; 6.0-6.1 min, 80%B-100%B; 6.1-8.0 min, 100%B; 8.0-8.1 min, 100%B-12%B. Matrix-matched external standard calibration was used for quantification. The results showed that all the compounds had good linear relationships within their respective ranges, with correlation coefficients of >0.99. The limits of detection (LODs) and quantitation (LOQs) were 0.3-3.0 µg/kg and 1.0-10.0 µg/kg, respectively. The average recoveries of the 31 banned veterinary drugs spiked at three levels (LOQ, maximum residue limit (MRL), and 2MRL) in poultry eggs ranged from 61.2% to 105.7%, and the relative standard deviations (RSDs) ranged from 1.8% to 17.6%. The developed method was used to detect and analyze banned veterinary drugs in 30 commercial poultry egg samples, including 20 eggs, 5 duck eggs, and 5 goose eggs. Enrofloxacin was detected in one egg with a content of 12.3 µg/kg. The proposed method is simple, economical, practical, and capable of the simultaneous determination of multiple classes of banned veterinary drugs in poultry eggs.


Assuntos
Resíduos de Drogas , Ovos , Espectrometria de Massas em Tandem , Drogas Veterinárias , Espectrometria de Massas em Tandem/métodos , Animais , Drogas Veterinárias/análise , Ovos/análise , Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas/análise , Aves Domésticas , Contaminação de Alimentos/análise
2.
Se Pu ; 42(5): 445-451, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736387

RESUMO

Mycotoxins are toxic secondary metabolites produced by fungal species that can cause acute, subacute, and chronic toxicity in humans and animals. Thus, these toxins pose a significant threat to health and safety. Owing to the lack of effective antimold measures in the agricultural industry, feed ingredients such as corn, peanuts, wheat, barley, millet, nuts, oily feed, forage, and their byproducts are prone to mold and mycotoxin contamination, which can affect animal production, product quality, and safety. Cyclopiazonic acid (CPA), which is mainly biosynthesized from mevalonate, tryptophan, and diacetate units, is a myotoxic secondary metabolite produced by Penicillium and Aspergillus fungi. CPA is widely present as a copollutant with aflatoxins in various crops. Compared with some common mycotoxins such as aflatoxins, fumonisins, ochratoxins, zearalenones, and their metabolites, CPA has not been well investigated. In the United States, a survey showed that 51% of corn and 90% of peanut samples contained CPA, with a maximum level of 2.9 mg/kg. In Europe, CPA was found in Penicillium-contaminated cheeses as high as 4.0 mg/kg. Some studies have shown that CPA can cause irreversible damage to organs such as the liver and spleen in mice. Therefore, the establishment of a rapid and efficient analytical method for CPA is of great significance for the risk assessment of CPA in feeds, the development of standard limits, and the protection of feed product quality and safety. The QuEChERS method, a sample pretreatment method that is fast, simple, cheap, effective, and safe, is widely used in the analysis of pesticide residues in food. In this study, a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine CPA levels in feeds. The chromatographic separation and MS detection of CPA as well as the key factors affecting the extraction efficiency of CPA, including the type of extraction solvent, type of inorganic salt, and type and dosage of adsorbent, were optimized in detail. During the optimization of the chromatographic-separation step, the acid and salt concentrations of the mobile phase affected the separation and detection of CPA. During the optimization of the QuEChERS method, the addition of a certain amount of acetic acid improved the extraction efficiency of CPA because of its acidic nature; in addition, GCB and PSA significantly adsorbed CPA from the feed extract. Under optimal conditions, the CPA in the feed sample (1.0 g) was extracted with 2 mL of water and 4 mL of acetonitrile (ACN) containing 0.5% acetic acid. After salting out with 0.4 g of NaCl and 1.6 g of MgSO4, 1 mL of the ACN supernatant was purified by dispersive solid-phase extraction using 150 mg of MgSO4 and 50 mg of C18 and analyzed by UPLC-MS/MS. The sample was separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm) using 2 mmol/L ammonium acetate aqueous solution with 0.5% formic acid and ACN as the mobile phases and then analyzed by positive electrospray ionization in multiple reaction monitoring mode. CPA exhibited good linearity in the range of 2-200 ng/mL, with a high correlation coefficient (r=0.9995). The limits of detection and quantification of CPA, which were calculated as 3 and 10 times the signal-to-noise ratio, respectively, were 0.6 and 2.0 µg/kg, respectively. The average recoveries in feed samples spiked with 10, 100, and 500 µg/kg CPA ranged from 70.1% to 78.5%, with an intra-day precision of less than 5.8% and an inter-day precision of less than 7.2%, indicating the good accuracy and precision of the proposed method. Finally, the modified QuEChERS-UPLC-MS/MS method was applied to the analysis of CPA in 10 feed samples obtained from Wuhan market. The analysis results indicated that the developed method has good applicability for CPA analysis in feed samples. In summary, an improved QuEChERS method was applied to the extraction and purification of CPA from feeds for the first time; this method provides a suitable analytical method for the risk monitoring, assessment, and standard-limit setting of CPA in feed samples.


Assuntos
Ração Animal , Contaminação de Alimentos , Indóis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Ração Animal/análise , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Indóis/análise , Micotoxinas/análise
3.
Foods ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611427

RESUMO

Residue dissipation and risk assessment of difenoconazole and its metabolite difenoconazole-alcohol during tea growing, processing, and brewing was first investigated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The limits of quantification for both difenoconazole and difenoconazole-alcohol were 0.001 mg/kg in fresh tea leaves and tea, and 0.0002 mg/L in tea infusion. In field trials, the dissipation half-lives of difenoconazole in fresh tea leaves was 1.77 days. After spraying, the residues of difenoconazole-alcohol increased and then gradually dissipated like difenoconazole. After 14 days, the dissipation rates of difenoconazole and difenoconazole-alcohol reached 99%. When fresh tea leaves were harvested on different days, the total processing factors (PFs) of difenoconazole and difenoconazole-alcohol for green tea were 0.86-1.05 and 0.78-0.85, respectively, while the total PFs for black tea were 0.83-1.13 and 0.82-1.66, respectively. Metabolism of difenoconazole was accelerated during tea processing. When brewing black tea, the leaching rates (LRs) of difenoconazole and difenoconazole-alcohol were 8.4-17.9% and 31.8-38.9%, respectively, while when brewing green tea, the LRs were 15.4-23.5% and 30.4-50.6%, respectively. The LRs of difenoconazole and difenoconazole-alcohol in black tea were higher than those in green tea. The potential threat to human health for dietary intake of difenoconazole and difenoconazole-alcohol residues from tea consumption is negligible. However, the dietary risk of difenoconazole in fruits and vegetables that are essential for daily diets is concerning, with a risk probability of 158%.

4.
Se Pu ; 42(3): 264-274, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503703

RESUMO

Phenolic endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and disrupt normal cell functions upon entering a living organism, leading to reproductive and developmental toxicity. Therefore, the development of a rapid and efficient analytical method for detecting phenolic EDCs in environmental waters is crucial. Owing to the low concentration of phenolic EDCs in environmental water, appropriate sample pretreatment methods are necessary to remove interferences caused by the sample matrix and enrich the target analytes before instrumental analysis. Dispersive solid-phase extraction (DSPE) has gained considerable attention as a simple and rapid sample pretreatment method for environmental-sample analysis. In this method, an adsorbent material is uniformly dispersed in a sample solution and the target analytes are extracted through processes such as vortexing. Compared with traditional solid-phase extraction (SPE), DSPE increases the contact area between the adsorbent and sample solution, reduces the required amounts of adsorbent and organic solvents, and improves the extraction efficiency. The adsorbent material plays a critical role in DSPE because it determines the extraction efficiency of the method. Metal-organic frameworks (MOFs) are porous framework materials composed of metal clusters and multifunctional organic ligands. They possess many excellent properties such as tunable pore sizes, large surface areas, and good thermal and chemical stability, rendering them ideal adsorbent materials for sample pretreatment. MOF-derived porous carbon materials obtained through high-temperature carbonization not only increase the density of MOF materials for better separation but also retain the advantages of a large surface area, highly ordered porous structure, and high porosity. In this study, a porous carbon material derived from an MOF, named as University of Oslo-66-carbon (UiO-66-C), was synthesized using a solvothermal method and applied as an adsorbent to enrich four phenolic EDCs (bisphenol A, 4-tert-octylphenol, 4-nonylphenol, and nonylphenol) in water. A method combining DSPE with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established to analyze these phenolic EDCs in water. The UiO-66-C dosage, pH of water sample, adsorption time, eluent type and volume, elution time, and ion strength were optimized. Gradient elution was performed using methanol-water as the mobile phase. The target analytes were separated on an ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm), and multiple reaction monitoring (MRM) was conducted in negative electrospray ionization mode. The method exhibited a linear correlation within the range of 0.5-100 µg/L for the four phenolic EDCs. The limits of detection (LODs) and quantification (LOQs) of the four phenolic EDCs were 0.01-0.13 µg/L and 0.03-0.42 µg/L, respectively. The precision of the method was evaluated through intra- and inter-day relative standard deviations (RSDs), with values ranging from 1.5% to 10.6% and from 6.1% to 13.2%, respectively. When applied to the detection of phenolic EDCs in tap and surface water, the spiked recoveries of the four phenolic EDCs were 77.1%-116.6%. Trace levels of 4-nonylphenol and nonylphenol were detected in surface water at levels of 1.38 and 0.26 µg/L, respectively. The proposed method exhibits good accuracy and precision; thus, it provides a new rapid, efficient, and sensitive approach for the detection of phenolic EDCs in environmental water.


Assuntos
Estruturas Metalorgânicas , Fenóis , Ácidos Ftálicos , Espectrometria de Massas em Tandem , Água , Cromatografia Líquida de Alta Pressão , Porosidade , Cromatografia Líquida , Esqueleto , Metais , Extração em Fase Sólida
5.
Se Pu ; 42(2): 185-193, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38374599

RESUMO

Antibiotics are mainly used for disease treatment and prevention, and ß-receptor agonists are mainly used in the clinical treatment of respiratory diseases. Both types of drugs are also widely used in animal husbandry and aquaculture to promote animal growth and prevent disease. These drugs enter the human body through many routes and cause harm to human health. Teenagers are in a critical period of growth and development, and long-term antibiotic exposure may have adverse effects on their bodies. In this study, 442 teenagers aged 11-15 years were recruited from a middle school to investigate the body burden of various antibiotics and ß-receptor agonists. The seven categories of antibiotics, including five macrolides, four tetracyclines, 10 quinolones, 11 sulfonamides, three ß-lactams, one quinoxaline, and one lincosamide, and four ß-receptor agonists were determined by isotope dilution and solid phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry. Analyte levels were corrected using urine creatinine, and detection rates were used for data analysis. Pearson's chi-squared test was used to analyze the correlations between detection rate and gender, age, or body mass index (BMI). Logistic regression was used to evaluate the correlation between detection rate and different groups after adjusting for confounding factors. The results showed that 397 teenagers had at least one antibiotic or ß-receptor agonist in their urine, with a total detection rate of 89.8%. A total of 29 antibiotics and ß-receptor agonists were detected, and the detection rate of each compound ranged from 0.2% to 59.0%. Doxycycline, oxytetracycline, and azithromycin were the top three drugs with the highest detection rates (59.0%, 56.1%, and 34.6%, respectively). Tetracyclines and macrolides were the two antibiotic categories detected most often, with detection rates of 81.9% and 42.3%, respectively. Among the antibiotics investigated, preferred veterinary antibiotics (PVAs) had the highest detection rate (85.1%), followed by human antibiotics (HAs) (41.0%). The overall detection rate of ß-receptor agonists was 2.7%. Statistical analysis showed that the male was prone to be exposed to tetracycline antibiotics (odds ratio (OR)=2.17). The detection rates of macrolides differed among the different age groups and were higher in those aged 12-13 years than in those aged 11 years. As the BMI of the teenagers increased, the detection rate of macrolides gradually increased. After adjusting for age and gender, teenagers with obesity were found to be 2.35 times more likely to be exposed to macrolides than those with a normal weight. The findings suggest that teenagers are generally exposed to low levels of antibiotics, that food and the environment may be the main sources of antibiotic exposure in teenagers, and that macrolide exposure may be associated with adolescent obesity.


Assuntos
Antibacterianos , Obesidade Infantil , Adolescente , Humanos , Animais , Masculino , Antibacterianos/análise , beta-Lactamas , Tetraciclinas , Hormônios Esteroides Gonadais , Macrolídeos , Cromatografia Líquida de Alta Pressão
6.
J Pharm Biomed Anal ; 240: 115962, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211518

RESUMO

DO-2 is a highly selective MNNG HOS transforming (MET) inhibitor. This deuterated drug is thought to diminish the formation of the Aldehyde Oxidase 1 inactive metabolite M3. For various reasons, quantification of DO-2 and its metabolites M3 and DO-5 is highly relevant. In this study, we present an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to quantify DO-2, M3 and DO-5. Rolipram served as the internal standard. Aliquots of 25 µL were mixed with 100 µL internal standard consisting of 10 ng/mL rolipram in acetonitrile. Separation of the analytes was achieved on an Acquity UPLC ® HSS T3 column, utilizing gradient elution with water/formic acid and acetonitrile/formic acid at a flow-rate of 0.400 mL/min. Calibration curves were linear in the range of 1.00 - 1000 ng/mL for DO-2 and DO-5, and 2.00 - 2000 ng/mL for M3 in human plasma. The within-run and between-run precisions of DO-2, DO-5 and M3, also at the level of the LLQ, were within 12.1%, while the accuracy ranged from 89.5 to 108.7%. All values for accuracy, within-run and between-run precisions met the criteria set by the Food and Drug Administration. The method was effectively employed in the analysis of samples obtained from a clinical trial.


Assuntos
Formiatos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Rolipram , Acetonitrilas , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
7.
Se Pu ; 42(1): 38-51, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38197205

RESUMO

The methods of detecting numerous prohibited components are not included in the Technical Specifications for Cosmetic Safety (2015 Edition). Recently, owing to its high speed, sensitivity, and anti-interference properties, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) became the preferred method of detecting banned substances in cosmetics. In this study, a UPLC-MS/MS method was developed for use in determining 87 prohibited ingredients in cosmetics, including 33 sex hormones, 20 anti-infective drugs, 15 antihistamines, 7 coumarins, 4 sedative-hypnotic drugs, 4 antipyretic and analgesic drugs, 2 allergenic fragrances, and 2 drugs with vasoconstriction effects. The main factors affecting the response, recovery, and sensitivity of the method, such as the type of extraction solvent, extraction time, ratio of the mobile phases, and MS conditions, were optimized during sample pretreatment and instrumental analysis. Accordingly, approximately 0.2 g of the toner or cream sample was dispersed in 2 mL acetonitrile in a 10 mL colorimetric tube. After diluting to 10 mL with 50% acetonitrile aqueous solution, the sample was ultrasonically extracted for 20 min and centrifuged, and the mixture was then filtered through a 0.22 µm membrane. Approximately 0.2 g of the oil sample was dispersed in 2 mL n-hexane in a 15 mL polypropylene centrifuge tube and extracted twice with 3 mL 70% acetonitrile aqueous solution. The extracts were transferred into a 10 mL colorimetric tube and diluted to 10 mL with 50% acetonitrile aqueous solution, and the mixture was then filtered through a 0.22 µm membrane. The samples were separated using a CORTECS C18 column (150 mm×2.1 mm, 2.7 µm), employing a gradient elution program with acetonitrile and 0.1% formic acid aqueous solution as the mobile phases. The flow rate, column temperature, and injection volume were respectively set at 0.3 mL/min, 40 ℃, and 2 µL. The 87 compounds were monitored in multiple reaction monitoring (MRM) mode with electrospray ionization (ESI) under positive and negative conditions. Matrix-matched external standard calibration was used for quantification, and the analysis was completed within 33 min. The prohibited compounds exhibited good linear relationships, with r values of >0.99, and the limits of detection (LODs) and quantification (LOQs) for the 87 compounds were 0.07-0.38 and 0.21-1.15 µg/g, respectively. Three types of cosmetic matrices were selected to verify the recovery and precision of the method at LOQ, 2 LOQ, and 10 LOQ levels. The average recoveries of the 87 prohibited compounds were in the range of 81.7%-115.4%, and the relative standard deviations (RSDs, n=6) were 0.4%-9.9%. The reliability of the developed method was demonstrated by applying it to 349 commercial cosmetics obtained from the market, and 8 positive samples were identified. The positive components included trimethoprim, terbinafine, naphazoline, 7-methoxycoumarin, and 7-methylcoumarin. The established method displays the advantages of simple operation and rapidness and a high sensitivity and good recovery. And, this method provides technical support for rapid risk screening and the revision of national standards for cosmetics.


Assuntos
Cosméticos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Reprodutibilidade dos Testes , Acetonitrilas
8.
Se Pu ; 41(12): 1084-1094, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38093538

RESUMO

Glucocorticoids, which are a class of steroidal hormones secreted by the adrenal cortex, have significant anti-inflammatory, immunosuppressive, and anti-allergic effects. Thus, these compounds are widely used in clinical practice. However, the long-term use of cosmetics containing glucocorticoids can lead to serious consequences, such as hormone-dependent dermatitis, hypertension, and other serious injuries. The Safety and Technical Specification for Cosmetics (2015 edition) and Regulation (EC) No. 1223/2009 of the European Parliament and Council on cosmetic products list glucocorticoids as prohibited raw materials. According to the National Medical Products Administration, reports on the illegal addition of glucocorticoids to cosmetics by manufacturers have increased in recent years. Therefore, establishing high-throughput screening methods to ensure the quality and safety of cosmetics is imperative. In this study, a comprehensive analytical method based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the rapid screening of 83 glucocorticoids in cosmetics. A series of conditions were optimized using three matrices that are commonly used in cosmetics: water, lotion, and cream (o/w-type). Four mobile-phase systems and three chromatographic columns were then optimized to achieve the best separation effects. Various MS parameters, such as the capillary voltages, cone voltages, desolvation gas flow rates, and collision energies of the ion pairs of the target compounds, were also optimized. Furthermore, pretreatment was essential for glucocorticoid determination owing to the complex matrix effects of cosmetics. The analytes were divided into two groups, with lg Kow=4 as the limit, to compare the effects of the extraction solvent on recoveries. The extraction recoveries of target analytes with six extraction methods, namely, extraction with acetonitrile, extraction with acetone, extraction with ethyl acetate, dispersion in saturated sodium chloride solution followed by extraction with acetonitrile, dispersion in saturated sodium chloride solution followed by extraction with acetone, and dispersion in saturated sodium chloride solution followed by extraction with ethyl acetate, were compared. The recoveries from QuEChERS and solid-phase extraction (SPE) purification were also compared. Based on the experimental results, the final sample pretreatment method included acetonitrile vortex dispersion, ultrasonic extraction, and sample loading after filtration. The 83 target compounds were separated on a Thermo Accucore PFP column (100 mm×2.1 mm, 2.6 µm) with 0.1% (v/v) acetic acid in acetonitrile and 0.1% (v/v) acetic acid in water as the mobile phases. The analytes were determined by dynamic multiple-reaction monitoring (MRM) in electrospray positive ionization mode (ESI+) and quantified using the external standard method. Matrix standard curves were used to reduce matrix effects. The calibration curves of the 83 target compounds were linear in the mass concentration range of 2-200 µg/L (r>0.995). At three levels of addition, the recoveries were 74.5%-112.4%, and the relative standard deviations (RSDs, n=6) were 0.8%-9.9%. The limits of detection (LODs, S/N≥3) were 0.001-0.023 µg/g, and the limits of quantification (LOQs, S/N≥10) were 0.002-0.076 µg/g. The developed method was used to detect glucocorticoids in 41 cosmetic samples. Fluocinolone acetonide, beclomethasone dipropionate, desonide 21-acetate, and desonide were detected in four samples. The content range of glucocorticoids in the positive samples was 0.53-634.27 µg/g. Notably, desonide 21-acetate, which is not included in the scope of the statutory detection method, was detected in two batches of samples. In conclusion, the proposed method is simple, sensitive, reliable, and suitable for the high-throughput analysis of the 83 glucocorticoids in cosmetics with different matrices. This method could provide reliable technical support for the daily supervision of cosmetics and serve as a supplement to current glucocorticoid standards.


Assuntos
Cosméticos , Glucocorticoides , Acetona , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Desonida , Cloreto de Sódio , Espectrometria de Massas em Tandem , Ácido Acético , Acetonitrilas , Água , Extração em Fase Sólida
9.
Se Pu ; 41(12): 1095-1105, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38093539

RESUMO

Perfluoroalkyl substances (PFASs) have become a new food-safety problem. Dietary intake is a major pathway of human exposure to PFASs. Chinese mitten crab (Eriocheir sinensis) is a high-end aquaculture product popular among consumers in China. Conventional extraction methods for PFASs are cumbersome and time consuming, and result in incomplete purification; thus, this technique does not meet the requirements for PFAS detection. Herein, an analytical strategy was established for the rapid detection of 14 PFASs in Chinese mitten crab based on multi-plug filtration cleanup (m-PFC) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The carbon-chain length of the 14 PFASs analyzed in this study ranged from 4 to 14, and they are perfluorobutanoic acid (PFBA), perfluoro-n-pentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotetradecanoic acid (PFTeDA), perfluoro-1-butane sulfonic acid (PFBS), perfluoro-1-hexane sulfonic acid (PFHxS), perfluoro-1-octane sulfonic acid (PFOS), and perfluoro-1-decanesulfonate (PFDS). The m-PFC column was prepared using carboxy-based multiwalled carbon nanotubes, and used to reduce the interference of sample impurities. The samples were extracted with 5 mL of 0.1% formic acid aqueous solution, 15 mL of acetonitrile and extraction salt (2 g Na2SO4 and 2 g NaCl). The supernatant (10 mL) was purified using the m-PFC column, concentrated to near dryness under nitrogen, and then redissolved in 1 mL of methanol. Finally, the sample solution was filtered through a 0.22 µm polypropylene syringe filter for UPLC-MS/MS analysis. The target analytes were separated using a Shimadzu Shim-pack G1ST-C18 chromatographic column (100 mm×2.1 mm, 2 µm) using methanol (A) and 5 mmol/L ammonium acetate aqueous solution (B) as the mobile phases via gradient elution. The linear gradient program were as follows: 0-0.5 min, 10%A-35%A; 0.5-3 min, 35%A-60%A; 3-5 min, 60%A-100%A; 5-6.5 min, 100%A; 6.5-7 min, 100%A-10%A. The target analytes were analyzed using negative electrospray ionization in multiple-reaction monitoring mode, and quantitative analysis was performed using the internal standard method. In this study, we optimized the mobile-phase system as well as the extraction solvent, time, volume, and salt. The 14 PFASs exhibited good peak shapes and sensitivities when the 5 mmol/L ammonium acetate solution-methanol system was used as the mobile phase. Compared with acetonitrile or methanol alone, the extraction efficiencies of the 14 PFASs were significantly improved when 5 mL of 0.1% formic acid aqueous solution was added, followed by 15 mL of acetonitrile. The extraction efficiencies of the 14 PFASs did not differ significantly when the extraction time was within 3-15 min. The extraction salt (MgSO4, Na2SO4, NaCl, (NH4)2SO4, and Na2SO4+NaCl) significantly affected the extraction efficiencies of the 14 PFASs. The highest extraction efficiencies of the 14 PFASs, which ranged from 47.9% to 121.9%, were obtained when Na2SO4+NaCl was used as the extraction salt. Under the optimal experimental conditions, good linearities (R2=0.998-0.999) were obtained for seven PFASs (PFBS, PFHxA, PFHpA, PFHxS, PFDA, PFDoDA, PFTeDA) at 0.10-100 µg/L, and seven PFASs (PFBA, PFPeA, PFOA, PFOS, PFNA, PFUnDA, PFDS) at 0.50-100 µg/L. The average spiked recoveries for the 14 PFASs in Chinese mitten crabs at three levels ranged from 73.1% to 120%, with relative standard deviations (RSDs) in the range of 1.68%-19.5%(n=6). The limits of detection (LODs) and quantification (LOQs) of the 14 PFASs were in the range of 0.03-0.15 and 0.10-0.50 µg/kg, respectively. The developed method was applied to the analysis of crab samples collected from three farms in Shanghai, and PFASs with total concentrations of 3.52-37.77 µg/kg were detected in all samples. The detection frequencies for PFDA, PFUnDA, PFDoDA, PFTeDA, and PFOS were 100%. PFDA, PFUnDA, PFOS, and PFDoDA were the most abundant congeners, accounting for 31.2%, 30.6%, 15.0%, and 10.9%, respectively, of the 14 PFASs detected. The proposed method is simple, efficient, accurate, and suitable for the rapid analysis of 14 PFASs in Chinese mitten crabs.


Assuntos
Fluorocarbonos , Nanotubos de Carbono , Humanos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Cloreto de Sódio/análise , Metanol , Nanotubos de Carbono/análise , China , Fluorocarbonos/análise , Ácidos Sulfônicos/análise , Acetonitrilas , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
10.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136571

RESUMO

The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.


Assuntos
Rhododendron , Cromatografia Líquida , Espectrometria de Massas em Tandem , Raios Ultravioleta , Plantas
11.
Wei Sheng Yan Jiu ; 52(5): 756-768, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802898

RESUMO

OBJECTIVE: To develop a method for the determination of beauvercin(BEA), enniatin A(ENNA), enniatin A1(ENNA1), enniatin B(ENNB) and enniatin B1(ENNB1) in rice flour and wheat flour by ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). METHODS: Samples were extracted by acetonitrile-water, purified by Oasis Prime HLB solid-phase extraction column. The sample solution was separated by waters BEH C_(18) column(2.1 mm×100 mm, 1.8 µm). The detection was performed in the electrospray positive ionization(ESI+) under multiple reaction monitoring(MRM) mode. The internal standard method and the matrix-matched calibrations were used for quantification. RESULTS: The linear relationships of BEA and 4 kinds of enniatins(ENNs) were good in the range of 0.1-50.0 ng/mL(r>0.999). The average recoveries of BEA and ENNs in rice flour and wheat flour were 96.4%-105.4% and 99.1%-109.2%, with the relative standard deviations(RSD) of 1.01%-7.42% and 1.09%-9.69%(n=6). The detection limits(LOD) of BEA and ENNs were 0.03 µg/kg. The quantitative limits(LOQ) of BEA and ENNs were 0.1µg/kg. The matrix induced suppression or enhancement effect were 72.7%-99.3% and 60.8%-100.4%, respectively. The levels of emerging BEA and ENNs in wheat flour were higher than rice flour. The detection rate of enniatin B was highest in wheat flour and rice flour, the contents were 0.03-9.57 µg/kg and 0.03-0.56 µg/kg, the positive percentage were 98.5% and 36.4%. CONCLUSION: The method is quick, easy, accurate and sensitive, which is suitable for the determination of BEA and 4 kinds of ENNs in rice flour and wheat flour.


Assuntos
Depsipeptídeos , Farinha , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Farinha/análise , Espectrometria de Massas em Tandem/métodos , Triticum/química , Oryza
12.
Se Pu ; 41(10): 911-920, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37875413

RESUMO

Neurotransmitters (NTs) are essential for intercellular communication and primarily include monoamine, amino acid, and cholinergic NTs. These molecules play important roles in the body's stress response, motor coordination, neuronal communication, and homeostatic functions. Previous studies have shown that abnormal changes in NT levels are associated with various neurological disorders. Therefore, the development of accurate analytical methods for NT detection will enhance the current understanding on complex neuropathophysiology by providing functional knowledge and techniques for early diagnosis, thereby facilitating the development of new therapeutic options for the related diseases. The solid phase microextraction (SPME) technique combines sample preparation, separation, and enrichment in a single step and is minimally invasive, low cost, solvent free, and high throughput. SPME has been successfully applied to the in vivo analysis of target analytes in animal, human, and plant tissues. The coating material plays a significant role in the development of in vivo SPME methods and must meet various analytical requirements, including a suitable geometry for the SPME device, high extraction capacity, excellent selectivity, and wide extraction coverage for the target analytes. Covalent organic frameworks (COFs) are porous crystalline polymers constructed from organic framework units through strong covalent bonds; these materials are characterized with a low density, large specific surface area, permanent porosity, excellent chemical/thermal stability, and easy functionalization.In this study, a sulfonic acid-functionalized COF material (COF-SO3H) with good crystallinity, excellent chemical/thermal stability, strong hydrophobicity, a uniform mesoporous structure, and narrow pore size distribution was prepared using 2,4,6-triformylphloroglucinol and 1,4-diamino-2-nitrobenzene as monomers. Then, the COF-SO3H was coated onto the surface of stainless-steel fibers and used for in vivo enrichment of NTs. The structural properties of COF-SO3H were characterized using various techniques, such as scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), all of which showed that COF-SO3H had a good crystalline structure and uniform mesopore distribution with a specific surface area of 46.17 m2/g. Compared with the SPME fibers of HLB, C18, MCX, amino, and PXC columns, the prepared COF-SO3H fibers showed better extraction efficiency for the target NTs. Next, the factors affecting SPME efficiency were optimized. The optimal desorption solvent was formic acid-methanol-water (0.5∶49.5∶50, v/v/v), and the optimal extraction and desorption times were 15 min. A method for the in vivo analysis of NTs in the brains of mice was established by combining the COF-SO3H fibers with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) under optimal conditions. The NTs were separated on an Acquity UPLC BEH-C18 analytical column (100 mm×2.1 mm, 1.7 µm) with 0.1% formic acid aqueous solution (A) and acetonitrile (B) as the mobile phases. The flow rate was set to 0.2 mL/min, and the gradient elution procedure was as follows: 0-4 min, 5%B-6%B; 4-7 min, 6%B-5%B; 7-11 min, 5%B. Under optimal conditions, the method showed good linearity (r2>0.99). The limits of quantification (S/N≥5) were in the range of 0.003-0.005 µg/mL and 3-5 µg/mL for monoamine and amino acid NTs, respectively, with RSDs of less than 20%. The method showed good precision (0.80%-9.70%) and accuracy (2.08%-17.72%), with absolute matrix effects in the range of 82.22%-117.92%. These values reflect the good purification and enrichment abilities of the proposed fibers for the target analytes. Finally, the established SPME method was combined with UPLC-MS/MS and successfully applied to quantify target NTs in the brains of mice. The proposed strategy provides a practical method for the in vivo detection and quantitative analysis of NTs and expands the applications of functionalized COF materials for the analysis of various targets.


Assuntos
Estruturas Metalorgânicas , Humanos , Animais , Camundongos , Cromatografia Líquida , Microextração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Aminas , Aminoácidos , Encéfalo , Neurotransmissores , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão
13.
Se Pu ; 41(9): 760-770, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37712540

RESUMO

Mycotoxins are secondary metabolites produced by toxigenic fungi under specific environmental conditions. Fruits, owing to their high moisture content, rich nutrition, and improper harvest or storage conditions, are highly susceptible to various mycotoxins, such as ochratoxin A (OTA), zearalenone (ZEN), patulin (PAT), Alternaria toxins, etc. These mycotoxins can cause acute and chronic toxic effects (teratogenicity, mutagenicity, and carcinogenicity, etc) in animals and humans. Given the high toxicity and wide prevalence of mycotoxins, establishing an efficient analytical method to detect multiple mycotoxins simultaneously in different types of fruits is of great importance. Conventional mycotoxin detection methods rely on high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS). However, fruit sample matrices contain large amounts of pigments, cellulose, and minerals, all of which dramatically impede the detection of trace mycotoxins in fruits. Therefore, the efficient enrichment and purification of multiple mycotoxins in fruit samples is crucial before instrumental analysis. In this study, a reliable method based on a QuEChERs sample preparation approach coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established to determine 36 mycotoxins in fruits. In the optimal extraction method, 2.0 g of a sample was extracted with 10 mL of acetic acid-acetonitrile-water (1∶79∶20, v/v/v) in a 50 mL centrifuge tube, vortexed for 30 s, and ultrasonicated for 40 min. The mixture was then salted out with 2.0 g of anhydrous MgSO4 and 0.5 g of NaCl and centrifuged for 5 min. Next, 6 mL of the supernatant was purified using 85 mg of octadecylsilane-bonded silica gel (C18) and 15 mg of N-propylethylenediamine (PSA). After vigorous shaking and centrifugation, the supernatant was collected and dried with nitrogen at 40 ℃. Finally, the residues were redissolved in 1 mL of 5 mmol/L ammonium acetate aqueous solution-acetonitrile (50∶50, v/v) and passed through a 0.22 µm nylon filter before analysis. The mycotoxins were separated on a Waters XBridge BEH C18 column using a binary gradient mixture of ammonium acetate aqueous solution and methanol. The injection volume was 3 µL. The mycotoxins were analyzed in multiple reaction monitoring (MRM) mode under both positive and negative electrospray ionization. Quantitative analysis was performed using an external standard method with matrix-matched calibration curves. Under optimal conditions, good linear relationships were obtained in the respective linear ranges, with correlation coefficients (R2) no less than 0.990. The limits of detection (LODs) and quantification (LOQs) were 0.02-5 and 0.1-10 µg/kg, respectively. The recoveries of the 36 mycotoxins in fruits ranged from 77.0% to 118.9% at low, medium, and high spiked levels, with intra- and inter-day precisions in the range of 1.3%-14.9% and 0.2%-17.3%, respectively. The validated approach was employed to investigate mycotoxin contamination in actual fruit samples, including strawberry, grape, pear, and peach (15 samples of each type). Eleven mycotoxins, namely, altenuene (ALT), altenusin (ALS), alternariol-methyl ether (AME), tenuazonic acid (TeA), tentoxin (Ten), OTA, beauvericin (BEA), PAT, zearalanone (ZAN), T-2 toxin (T2), and mycophenolic acid (MPA), were found in the samples; three samples were contaminated with multiple mycotoxins. The incidence rates of mycotoxins in strawberry, grape, pear, and peach were 27%, 40%, 40%, and 33%, respectively. In particular, Alternaria toxins were the most frequently found mycotoxins in these fruits, with an incidence of 15%. The proposed method is simple, rapid, accurate, sensitive, reproducible, and stable; thus, it is suitable for the simultaneous detection of the 36 mycotoxins in different fruits.


Assuntos
Frutas , Patulina , Animais , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Acetonitrilas
14.
Se Pu ; 41(9): 807-813, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37712545

RESUMO

Carbamates are used in broad-spectrum insecticides and herbicides, and have highly efficient, low-residue, and long-lasting characteristics. However, this type of pesticide exerts mutagenic, teratogenic, carcinogenic, and other adverse effects, and its frequent use can exceed the recommended scope and limits. Research on the determination of carbamate pesticides mainly focuses on foods of plant origin and pays less attention to foods of animal origin. The methods for carbamate determination described in the current national standards have complicated operating procedures and low efficiency. Therefore, highly efficient and accurate methods for carbamate detection in milk must be established. In this work, a rapid method based on pass-through solid-phase extraction (SPE) purification coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of 10 carbamate pesticides in liquid milk. The pretreatment and instrument methods were systematically optimized. The milk sample was extracted with acetonitrile, and then purified using a Captiva EMR-Lipid filtration kit. The purified extract was separated on an ACQUITY UPLC BEH C18 column with mobile phase of methanol and 0.1% formic acid aqueous solution in gradient elution. The flow rate was 0.3 mL/min. Column temperature was 35 ℃. Quantitative analysis was performed using the external standard method with matrix matching curves. The 10 carbamate pesticides showed good linear relationships in the mass concentration range of 2-200 µg/L, with correlation coefficients greater than 0.999. The limits of detection (LODs) and quantification (LOQs) for the 10 carbamate pesticides were 0.045-0.23 and 0.15-0.77 µg/kg, respectively. Recovery tests were conducted using the blank-matrix method at three spiked levels of 15, 50, and 100 µg/kg, and good recoveries for the 10 carbamate pesticides were obtained. In particular, the recoveries for the three spiked levels of 15, 50, and 100 µg/kg were 68.7%-93.3% with relative standard deviations (RSDs) of 1.8%-8.0%. The proposed method is efficient, convenient, accurate, and suitable for the rapid detection of the 10 carbamate pesticides in liquid milk. Compared with the conventional NH2 and ENVITM-18 SPE columns used in the national standard determination method, the proposed method demonstrated better purification effects. The recoveries for aldicarb sulfoxide, aldicarb sulfone, methomyl, and carbaryl after purification using the Captiva EMR-Lipid kit increased from 60% to 80%. Thus, the proposed method is suitable for targets with strong polarity and gives measurement results with good repeatability and accuracy.


Assuntos
Resíduos de Praguicidas , Praguicidas , Animais , Carbamatos , Leite , Cromatografia Líquida , Espectrometria de Massas em Tandem , Lipídeos
15.
Se Pu ; 41(8): 673-682, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37534554

RESUMO

Malachite green (MG) and its metabolite, leucomalachite green (LMG), exert toxic effects on the human body. The use of these dyes is illegal, but they are still detected in aquatic products. Freshwater fish are aquatic products with the high non-qualified rates. Therefore, the sensitive screening of MG and LMG in freshwater fish is of great importance to ensure the safety of aquatic products. Owing to the low contents of MG and LMG in fish and the complex matrix of actual samples, sample preparation is required before detection to purify impurities and enrich the target compounds. Graphite carbon nitride (GCN), a polymer material composed of C, N, and H, has good chemical and thermal stability, a large specific surface area, and a large number of active sites. It has a wide range of application prospects in adsorption and can be used in food safety testing when compounded with Fe3O4 to form magnetic graphite carbon nitride (MGCN). In this study, sulfonated magnetic graphite carbon nitride (S-MGCN) was prepared by further functionalizing MGCN with sulfonic acid. After characterization by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM), a magnetic solid-phase extraction (MSPE) method based on S-MGCN was established to extract MG and LMG from freshwater fish. The targets were screened using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Following sulfonic acid functionalization, S-MGCN showed increased electrostatic interactions based on the MGCN adsorption mechanism, which includes hydrogen bonds and π-π interactions; thus, its adsorption efficiency was significantly improved. The matrix effects were -42.21% and -33.77% before functionalization, -11.40% and -7.84% after functionalization, thus confirming that S-MGCN has significant matrix removal ability. Given that S-MGCN demonstrated excellent efficiency as an MSPE adsorbent, the adsorption conditions for S-MGCN were optimized. The optimal conditions were as follows: adsorbent dosage, 15 mg; adsorption time, 2 min; solution pH, 5; and ionic strength, not adjusted. Under these conditions, the adsorption efficiency of S-MGCN could reach 94.2%. Different organic solvents were used to elute adsorbed MG and LMG, and the desorption efficiency peaked when 1%(v/v) ammonia acetonitrile was used as the elution solvent. The elution volume was also optimized, and a maximum desorption efficiency of 93.2% was obtained when 1 mL of 1%(v/v) ammonia acetonitrile was added to S-MGCN. The limits of detection (LODs) and quantification (LOQs) of the two targets were determined at signal-to-noise ratios (S/N) of 3 and 10, respectively. The LODs and LOQs were 0.075 µg/kg and 0.25 µg/kg, respectively. The linear ranges of the two target compounds were 0.25-20.0 µg/kg with correlation coefficients (r) greater than 0.998. To assess accuracy and precision, we prepared spiked samples at three levels (low, medium, and high) with six parallel samples per level (n=6). The recoveries ranged from 88.8% to 105.9%. The intra- and inter-day relative standard deviations were 5.4%-13.7% (n=6) and 3.3%-11.1% (n=3), respectively. Compared with the national standard method, the proposed method features simpler sample pretreatment procedures, less use of organic reagents (5 mL), and a shorter extraction time (2 min); moreover, the method does not require complicated elution steps, and the eluent can be directly analyzed by UPLC-MS/MS. The test results of actual samples were consistent with those obtained via the national standard method, thus confirming the practical feasibility of the developed method. The proposed MSPE method based on S-MGCN is an efficient and environmentally friendly method that could provide a new methodological reference for the sensitive screening of MG and LMG in actual samples.


Assuntos
Grafite , Animais , Humanos , Cromatografia Líquida , Grafite/química , Espectrometria de Massas em Tandem , Amônia , Espectroscopia de Infravermelho com Transformada de Fourier , Solventes/química , Acetonitrilas , Fenômenos Magnéticos , Água Doce , Extração em Fase Sólida/métodos , Ácidos Sulfônicos , Cromatografia Líquida de Alta Pressão
16.
Se Pu ; 41(6): 490-496, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37259873

RESUMO

Halobenzoquinones (HBQs), which are emerging chlorinated disinfection byproducts (DBPs), have attracted increasing attention because they are frequently detected in treated tap water, entrainment water, etc. These compounds are mainly generated during the water treatment process using chlorine, chloramine, and chlorine dioxide as disinfectants, and display more toxic effects than regulated DBPs, such as trihalomethane and haloacetic acid. HBQs have been recognized as potential bladder carcinogens and are harmful to the nervous system. Additionally, they can exert genotoxic effects and cause oxidative damage to DNA and proteins. The risk of HBQs in aquatic products is expected to rise because the disinfection of public facilities has significantly increased in recent years. Therefore, developing a sensitive and accurate analytical method to detect HBQs in aquatic products is of great importance. Several analytical methods, including gas chromatography, gas chromatography-mass spectrometry, electrochemical methods, liquid chromatography, and liquid chromatography-tandem mass spectrometry, can be used to identify and quantify HBQs in water. However, to the best of our knowledge, no reports on the determination of HBQ levels in aquatic products are yet available. Further, pretreatment is essential for HBQ determination because of the complex matrix effects of aquatic products. Herein, a sensitive and accurate method based on the QuEChERS technique coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of five HBQs in aquatic products. For the QuEChERS procedure, the pretreatment conditions, such as the extraction solvent and adsorbent species, were systematically optimized. The sample was extracted with 10 mL of 10% methanol acetonitrile solution (containing 0.1% formic acid), dehydrated, and centrifuged with sodium chloride and anhydrous magnesium sulfate. The supernatant was purified using a QuEChERS packing material consisting of 50 mg N-propylethylenediamine (PSA), 30 mg of graphitized carbon black (GCB), and 30 mg of neutral alumina (Al2O3), dried with nitrogen, and concentrated. The five HBQs were separated on a Waters ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm) using 0.25% acetonitrile formate solution and 0.25% formic acid aqueous solution as the mobile phase under a gradient elution program and then detected using UPLC-MS/MS with negative electrospray ionization (ESI-) under multiple reaction monitoring (MRM) mode. Quantitative analysis was performed using a matrix-matched external standard method. The five HBQs achieved rapid separation within 6 min, indicating that the proposed method has a much shorter separation time compared with previous studies. The matrix effect was evaluated by establishing a matrix-matched calibration curve. The results showed that 2,5-dichloro-1,4-benzoquinone (2,5-DCBQ) presented a matrix-enhancing effect, whereas the other HBQs displayed matrix-inhibiting effects. In particular, tetrachlorobenzoquinone (TCBQ) exhibited strong inhibitory effects. Under the optimized experimental conditions, the five HBQs demonstrated good linear relationships in the range of 1.0-50.0 µg/L, with correlation coefficients (r)≥0.9992. The detection limits of the method were 0.15-0.8 µg/kg, and the recoveries of the target compounds were 85.9%-116.5%. The relative standard deviations were 1.4%-8.2%, which indicates good reproducibility. The proposed method was successfully applied to actual sample detection, and 2,6-dichloro-3-methyl-1,4-benzoquinone (2,6-DCMBQ) was detected in grass carp. The proposed method is convenient, sensitive, accurate, and suitable for the simultaneous determination of five HBQs in aquatic products. Moreover, the developed method provides a reliable reference for the routine monitoring of trace HBQs in food samples.


Assuntos
Benzoquinonas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes , Cromatografia Gasosa-Espectrometria de Massas , Benzoquinonas/química , Acetonitrilas
17.
Se Pu ; 41(7): 582-590, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37387279

RESUMO

Bisphenols are endocrine disruptors that are characterized with bioaccumulation, persistence, and estrogenic activity. Even low contents of bisphenols can exert adverse effects on human health and the ecological environment. Herein, a method combining accelerated solvent extraction and solid-phase extraction purification with ultra performance liquid chromatography-tandem mass spectrometry was developed for the accurate detection of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), and bisphenol AP (BPAP) in sediments. The mass spectrometric parameters of the seven bisphenols were optimized, and the response values, separation effects, and chromatographic peak shapes of the target compounds were compared under three different mobile phase conditions. The sediment samples were pretreated by accelerated solvent extraction, and orthogonal tests were used to optimize the extraction solvent, extraction temperature, and cycle number. The results showed that the use of 0.05% (v/v) ammonia and acetonitrile as the mobile phase for gradient elution could rapidly separate the seven bisphenols on an Acquity UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm). The gradient program was as follows: 0-2 min, 60%A; 2-6 min, 60%A-40%A; 6-6.5 min, 40%A; 6.5-7 min, 40%A-60%A; 7-8 min, 60%A. Orthogonal experiments indicated that the optimal extraction conditions were as follows: extraction solvent of acetonitrile, extraction temperature of 100 ℃, and cycle number of three. The seven bisphenols showed good linearity in the range of 1.0-200 µg/L, with correlation coefficients (r2) greater than 0.999, and the limits of detection were 0.01-0.3 ng/g. The recoveries for the seven bisphenols ranged from 74.9% to 102.8% at three spiking levels (2.0, 10, 20 ng/g), with relative standard deviations ranging from 6.2% to 10.3%. The established method was applied to detect the seven bisphenols in sediment samples collected from Luoma Lake and its inflow rivers. BPA, BPB, BPF, BPS, and BPAF were detected in the sediments of the lake, and BPA, BPF, and BPS were detected in the sediments of its inflow rivers. The detection frequency of BPA and BPF was 100%, and the contents of these bisphenols in the sediment were 11.9-38.0 ng/g and 11.0-27.3 ng/g, respectively. The developed method is simple, rapid with high accuracy and precision, and is suitable for the determination of the seven bisphenols in sediment.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Acetonitrilas
18.
Se Pu ; 41(7): 591-601, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37387280

RESUMO

Antibacterials represent a pharmaceutical class that is extensively used and consumed worldwide. The presence of a large number of antibacterial agents in water could result in antibiotic resistance. Thus, the development of a fast, accurate, and high-throughput method to analyze these emerging contaminants in water is necessary. Herein, a method was developed to achieve the simultaneous determination of 43 antibacterials from nine pharmaceutical categories (i.e., sulfonamides, quinolones, fluoroquinolones, tetracyclines, lincosamides, macrolides, nitroimidazoles, diterpenes, and dihydrofolate reductase inhibitors) in water using automatic sample loading-solid phase extraction (SPE)-ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Because the properties of these 43 antibacterials are quite different, the main objective of this work is to develop an extraction procedure that would enable the simultaneous analysis of a wide range of multiclass antibacterials. Given this context, the work presented in this paper optimized the SPE cartridge type, pH, and sample loading amount. Multiresidue extraction was performed as follows. The water samples were filtered through 0.45 µm filter membranes, added with Na2EDTA and NaH2PO4, and pH-adjusted to 2.34 using H3PO4. The solutions were then mixed with the internal standards. An automatic sample loading device fabricated by the authors was used for sample loading, and Oasis HLB cartridges were used for enrichment and purification. The optimized UPLC conditions were as follows: chromatographic column, Waters Acquity UPLC BEH C18 column (50 mm×2.1 mm, 1.7 µm); mobile phases, methanol-acetonitrile (2∶8, v/v) solution containing 0.1% formic acid and 0.1% formic acid aqueous solution; flow rate, 0.3 mL/min; injection volume, 10 µL. The compounds were step scanned using an electrospray ionization source in the positive and multiple-reaction monitoring (MRM) modes, and analyzed by internal and external standard methods. The results showed that the 43 compounds achieved high linearity in their respective linear ranges, with correlation coefficients (r2) greater than 0.996. The limits of detection (LODs) of the 43 antibacterial agents ranged from 0.004 ng/L to 1.000 ng/L, and their limits of quantification (LOQs) ranged from 0.012 ng/L to 3.000 ng/L. The average recoveries ranged from 53.7% to 130.4%, and the relative standard deviations (RSDs) were between 0.9% and 13.2%. The method was successfully applied to the determination of six tap water samples from different districts and six water samples obtained from the Jiangyin section of the Yangtze River and Xicheng Canal. No antibacterial compound was detected in any of the tap water samples, but a total of 20 antibacterial compounds were detected in the river and canal water samples. Among these compounds, sulfamethoxazole showed the highest mass concentrations, ranging from 8.92 to 11.03 ng/L. The types and contents of antibacterials detected in the Xicheng Canal were greater than those found in the Yangtze River, and two kinds of diterpenes, namely tiamulin and valnemulin, were found easily and commonly in water sample. The findings indicate that antibacterial agents are widespread in environmental waters. The developed method is accurate, sensitive, rapid, and suitable for the detection of the 43 antibacterial compounds in water samples.


Assuntos
Espectrometria de Massas em Tandem , Água , Cromatografia Líquida , Antibacterianos , Preparações Farmacêuticas
19.
Se Pu ; 41(7): 632-639, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37387284

RESUMO

Kojic acid naturally appears in fermented foods and can be formed during the aerobic fermentation process induced by Aspergillus and Penicillium fungi. It is widely used in the food industry because it exhibits antibacterial and antifungal properties and does not affect food taste. However, recent studies indicate that kojic acid may be a potential carcinogen. Therefore, assessing the health risks of kojic acid in fermented foods are of great importance, and developing a sensitive and accurate analytical method for this compound is a significant endeavor. Much efforts have been devoted to the detection of kojic acid using electrochemistry, high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). HPLC and HPLC-MS/MS are the analytical techniques most often employed for this purpose. Of these two methods, HPLC-MS/MS displays excellent sensitivity and is the optimal selective technique. Pretreatment is usually necessary for kojic acid determination because of the complex matrix effects of fermented foods. However, few researches on the determination of kojic acid in food are available, and, to the best of our knowledge, the determination of kojic acid using solid-phase extraction (SPE) pretreatment has not been reported yet. Herein, a convenient, sensitive, and accurate method was developed to determine kojic acid in fermented foods using solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS). The pretreatment conditions, such as the extraction solvent, cartridge, rinse solvent, and eluent, were systematically optimized. The samples, including soy sauce, vinegar, liquor, sauce, fermented soya bean, and fermented bean curd, were extracted with 0.1% formic acid-absolute ethyl alcohol and purified using a PRiME HLB cartridge. Kojic acid was separated using an ACQUITY UPLC® BEH C18 column (100 mm×2.1 mm, 1.7 µm) with formic acid-acetonitrile (1∶999, v/v) and formic acid-5 mmol/L ammonium acetate (1∶999, v/v) solutions as the mobile phases under gradient elution mode. MS was performed in electrospray positive ionization (ESI+) and multiple reaction monitoring (MRM) modes. An internal standard method was used for quantification. Under optimized conditions, good linearity was achieved at mass concentrations of 5.0-100.0 µg/L, with a correlation coefficient (r) of 0.9994. The limits of detection and quantification of the method for kojic acid were 2-5 µg/kg and 6-15 µg/kg, respectively. Good recoveries of 86.8%-111.7%, intra-day precisions of 1.0%-7.9% (n=6), and inter-day precisions of 2.7%-10.2% (n=5) were also obtained. The matrix effect was evaluated by establishing a matrix-matching calibration curve, and weak inhibitory effects were found in vinegar and liquor; moderate inhibitory effects in fermented bean curd, fermented soya bean, and soy sauce; and a strong inhibitory effect in sauce. The developed method was used to detect kojic acid in 240 fermented foods, and the results showed that the detection rate of vinegar was the highest, followed by liquor, sauce, soy sauce, fermented soya bean, and fermented bean curd, the contents were 5.69-2272 µg/kg. Matrix interferences can be significantly reduced by optimizing the pretreatment and detection procedures. The proposed method is sensitive, accurate, and can be used to analyze kojic acid in fermented foods.


Assuntos
Alimentos Fermentados , Espectrometria de Massas em Tandem , Cromatografia Líquida , Ácido Acético
20.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047446

RESUMO

The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3'H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.


Assuntos
Brassica napus , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...