RESUMO
This study investigates the effectiveness of various chemical methods, both ultrasound-assisted and non-assisted, for extracting cellulose from banana pseudostem (BPS) waste, comparing the results with commercial pine and eucalyptus cellulose fibers. Delignification treatments with NaOH (25% and 30%) and H2O2 (8%) were evaluated, applied with both conventional and focused sonication. Ultrasound-assisted methods, particularly with NaOH, achieved cellulose percentages as high as 99.5%. X-ray diffraction (XRD) analysis revealed that NaOH treatments significantly increased the cellulose crystallinity index, reaching up to 67.9%, surpassing commercial fibers. Scanning electron microscopy (SEM) results showed that NaOH treatments, especially at 30%, improved fiber morphology and exposure. Thermogravimetric analysis (TGA) indicated that methods using NaOH and focused sonication enhanced the thermal stability of the cellulose. Compared to commercial fibers, some samples obtained with the proposed methods demonstrated higher purity, yield, and thermal stability, highlighting the effectiveness of ultrasound-assisted and NaOH methods.
RESUMO
The encapsulation of essential oils (EOs) in protein-based biopolymeric matrices stabilized with surfactant ensures protection and physical stability of the EO against unfavorable environmental conditions. Accordingly, this study prepared zein nanoparticles loaded with eucalyptus essential oil (Z-EEO) and Litsea cubeba essential oil (Z-LEO), stable and with antifungal activity against Colletotrichum lindemuthianum, responsible for substantial damage to bean crops. The nanoparticles were prepared by nanoprecipitation with the aid of ultrasound treatment and characterized. The nanoparticles exhibited a hydrodynamic diameter close to 200 nm and PDI < 0.3 for 120 days, demonstrating the physical stability of the carrier system. Scanning electron microscopy and Transmission electron microscopy revealed that the nanoparticles were smooth and uniformly distributed spheres. Fourier-transform infrared spectroscopy showed interaction between zein and EOs through hydrogen bonding and hydrophobic interactions. Thermogravimetric analysis demonstrated the thermal stability of the nanoparticles compared to pure bioactive compounds. The nanoparticles exhibited a dose-dependent effect in inhibiting the fungus in in vitro testing, with Z-EEO standing out by inhibiting 70.0 % of the mycelial growth of C. lindemuthianum. Therefore, the results showed that zein has great potential to encapsulate hydrophobic compounds, improving the applicability of the bioactive compound as a biofungicide, providing protection for the EO.
Assuntos
Antifúngicos , Eucalyptus , Litsea , Nanopartículas , Óleos Voláteis , Zeína , Zeína/química , Antifúngicos/farmacologia , Antifúngicos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Eucalyptus/química , Nanopartículas/química , Litsea/química , Colletotrichum/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Estabilidade de MedicamentosRESUMO
Excessive UV solar radiation exposure causes human health risks; therefore, the study of multifunctional filters is important to skin UV protective ability and also to other beneficial activities to the human organism, such as reduction of reactive oxygen species (ROS) responsible for cellular damages. Potential multifunctional filters were obtained by intercalating of ferulate anions into layered simple metal hydroxides (LSH) through anion exchange and precipitation at constant pH methods. Ultrasound treatment was used in order to investigate the structural changes in LSH-ferulate materials. Structural and spectroscopic analyses show the formation of layered materials composed by a mixture of LSH intercalated with ferulate anions, where carboxylate groups of ferulate species interact with LSH layers. UV-VIS absorption spectra and in vitro SPF measurements indicate that LSH-ferulate systems have UV shielding capacity, mainly UVB protection. The results of reactive species assays show the ability of layered compounds in capture DPPHâ¢, ABTSâ¢+, ROOâ¢, and HOCl/OCl- reactive species. LSH-ferulate materials exhibit antioxidant activity and singular optical properties that enable their use as multifunctional filters.
Assuntos
Hidróxidos/química , Protetores contra Radiação/química , Raios Ultravioleta/efeitos adversos , Zinco/química , Ânions/química , Antioxidantes/efeitos da radiação , Humanos , Substâncias Intercalantes/química , Metais/química , Espécies Reativas de Oxigênio/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Sistema Solar/química , Análise EspectralRESUMO
The feasibility of indirect application of low frequency ultrasound for demulsification of crude oil was investigated without using chemical demulsifiers. Experiments were performed in an ultrasonic bath with frequency of 35 kHz. Synthetic emulsions with water content of 12%, 35% and 50% and median of droplet size distribution (DSD), median D(0.5), of 5, 10 and 25 µm were prepared from crude oil with API density of 19 (heavy crude oil) and submitted to the proposed ultrasound-assisted demulsification procedure. Experimental conditions as temperature, time of exposition to ultrasound and ultrasonic power were evaluated. Separation of water from crude oil emulsion was observed for all emulsions investigated. Demulsification efficiency up to 65% was obtained for emulsion with 50% of water content and DSD of 10 µm. Higher efficiency of demulsification was achieved using US temperature of 45 °C and ultrasound power of 160 W by 15 min. Results obtained in this study showed that ultrasound could be considered a promising technology for industrial crude oil treatment and respective water removal.