Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Comput Chem ; 45(20): 1744-1749, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624182

RESUMO

The stability and reactivity of Pd4Ni4 and Pd4Cu4 clusters embedded on graphene modified by monovacancy and nitrogen doping were investigated using auxiliary density functional theory (ADFT) calculations. The most stable structure of the Pd4Ni4 cluster is found in high spin multiplicity, whereas the lowest stable energy structure of the Pd4Cu4 cluster is a close shell system. The interaction energies between the bimetallic clusters and the defective graphene systems are significantly higher than those reported in the literature for the Pd-based clusters deposited on pristine graphene. It is observed that the composites studied present a HOMO-LUMO gap less than 1 eV, which suggests that they may present a good chemical reactivity. Therefore, from the results obtained in this work it can be inferred that the single vacancy graphene and pyridinic N-doped graphene are potentially good support materials for Pd-based clusters.

2.
Chemosphere ; 342: 140133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704085

RESUMO

This study aims the development of photoelectrodes to be incorporated in a photoelectrocatalytic ozonation (PECO) process for tertiary treatment of urban wastewaters, targeting the removal of contaminants of emerging concern (CEC). PECO tests were performed using urban wastewater after secondary treatment fortified with Cefadroxil (CFX, C16H17N3O5S), as target model CEC. Three Nitrogen and Carbon doped TiO2 (CN-TiO2) electrodes were synthesized by anodizing at 50, 70, and 90 V, and calcined. These materials were characterized by X-Ray diffraction and Rietveld refinement, Scanning Electron Microscopy, Diffuse Reflectance Spectroscopy, X-ray photoelectron spectroscopy, chronoamperometry, and electrochemical impedance spectroscopy, to correlate defects with photoactivity. All photoanodes considerably reduced their main bandgaps by the incorporation of C and N species, to enable absorption capacities in the UV region using a Xe lamp. The lowest oxygen vacancy content and largest crystallite size were found for CN-TiO2-70, favoring the reduction of bulk defects that could act as recombination of charge carriers. Therefore, oxygen vacancies affect more the TiO2 photoactivity compared to the crystallite size or the light absorption capacity, confirming that a lower content of vacancies in the material bulk and surface doping significantly influence the activity as detected by Rietveld refinement, DRS, and XPS. The electrochemical techniques confirm that the highest photocurrent was obtained for CN-TiO2-70, whence this photoanode was chosen to carry out the CFX degradation. A point defect model simulating Nyquist plot reveals that the photoactivity depends on the speed to diffuse oxygen vacancies through the TiO2 coating. All abatement processes were followed by high-performance liquid chromatography, and Total Organic Carbon (TOC). At neutral and alkaline conditions, CFX is eliminated to levels below the analytical detection limit after 90 min of treatment (TOC removals of 87 and 91%, respectively), indicating that the coupling between the CN-TiO2-70 photocatalyst and ozone is effective in eliminating the contaminant due to parallel routes forming •OH species. Lower CFX degradation observed at acidic pH (TOC removal of 70%) is assigned to the difficulty of oxidizing protonated CFX species.


Assuntos
Luz , Oxigênio , Microscopia Eletrônica de Varredura , Titânio/química , Carbono/química
3.
Nanomaterials (Basel) ; 13(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513134

RESUMO

In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship with the resistive state. The simulation data are compared with the experimental current-voltage data of Si-NCs/SiO2 multilayer-based memristor devices. Devices with 1 and 3 Si-NCs/SiO2 bilayers were analyzed. The Si-NCs are assumed as agglomerates of fixed oxygen vacancies, which promote the formation of conductive filaments (CFs) through the multilayer according to the simulations. In fact, an intermediate resistive state was observed in the forming process (experimental and simulated) of the 3-BL device, which is explained by the preferential generation of oxygen vacancies in the sites that form the complete CFs, through Si-NCs.

4.
ACS Appl Mater Interfaces ; 15(37): 43259-43271, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856741

RESUMO

Photocatalytic fuel cells (PFCs) are considered the next generation of energy converter devices, since they can harvest solar energy through relatively low-cost semiconductor material to convert the chemical energy of renewable fuels and oxidants directly into electricity. Here, we report black TiO2 nanoparticle (NP) photoanodes for simple single-compartment PFCs and microfluidic photo fuel cells (µPFCs) fed by methanol. We show that Ti3+ and oxygen vacancy (OV) defects at the TiO2 NPs are easily controlled by annealing in a NaBH4-containing atmosphere. This optimized noble-metal-free black TiO2 photoanode shows superior PFC performance for methanol oxidation and O2 reduction with a maximum power density (Pmax) ∼2000% higher compared to the undoped TiO2. At flow conditions, the black TiO2 photoanode showed a Pmax ∼90 times higher than the µFC equipped with regular TiO2 in the dark. The PFC and µPFC operate spontaneously with little activation polarization, and black TiO2 photoanodes are stable under light irradiation. The improved photoactivity of the black TiO2 photoanode is a consequence of the self-doping with Ti3+/OV defects, which significantly red-shifted the bandgap energy, induced intragap electronic states, and widened both the valence band and conduction band, enhancing the overall absorption of visible light and decreasing the interfacial charge transfer resistance.

5.
Nanotechnology ; 34(9)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36541534

RESUMO

Memristors are expected to be one of the key building blocks for the development of new bio-inspired nanoelectronics. Memristive effects in transition metal oxides are usually linked to the electromigration at the nanoscale of charged oxygen vacancies (OV). In this paper we address, for Pt/TiOx/TaOy/Pt devices, the exchange of OV between the device and the environment upon the application of electrical stress. From a combination of experiments and theoretical simulations we determine that both TiOxand TaOylayers oxidize, via environmental oxygen uptake, during the electroforming process. Once the memristive effect is stabilized (post-forming behavior) our results suggest that oxygen exchange with the environment is suppressed and the OV dynamics that drives the memristive behavior is restricted to an internal electromigration between TiOxand TaOylayers. Our work provides relevant information for the design of reliable binary oxide memristive devices.

6.
J Mol Model ; 28(11): 358, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222980

RESUMO

Zirconia oxide (ZrO2) is a material that has aroused great interest in the scientific community for its general use in various technological applications, such as fuel cells, solar cells, electronic devices, catalysis, dental biomaterial and ceramics. When it is applied as a catalyst, the doping and vacancy effects of their crystalline phases are important properties to guide new developments. This work investigates tetragonal and monoclinic crystalline phases of the Zn-doped ZrO2 by periodic density functional calculations. Changes in the electronic and acid-basic properties were performed by Bader charge analysis, the density of states calculations (DOS) and the projected density of states (PDOS). The formation of oxygen vacancies was also evaluated. The calculated oxygen vacancy formation energies indicate that it is much easier to generate oxygen vacancy in the Zn-doped ZrO2 than in the pure material; in addition, oxygen vacancy formation is favored in the monoclinic phase. Bader charge analyses and projected density of states indicated that the doping of ZrO2 with Zn creates more basic and acid sites. The most stable material is the Zn-doped 3-fold coordinated Zr atom of the m-ZrO2, which can be used for future developments and applications.

7.
Materials (Basel) ; 15(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806834

RESUMO

Graphene with defects is a vital support material since it improves the catalytic activity and stability of nanoparticles. Here, a density functional theory study was conducted to investigate the stability, energy, and reactivity properties of NinPdn (n = 1-3) clusters supported on graphene with different defects (i.e., graphene with monovacancy and pyridinic N-doped graphene with one, two, and three N atoms). On the interaction between the clusters and graphene with defects, the charge was transferred from the clusters to the modified graphene, and it was observed that the binding energy between them was substantially higher than that previously reported for Pd-based clusters supported on pristine graphene. The vertical ionization potential calculated for the clusters supported on modified graphene decreased compared with that calculated for free clusters. In contrast, vertical electron affinity values for the clusters supported on graphene with defects increased compared with those calculated for free clusters. In addition, the chemical hardness calculated for the clusters supported on modified graphene was decreased compared with free clusters, suggesting that the former may exhibit higher reactivity than the latter. Therefore, it could be inferred that graphene with defects is a good support material because it enhances the stability and reactivity of the Pd-based alloy clusters supported on PNG.

8.
Nano Lett ; 21(22): 9398-9402, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34756041

RESUMO

Vacancies in materials structure─lowering its atomic density─take the system closer to the atomic limit, to which all systems are topologically trivial. Here we show a mechanism of mediated interaction between vacancies inducing a topologically nontrivial phase. Within an ab initio approach we explore topological transition dependence with the vacancy density in transition metal dichalcogenides. As a case of study, we focus on the PtSe2, for which the pristine form is a trivial semiconductor with an energy gap of 1.2 eV. The vacancies states lead to a large topological gap of 180 meV within the pristine system gap. We derive an effective model describing this topological phase in other transition metal dichalcogenide systems. The mechanism driving the topological phase allows the construction of backscattering protected metallic channels embedded in a semiconducting host.

9.
Nanotechnology ; 32(40)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34167106

RESUMO

Resistive switching (RS) devices are promising forms of non-volatile memory. However, one of the biggest challenges for RS memory applications is the device-to-device (D2D) variability, which is related to the intrinsic stochastic formation and configuration of oxygen vacancy (VO) conductive filaments (CFs). In order to reduce the D2D variability, control over the formation and configuration of oxygen vacancies is paramount. In this study, we report on the Zr doping of TaOx-based RS devices prepared by pulsed-laser deposition as an efficient means of reducing the VOformation energy and increasing the confinement of CFs, thus reducing D2D variability. Our findings were supported by XPS, spectroscopic ellipsometry and electronic transport analysis. Zr-doped films showed increased VOconcentration and more localized VOs, due to the interaction with Zr. DC and pulse mode electrical characterization showed that the D2D variability was decreased by a factor of seven, the resistance window was doubled, and a more gradual and monotonic long-term potentiation/depression in pulse switching was achieved in forming-free Zr:TaOxdevices, thus displaying promising performance for artificial synapse applications.

10.
J Mol Model ; 27(5): 141, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909152

RESUMO

Structural, electronic, binding energies and magnetic properties of aluminum-doped and single vacancy blue phosphorene interacting with pollutant molecules are investigated using the density functional theory (DFT) with periodic boundary conditions. Acetylene, ozone, sulfur trioxide, hydrogen selenide, and sulfur dichloride molecules are considered to show the efficiency and enhancement of the sensing properties in comparison with the pristine blue phosphorene. Acetylene, sulfur trioxide, hydrogen selenide, and sulfur dichloride show chemisorption (> 0.5 eV/molecule) when interacting with the aluminum-doped system, but the ozone molecule dissociates in all configurations and symmetry sites. On the other hand, the acetylene, ozone, and sulfur trioxide with the single vacancy blue phosphorene exhibit chemisorption, the hydrogen selenide molecule exhibit a weak interaction energy, and the sulfur dichloride dissociates in all configurations and symmetry sites. In all the cases, the enhancement in the interaction energy was achieved when compared to other results for the same molecules. Finally, the single vacancy blue phosphorene shows a magnetic moment of ~1 µB/supercell, as induced by the vacancy.

11.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535516

RESUMO

Chemical sensors with high sensitivity that can be used under extreme conditions and can be miniaturized are of high interest in science and industry. The nitrogen-vacancy (NV) center in diamond is an ideal candidate as a nanosensor due to the long coherence time of its electron spin and its optical accessibility. In this theoretical work, we propose the use of an NV center to detect electrochemical signals emerging from an electrolyte solution, thus obtaining a concentration sensor. For this purpose, we propose the use of the inhomogeneous dephasing rate of the electron spin of the NV center (1/T2★) as a signal. We show that for a range of mean ionic concentrations in the bulk of the electrolyte solution, the electric field fluctuations produced by the diffusional fluctuations in the local concentration of ions result in dephasing rates that can be inferred from free induction decay measurements. Moreover, we show that for a range of concentrations, the electric field generated at the position of the NV center can be used to estimate the concentration of ions.

12.
J Photochem Photobiol B ; 177: 85-94, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107206

RESUMO

Bacterial soft rot is responsible for the loss of about 25% of worldwide production in vegetables and fruits. Efforts have been made to develop an effective nanosponge with the capacity to load and release antibacterial drugs to protect plants. Based on the potential of the ZnO nanoparticles (ZnO-NPs) to achieve this goal, this study synthesized NP via the sol-gel and hydrothermal methods by controlling native defects, such as oxygen vacancies, using thermal treatments and reduced atmospheres. To characterize the ZnO NPs, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), optical spectroscopy, electron paramagnetic resonance (EPR), Zeta Potential measurements and surface area with the Brunauer-Emmett-Teller (BET) method were used. The photophysical and photochemical properties via spin trapping method aligned with EPR using UVA light showed a greater formation of electron-hole pairs and hydroxyl radicals for the reduced ZnO NPs when compared with the oxidized ones. Additionally, we found that reduced ZnO-NPs have high effectively against Escherichia coli, Erwinia carotovora and Pantoea sp. bacteria using the photocatalytic effect in the UV range. Moreover, ZnO-NPs loaded with DOX release profile enables the release of DOX within 46days, where 25% was released during the first 10h followed by a second delivery phase with an interesting short-term efficacy (<1day) against E. carotovora and Pantoea sp. Bacteria. For the first time, it was demonstrated that ZnO-NPs and ZnO-NPs loaded with DOX have efficient UV photocatalytic activities against bacterial soft rot infections.


Assuntos
Antibacterianos/química , Doxiciclina/química , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Catálise , Liberação Controlada de Fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Testes de Sensibilidade Microbiana , Oxirredução , Pantoea/efeitos dos fármacos , Tamanho da Partícula , Pectobacterium carotovorum/efeitos dos fármacos , Pectobacterium carotovorum/efeitos da radiação , Raios Ultravioleta
13.
J Mol Model ; 23(10): 292, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28952031

RESUMO

In the development of quantum computing and communications, improvements in materials capable of single photon emission are of great importance. Advances in single photon emission have been achieved experimentally by introducing nitrogen-vacancy (N-V) centers on diamond nanostructures. However, theoretical modeling of the anisotropic effects on the electronic properties of these materials is almost nonexistent. In this study, the electronic band structure and density of states of diamond nanowires with N-V defects were analyzed through first principles approach using the density functional theory and the supercell scheme. The nanowires were modeled on two growth directions [001] and [111]. All surface dangling bonds were passivated with hydrogen (H) atoms. The results show that the N-V introduces multiple trap states within the energy band gap of the diamond nanowire. The energy difference between these states is influenced by the growth direction of the nanowires, which could contribute to the emission of photons with different wavelengths. The presence of these trap states could reduce the recombination rate between the conduction and the valence band, thus favoring the single photon emission. Graphical abstract Diamond nanowires with nitrogen-vacancy centerᅟ.

14.
J Mol Model ; 22(8): 175, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27383611

RESUMO

Density functional theory with the addition of a semi-empirical dispersion potential was applied to the conventional Kohn-Sham energy to study the adsorption of alkene and alkyne molecules on hydrogen-terminated two-dimensional group IV systems (graphane, silicane, and germanane) by means of a radical-initiated reaction. In particular, we investigated the interactions of acetylene, ethylene, and styrene with those surfaces. Although we had studied these systems previously, we included van der Waals interactions in all of the cases examined in the present work. These forces, which are noncovalent interactions, can heavily influence different processes in molecular chemistry, such as the adsorption of organic molecules on semiconductor surfaces. This unified approach allowed us to perform a comparative study of the relative reactivities of the various organic molecule/surface systems. The results showed that the degree of covalency of the surface, the lattice size, and the partial charge distribution (caused by differences in electronegativity) are all key elements that determine the reactivity between the molecules and the surfaces tested in this work. The covalent nature of graphane gives rise to energetically favorable intermediate states, while the opposite polarities of the charge distributions of silicane and germanane with the organic molecules favor subsequent steps of the radical-initiated reaction. Finally, the lattice size is a factor that has important consequences due to steric effects present in the systems and the possibility of chain reaction continuation. The results obtained in this work show that careful selection of the substrate is very important. Calculated energy barriers, heats of adsorption, and optimized atomic structures show that the silicane system offers the best reactivity in organic functionalization.

15.
Eureka (Asunción, En línea) ; 9(1): 98-105, 2012.
Artigo em Espanhol | LILACS | ID: lil-692665

RESUMO

El siguiente artículo es un ensayo acerca de la situación de la psicoterapia como profesión liberal en la práctica de la psicología. Se realiza una breve introducción a los inicios de la profesión del psicólogo y el estado actual, se analiza especialmente la formación teórica y las posibles causas para explicar el predominio de un campo de ejercicio sobre los demás. Luego se analizan algunas situaciones particulares relacionadas a la actividad privada de la psicología clínica y la función de las instituciones de primer orden como mediadoras entre el profesional y las empresas de salud. Finalmente se proponen líneas de acción para revertir un estado de precarización laboral y un centramiento de la actividad clínica como modelo hegemónico de inserción laboral.


This essay summarizes the status of psychotherapy as a private practice in professional psychology. A brief introduction to the beginnings of the profession of psychologist is presented, as well as aspects of its current situation. It is specially analyzed the theoretical training and the possible causes to explain the dominance of a field exercise above the others. Furthermore, some particular situations related to private clinical psychology are discussed, as well as the role of first-order institutions as mediators between the professional and healthcare companies. Finally, a few lines of action are proposed, to reverse the condition of job insecurity and taking out of centre the clinical activity; as a hegemonic model of employability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA