Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39204569

RESUMO

Carbon fiber reinforced polymer (CFRP) composites have very high specific properties, which is why they are used in the aerospace, wind power, and sports sectors. However, the high consumption of CFRP compounds leads to a high volume of waste, and it is necessary to formulate mechanical recycling strategies for these materials at the end of their useful life. The recycling differences between cutting-end mills and high-energy ball milling (HEBM) were evaluated. HEBM recycling allowed us to obtain small recycled particles, but separating their components, carbon fiber, epoxy resin, and CFRP particles, was impossible. In the case of mill recycling, these were obtained directly from cutting a CFRP composite laminate. The recycled materials resulted in a combination of long fibers and micrometric particles-a sieving step allowed for more homogeneous residues. Although long, individual carbon fibers can pass through the sieve. Ultrasonication did not significantly affect HEBM recyclates because of the high energy they are subjected to during the grinding process, but it was influential on end mill recyclates. The ultrasonication amplitude notably impacted the separation of the epoxy resin from the carbon fiber. The end mill and HEBM waste production process promote the presence of trapped air and electrostatics, which allows recyclates to float in water and be hydrophobic.

2.
Foods ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063338

RESUMO

Gamma-oryzanol (GO) is a bioactive compound that, due to its biological characteristics, can be added to a food matrix. However, the bioactive compound is difficult to incorporate due to its low solubility and stability. A nanoemulsion allows substances to be packaged in nanometric sizes, improving their bioavailability. In this work, a GO nanoemulsion was developed using high-energy techniques. The methodological process began with the formulation of the coarse emulsion, where the emulsifiers (sodium caseinate and citrus pectin), diluent (rice bran oil), and pH were varied to find the most stable formulation. The coarse emulsion was subjected to four high-energy techniques (conventional homogenization, high-pressure homogenization, ultra-high-pressure homogenization, and ultrasonication) to reduce the droplet size. A physical-stability test, rheological-behavior test, image analysis, and particle-size-and-distribution test were conducted to determine which was the best technique. The formulation with the highest stability (pH 5.3) was composed of 87% water, 6.1% sodium caseinate, 0.6% citrus pectin, 6.1% rice bran oil, and 0.2% GO. The ultrasonic treatment obtains the smallest particle size (30.1 ± 1 nm), and the high-pressure treatment obtains the greatest stability (TSI < 0.3), both at 0 and 7 days of storage. High-energy treatments significantly reduce the droplet size of the emulsion, with important differences between each technique.

3.
Gels ; 10(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057445

RESUMO

In this work, the effect of sonication on the molecular characteristics of polyacrylic acid (Carbopol® Ultrez 10), as well as on its rheological behavior in aqueous dispersions and microgels, was analyzed for the first time by rheometry, weight-average molecular weight (Mw) measurements via static light scattering (SLS), Fourier transform infrared (FTIR) spectroscopy and confocal microscopy. For this, the precursor dispersion and the microgels containing 0.25 wt.% of Ultrez 10 were sonicated in a commercial ultrasound bath at constant power and at different times. The main rheological properties of the microgel, namely, shear modulus, yield stress and viscosity, all decreased with increasing sonication time, while the microgel's Herschel-Bulkley (H-B) behavior, without thixotropy, was preserved. Also, Mw of Ultrez 10 decreased up to almost one-third (109,212 g/mol) of its original value (300,860 g/mol) after 180 min of sonication. These results evidence a softening of the gel microstructure, which results from the reduction in the Mw of polyacrylic acid with sonication time. Separately, FTIR measurements show that sonication produces scission in the C-C links of the Carbopol® backbone, which results in chains with the same chemistry but lower molecular weight. Finally, confocal microscopy observations revealed a diminution of the size of the microsponge domains and more free solvent with sonication time, which is reflected in a less compact and softer microstructure. The present results indicate that both the microstructure and the rheological behavior of Carbopol® microgels, in particular, and complex fluids, in general, may be manipulated or tailored by systematic high-power ultrasonication.

4.
Ultrason Sonochem ; 105: 106870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579570

RESUMO

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Assuntos
Annona , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Annona/química , Ondas Ultrassônicas , Fenômenos Químicos , Sonicação
5.
Heliyon ; 9(6): e16782, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292352

RESUMO

Thermoplastic biofilms were developed from achira starch, chitosan and nanoclays using the solvent-casting method. To obtain the filmogenic solutions, different sonication times (0, 10, 20 and 30 min) were considered in order to evaluate the incidence of this parameter on the chemical and physico-mechanical properties of the bionanocomposite films. The chemical analysis using FTIR spectroscopy showed strong intermolecular interactions between the components with increasing sonication times. The results for tensile strength and elongation were satisfactory for films with 20 min of sonication with increases of 154% and 161%, respectively. Morphological analysis showed greater homogeneity, while thermal analysis showed that sonication favoured the plasticization process and thus, the production of homogeneous materials. The water absorption and wettability tests showed less hydrophilic materials allowing these new materials to be considered for use as coatings or packaging for the food sector.

6.
Beilstein J Org Chem ; 18: 1225-1235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158177

RESUMO

The formation and scission of chemical bonds facilitated by mechanical force (mechanochemistry) can be accomplished through various experimental strategies. Among them, ultrasonication of polymeric matrices and ball milling of reaction partners have become the two leading approaches to carry out polymer and small molecule mechanochemistry, respectively. Often, the methodological differences between these practical strategies seem to have created two seemingly distinct lines of thought within the field of mechanochemistry. However, in this Perspective article, the reader will encounter a series of studies in which some aspects believed to be inherently related to either polymer or small molecule mechanochemistry sometimes overlap, evidencing the connection between both approaches.

7.
Recent Adv Drug Deliv Formul ; 16(3): 234-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35850654

RESUMO

BACKGROUND: Infectious diseases have the highest mortality rate in the world and these numbers are associated with scarce and/or ineffective diagnosis and bacterial resistance. Currently, with the development of new pharmaceutical formulations, nanotechnology is gaining prominence. METHODS: Nanomicelles were produced by ultrasonication. The particle size and shape were evaluated by scanning electron microscopy and confirmed by dynamic light scattering, also thermogravimetric analysis was performed to evaluate the thermal stability. Finally, antibacterial activity has been performed. RESULTS: The results showed that a rod-shaped nanosystem, with 316.1 nm and PDI of 0.243 was formed. The nanosystem was efficient against Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis subsp. spizizenii with MIC inferior to 0.98 and a synergistic effect between silver graphene quantum dots and levofloxacin was observed. CONCLUSION: The nanosystem produced may rise as a promising agent against the bacterial threat, especially regarding bacterial resistance.


Assuntos
Grafite , Nanopartículas Metálicas , Pontos Quânticos , Levofloxacino/farmacologia , Nitrato de Prata , Testes de Sensibilidade Microbiana
8.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615528

RESUMO

Several phycocyanin extraction methods have been proposed, however, most of them present economical or productive barriers. One of the most promising methods that has been suggested is ultrasonication. We have analyzed here the effect of operational conditions and additives on the extraction and purity of phycocyanin from Arthrospira maxima. We followed three experimental designs to determine the best combination of buffered pH solutions, additives, fresh and lyophilized biomass. We have found that additives such as citric acid and/or disaccharides could be beneficial to the extraction process. We concluded that the biomass-solvent ratio is a determining factor to obtain high extraction and purity ratios with short ultrasonication times.


Assuntos
Ficocianina , Spirulina , Solventes , Biomassa
9.
Materials (Basel) ; 14(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576471

RESUMO

The functionalization process usually increases the localized defects of carbon nanotubes (CNT). Thus, the ultrasonication parameters used for dispersing non-functionalized CNT should be carefully evaluated to verify if they are adequate in dispersing functionalized CNT. Although ultrasonication is widely used for non-functionalized CNT, the effect of this dispersing process of functionalized CNT has not been thoroughly investigated. Thus, this work investigated the effect of ultrasonication on functionalized CNT + superplasticizer (SP) aqueous dispersions by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Furthermore, Portland cement pastes with additions of 0.05% and 0.1% CNT by cement weight and ultrasonication amplitudes of 0%, 50% and 80% were evaluated through rheometry, isothermal calorimetry, compressive strength at 1, 7 and 28 days, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR results from CNT + SP dispersions indicated that ultrasonication may negatively affect SP molecules and CNT graphene structure. The increase in CNT content and amplitude of ultrasonication gradually increased the static and dynamic yield stress of paste but did not significantly affect its hydration kinetics. Compressive strength results indicated that the optimum CNT content was 0.05% by cement weight, which increased the strength of composite by up to 15.8% compared with the plain paste. CNT ultrasonication neither increases the degree of hydration of cement nor the mechanical performance of composite when compared with mixes containing unsonicated CNT. Overall, ultrasonication of functionalized CNT is not efficient in improving the fresh and hardened performance of cementitious composites.

10.
Carbohydr Polym ; 248: 116744, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919552

RESUMO

This work aimed to produce and characterize cellulose nanofibers obtained from cassava peel with a combination of pre-treatments with acid hydrolysis or TEMPO-mediated oxidation and ultrasonic disintegration. All nanofibers presented nanometric diameter (5-16 nm) and high negative zeta potential values (around -30 mV). Oscillatory rheology showed a gel-like behavior of the aqueous suspensions of nanofibers (1.0-1.8 % w/w), indicating their use as reinforcement for nanocomposite or as a thickening agent. Additionally aqueous suspensions of nanofibers obtained by acid hydrolysis presented higher gel strength than those produced by TEMPO-mediated oxidation. However, ultrasound application increased even more viscoelastic properties. Flow curves showed that suspensions of nanofibers obtained by acid hydrolysis presented a thixotropy behavior and viscosity profile with three regions. Therefore our results showed that it is possible to tune mechanical properties of cellulose nanofibers choosing and modifying chemical and physical process conditions in order to allow a number of applications.

11.
Antioxidants (Basel) ; 9(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050540

RESUMO

Arabinoxylans (AX) are polysaccharides with antioxidant activity and emulsifying properties, which make them an attractive alternative for its potential application as a natural antioxidant in oils. Therefore, this work aimed to investigate the effect of ultrasonic treatment of AX on their antioxidant capacity and its ability to improve the oxidative stability of soybean oil. For this purpose, AX were exposed to ultrasonic treatment at 25% (100 W, AX-1) and 50% (200 W, AX-2) power and an operating frequency of 20 KHz during 15 min, and their macromolecular properties (weight average molecular weight (Mw), polydispersity index and intrinsic viscosity) were evaluated. The antioxidant capacity of AX was determined by the DPPH assay and Rancimat test. Results showed that ultrasonic treatment did not affect the molecular identity of the polysaccharide but modified its Mw distribution. AX-1 showed the highest antioxidant activity (75% inhibition) at 533 µg/mL by the DPPH method compared to AX and AX-2. AX at 0.25% (w/v) and AX-1 at 0.01% (w/v) exerted the highest protective effects on oxidative stability of soybean oil with induction periods of 7.69 and 5.54 h, respectively. The results indicate that AX could be a good alternative for the potential application as a natural antioxidant in oils.

12.
Braz. J. Pharm. Sci. (Online) ; 56: e17797, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132045

RESUMO

Oral fast-dispersible film was prepared by utlizing donepezil hydrochloride (drug) and various cellulose derivatives such as hydroxypropyl methyl cellulose (hypermellose) (HPMC), microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to treat Alzheimer's disease. NCC was synthesized by ultra-sonication method using MCC and this was converted to thinfilm formulation (NCC-F) using solvent casting technique. The interaction between the polymer and the drug was investigated by spectral analysis such as UV, FTIR, and 1H- NMR. FTIR confirmed that the compatibility of drug and polymer in ODF formulation. NCC-F has shown an average surface roughness of 77.04 nm from AFM and the average particle size of 300 nm from SEM analysis. Nano sized particle of NCC-F leads faster in vitro dissolution rate (94.53%) when compared with MCC-F and F3 formulation. Animal model (in vivo) studies of NCC-F formulation has reached peak plasma concentration (Cmax) up to 19.018 ng/mL in the span of (tmax) 4 h with greater relative bioavailability of 143.1%. These results suggested that high surface roughness with nanosized NCC-F formulation attained extended drug availability up to (t1/2) 70 h.


Assuntos
Animais , Masculino , Feminino , Ratos , Técnicas In Vitro/métodos , Dissolução/classificação , Donepezila/agonistas , Sonicação/métodos , Preparações Farmacêuticas/análise , Celulose , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Modelos Animais , Doença de Alzheimer/patologia
13.
Food Chem ; 283: 11-18, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30722849

RESUMO

Starch nanoparticles (SNP) were produced employing a simple ultrasound method without chemical additives from cassava, corn, and yam starches, which contain 18%, 25% and 30% amylose, respectively. Simultaneously, starch microparticles (SMP) were also obtained, which were significantly smaller than the native starch granules. The yield of the process for all starch sources was 12 ±â€¯1% SNP and 88 ±â€¯5% SMP, starting with aqueous starch suspensions at 10% and 30 min of sonication. Yam starch (higher amylose content) resulted in smaller SMP (1-3 µm) and SNP (8-32 nm) than did those obtained from corn (SMP = 3-6 µm; SNP = 36-68 nm) and cassava (SMP = 3-7 µm; SNP = 35-65 nm) starches. Nanoparticles from all starch sources had lower crystallinity and lower thermal stability than did the native starches or SMP. Ultrasonication was efficient to yield SNP and SMP without the addition of any chemical reagent or employing a purification step.


Assuntos
Dioscorea/química , Manihot/química , Nanopartículas/química , Amido/química , Ultrassom/métodos , Zea mays/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química , Difração de Raios X
14.
Ultrason Sonochem ; 48: 340-348, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080559

RESUMO

TiO2 is a common inorganic filter used in sunscreens due to its photoprotective effect on the skin against UV radiation. However, the use of this kind of material in cosmetics is limited by its inherent photocatalytic activity. It is known that coating on TiO2 surface can improve some features. Although, many of the methodologies used for this purpose are still laborious and time-consuming. Thus, this work reports a novel, easy, cheap and fast strategy to coat TiO2 particles by using a sonochemistry approach, aiming to decrease photocatalytic activity and to enhance colloidal stability. For this proposal, SiO2, Al2O3, ZrO2 and sodium polyacrylate (PAANa) were used to tune the surface of commercial TiO2 particles and they were applied in a sunscreen formulation. The samples were characterized by XRPD, FT-IR, DLS, EDS, SEM and TEM. The photocatalytic activity and UV-shielding ability were also evaluated. The sunscreen formulations were prepared and characterized by zeta potential, DLS, and Sun Protection Factor (SPF). FT-IR, EDS, and charge surface of the particles confirmed the success of the sonochemistry coating. Additionally, TiO2@Al2O3, TiO2@SiO2 and TiO2@PAANa show a lower photocatalytic activity than original TiO2 with similar UV-shielding ability. The sunscreens produced with the coated TiO2 have similar SPF to the one with commercial TiO2. Specifically, the sunscreen with TiO2@PAANa shows an increase in colloidal stability. Herein, the incorporation of the sonochemical-coated TiO2 particles in sunscreen formulations may produce sunscreens with better aesthetic appearance and a greater health security due to its lower free radicals production.

15.
Electron. j. biotechnol ; Electron. j. biotechnol;30: 110-117, nov. 2017. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1021571

RESUMO

Background: Catalase (CAT) is an important enzyme that degrades H2O2 into H2O and O2. To obtain an efficient catalase, in this study, a new strain of high catalase-producing Serratia marcescens, named FZSF01, was screened and its catalase was purified and characterized. Results: After optimization of fermentation conditions, the yield of catalase produced by this strain was as high as 51,468 U/ml. This catalase was further purified using two steps: DEAE-fast flow and Sephedex-G150. The purified catalase showed a specific activity of 197,575 U/mg with a molecular mass of 58 kDa. This catalase exhibited high activity at 20­70°C and pH 5.0­11.0. Km of the catalase was approximately 68 mM, and Vmax was 1886.8 mol/min mg. This catalase was further identified by LC­MS/MS, and the encoding gene was cloned and expressed in Escherichia coli BL21 (DE3) with a production of 17,267 ± 2037 U/ml. Conclusions: To our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.


Assuntos
Serratia marcescens/enzimologia , Catalase/metabolismo , Recombinação Genética , Serratia marcescens/genética , RNA Ribossômico 16S , Cinética , Catalase/isolamento & purificação , Catalase/genética , Cromatografia Líquida , Análise de Sequência de DNA , Eletroforese , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Peróxido de Hidrogênio/metabolismo
16.
Curr Drug Deliv ; 14(3): 377-385, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27654576

RESUMO

BACKGROUND: Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. METHODS: Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. RESULTS: NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. CONCLUSION: These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications.


Assuntos
Disponibilidade Biológica , Curcumina/farmacologia , Ácidos Graxos/química , Fosfatidilcolinas/química , Animais , Emulsões/química , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas , Tamanho da Partícula
17.
Ultrason Sonochem ; 32: 147-157, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27150755

RESUMO

The present investigation reports a preliminary attempt of using ultrasonic energy (40kHz) to clean some low rank high sulfur Brazilian power-coal samples in presence of H2O2 solution. All types of sulfur components (i.e. pyritic, sulfate and organic) could be removed from the coal samples by this process. The raw and ultrasonicated coal samples were characterized by chemical analysis, Fourier Transformation Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), focused ion beam (FIB), high-resolution transmission electron microscope (HR-TEM) with selected area electron diffraction (SAED) and/or microbeam diffraction (MBD), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectrometer (EDS), and Thermogravimetry (TG-DTG) techniques to evaluate the clean-coal quality. The FT-IR spectroscopic analysis demonstrated the formation of oxidized sulfur species (SO and -SO2) and their subsequent removals after ultrasonication. The XRD profiles supported the presence of mineral matters in the coals. The TG-DTG profiles of the beneficiated coals revealed their improved quality for using in thermal plants with better combustion efficiency.

18.
Ultrason Sonochem ; 24: 204-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25572417

RESUMO

Bioactive compounds such as ω-3 fatty acids and terpenes, have been associated with beneficial health effects; however, their solubility in the gastrointestinal tract and its bioavailability in the body are low. Nanoemulsions offer a viable alternative to disperse lipophilic compounds and improve their dissolution, permeation, absorption and bioavailability. Enzyme modified phosphatidylcholine (PC) with ω-3 fatty acids was used as emulsifier to stabilize oil-in-water nanoemulsions generated using ultrasound device. These systems were used as carriers of betulinic acid, which has reported anti-carcinogenic activity. Phospholipase-catalyzed modification of PC allowed the incorporation of 50 mol% of ω-3 fatty acids. Formation variables such as oil type and ultrasound amplitude had effects on nanoemulsion characteristics. Incorporation of betulinic acid affected globule size; however, betulinic acid nanoemulsions below 200 nm could be prepared. The conditions under which betulinic acid nanoemulsions were obtained using the modified phosphatidylcholine with the smaller globule size (91 nm) were 10% PC, 25% glycerol, medium chain oil and 30% amplitude for 12 min in the sonicator. Storage temperature had an effect on the stability of the nanoemulsions, at 5°C we observed the smallest growth in globule size. The use of olive oil decreased the globule size growth during storage of the nanoemulsion stabilized with modified phosphatidylcholine, although globule size obtained was greater than 200 nm. Medium pH had a significant effect on the nanoemulsions; alkaline pH values improved storage stability. These results provide useful information for using this type of carrier system on the formulation of products in the pharmaceutical or food industry.


Assuntos
Ácidos Graxos Ômega-3/química , Nanoestruturas/química , Fosfatidilcolinas/química , Triterpenos/química , Emulsões , Concentração de Íons de Hidrogênio , Triterpenos Pentacíclicos , Sonicação , Substâncias Reativas com Ácido Tiobarbitúrico/química , Ondas Ultrassônicas , Ácido Betulínico
19.
Food Res Int ; 78: 159-168, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28433277

RESUMO

This paper brings forward the encapsulation of annatto seed oil (rich in geranylgeraniol) assisted by high intensity ultrasound using gum Arabic (GA) as stabilizing agent. We studied the effects of time (min) and ultrasonication power (W) over the emulsion characteristics. After forming microparticles from the best emulsion using freeze-drying (FD) and spray-drying (SD) techniques, we evaluated particle size distribution, moisture, water activity, surface oil, entrapment efficiency, encapsulation efficiency, geranylgeraniol retention, oxidative stability and kinetic release of geranylgeraniol, a biocompound with functional activities. The combined intensification of time and ultrasonication power reduced the superficial mean diameter (D32) and polydispersity (PDI) of emulsions. Drying the continuous phase of the optimized emulsion (smallest D32=0.69±0.03µm) using FD and SD formed microparticles with different morphological characteristics, Brouckere diameter (D43), particle size distribution, moisture and water activity. SD process led to microparticles with the highest oil encapsulation efficiency (85.1±0.1wt.%) as a consequence of their lowest surface oil (SO). However, GA-FD microparticles presented the highest oil entrapment efficiency (97±1wt.%). Geranylgeraniol retention (80-86wt.%) was similar for both drying techniques. GA-FD microparticles were more stable against oxidation through accelerated test Rancimat, even though presenting higher SO. This behavior is associated with the likely phase transition on the GA-SD matrix. The difference on the kinetic release of geranylgeraniol is linked to the difference on the particles morphology and particle size distribution.

20.
Beilstein J Nanotechnol ; 5: 2328-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551061

RESUMO

The development of chemical strategies to render graphene viable for incorporation into devices is a great challenge. A promising approach is the production of stable graphene dispersions from the exfoliation of graphite in water and organic solvents. The challenges involve the production of a large quantity of graphene sheets with tailored distribution in thickness, size, and shape. In this review, we present some of the recent efforts towards the controlled production of graphene in dispersions. We also describe some of the chemical protocols that have provided insight into the vast organic chemistry of the single atomic plane of graphite. Controlled chemical reactions applied to graphene are expected to significantly improve the design of hierarchical, functional platforms, driving the inclusion of graphene into advanced functional materials forward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA