Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
1.
Vaccine ; 42(26): 126398, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357463

RESUMO

The 2nd International Hepatitis E Virus Symposium was held on April 28 and 29, 2023, in London, UK. The conference was hosted by the International Vaccine Institute and brought together key clinicians, researchers, and private and public stakeholders for a dedicated forum on hepatitis E virus (HEV). The scientific program spanned multiple facets of HEV, from updates on clinical research and diagnostic advances to vaccine development. The conference highlighted presentations on several critical HEV vaccine studies that will greatly impact the field, including the largest effectiveness study of Hecolin vaccine outside of China and the first reactive mass-vaccination campaign in South Sudan. This report summarizes information shared at the convening and offers perspectives on the steps forward for hepatitis E.

2.
Pathogens ; 13(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339003

RESUMO

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania. As approved human vaccines are not available, treatment and prevention rely heavily on toxic chemotherapeutic agents, which face increasing resistance problems. The development of effective vaccines against human leishmaniasis is of utmost importance for the control of the disease. Strategies that have been considered for this purpose range from whole-killed and attenuated parasites to recombinant proteins and DNA vaccines. The ideal vaccine must be safe and effective, ensuring lasting immunity through a robust IL-12-driven Th1 adaptive immune response. Despite some success and years of effort, human vaccine trials have encountered difficulties in conferring durable protection against Leishmania, a problem that may be attributed to the parasite's antigenic diversity and the intricate nature of the host's immune response. The aim of this review is to provide a thorough overview of recent advances in Leishmania vaccine development, ranging from initial trials to recent achievements, such as the ChAd63-KH DNA vaccine, which underscores the potential for effective control of leishmaniasis through continued research in this field.

3.
Dev Comp Immunol ; 162: 105262, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270949

RESUMO

Aquaculture is notably vulnerable to diseases, with Edwardsiella tarda causing significant mortality across various commercially important fish species in both freshwater and marine environments. In the aquaculture industry, sustainable disease control hinges on the effective development of vaccines. Oral vaccines present an appealing approach to immunization in fish due to their ease of antigen administration, reduced stress compared to non-oral delivery methods, and their potential applicability to both small and large finfish species. In mammals, the exposure of mucosal surfaces to antigens results in the secretion of antigen-specific IgA at these locations. Mammals have a common mucosal immune system, in which stimulation of one epithelium can also give rise to specific IgA or IgM responses in other mucosal organs. Mucosal immunoglobulins are particularly important in developing vaccines that provide mucosal immunity. However, it remains unclear whether fish share a common mucosal system. Moreover, neither Peyer's patches nor intestinal lymph nodes were identified. Nevertheless, oral vaccination remains an attractive method for inducing immunity. We investigated whether the activation of the mucosal immune response was induced by direct injection of the antigen. After oral antigen administration, antigen-specific antibody titers increased in the experimental group (E. tarda FKC vaccine). In the challenge experiment, the cumulative survival rate was 72% (E. tarda). This suggests that oral administration of antigens can activate intestinal mucosal immunity in flounders. Additionally, these results help understand the intestinal mucosal immune system of teleost fish. In the future, research on the signaling mechanisms of these genes is expected to provide helpful information for developing vaccine adjuvants.

4.
Front Microbiol ; 15: 1457703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286350

RESUMO

Human respiratory syncytial virus (hRSV) not only affects newborns but also older adults, contributing to a substantial worldwide burden of disease. However, only three approved hRSV vaccines remain commercially available to date. The development of a safe, practical and broad-spectrum vaccine suitable for all age groups remains extremely challenging. Using five different approaches-live-attenuated, recombinant-vector, subunit, particle-based, and mRNA-nearly 30 hRSV vaccine candidates are currently conducting clinical trials worldwide; moreover, > 30 vaccines are under preclinical evaluation. This review presents a comprehensive overview of these hRSV vaccines along with prospects for the development of infectious disease vaccines in the post-COVID-19 pandemic era.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39287470

RESUMO

INTRODUCTION: The review discusses the pathophysiological mechanisms of SARS-CoV-2, the modes of transmission, and the long-term health consequences of COVID-19, emphasizing the importance of research and successful public health initiatives. CONTENT: COVID-19 taxonomy, pathophysiology, symptomatology, and epidemiological importance are the key objects of this research paper. This review explains how COVID-19 affects different systems of the body, including respiratory, cardiovascular, and reproductive systems of the human body. It describes the modes of entry of the virus into the cell; more precisely, ACE2 and TMPRSS2 in viral entry. In addition, the present study analyzes the situation of COVID-19 in India regarding vaccine development and the transmission rate related to socioeconomic factors. SUMMARY: The manifestation of COVID-19 presents a lot of symptoms and post-acute problems, issues which are seriously impacting mental health and physical health as well. The present review summarizes current research into pathogenicity and the mode of virus transmission, together with immunological responses. Coupled with strong vaccination programs, public health initiatives should hold the key to fighting this pandemic. OUTLOOK: Long-term effects and the development of treatment methods will need further study, as ambiguities on COVID-19 remain. Multidisciplinary collaboration across healthcare sectors in this respect is of paramount importance for the prevention of further spread and protection of public health.

6.
Vaccine ; 42(24): 126291, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39241355

RESUMO

Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). While BCG protects against TB in children, its protection against pulmonary TB in adults is suboptimal, and the development of a better TB vaccine is a global health priority. Previously, we reported two recombinant BCG strains effective against murine TB with low virulence and lung pathology in immunocompromised mice and guinea pigs. We have recently combined these two recombinant BCG strains into one novel vaccine candidate (BCGΔBCG1419c::ESAT6-PE25SS) and evaluated its immunogenicity, efficacy and safety profile in mice. This new vaccine candidate is non-inferior to BCG in protection against TB, presents reduced pro-inflammatory immune responses and displays an enhanced safety profile.


Assuntos
Vacina BCG , Hospedeiro Imunocomprometido , Vacinas Sintéticas , Animais , Vacina BCG/imunologia , Vacina BCG/efeitos adversos , Vacina BCG/genética , Camundongos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Feminino , Tuberculose/prevenção & controle , Tuberculose/imunologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Modelos Animais de Doenças , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos Endogâmicos C57BL , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Tuberculose Pulmonar/prevenção & controle , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Eficácia de Vacinas
7.
Clin Infect Dis ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240717

RESUMO

Vaccines based on mRNA technology have been tremendously successful, but their properties are not necessarily ideal for all pathogens. There is a risk that concentration on that technology alone for new vaccine development will ignore older technologies that have properties giving broader and more persistent protection.

8.
J Transl Med ; 22(1): 818, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227968

RESUMO

BACKGROUND: Dengue virus (DENV) is the most widespread arbovirus. The World Health Organization (WHO) declared dengue one of the top 10 global health threats in 2019. However, it has been underrepresented in bibliometric analyses. This study employs bibliometric analysis to identify research hotspots and trends, offering a comprehensive overview of the current research dynamics in this field. RESULTS: We present a report spanning from 1995 to 2023 that provides a unique longitudinal analysis of Dengue virus (DENV) research, revealing significant trends and shifts not extensively covered in previous literature. A total of 10,767 DENV-related documents were considered, with a notable increase in publications, peaking at 747 articles in 2021. Plos Neglected Tropical Diseases has become the leading journal in Dengue virus research, publishing 791 articles in this field-the highest number recorded. Our bibliometric analysis provides a comprehensive mapping of DENV research across multiple dimensions, including vector ecology, virology, and emerging therapies. The study delineates a complex network of immune response genes, including IFNA1, DDX58, IFNB1, STAT1, IRF3, and NFKB1, highlighting significant trends and emerging themes, particularly the impacts of climate change and new outbreaks on disease transmission. Our findings detail the progress and current status of key vaccine candidates, including the licensed Dengvaxia, newer vaccines such as Qdenga and TV003, and updated clinical trials. The study underscores significant advancements in antiviral therapies and vector control strategies for dengue, highlighting innovative drug candidates such as AT-752 and JNJ-1802, and the potential of drug repurposing with agents like Ribavirin, Remdesivir, and Lopinavir. Additionally, it discusses biological control methods, including the introduction of Wolbachia-infected mosquitoes and gene-editing technologies. CONCLUSION: This bibliometric study underscores the critical role of interdisciplinary collaboration in advancing DENV research, identifying key trends and areas needing further exploration, including host-virus dynamics, the development and application of antiviral drugs and vaccines, and the use of artificial intelligence. It advocates for strengthened partnerships across various disciplines to effectively tackle the challenges posed by DENV.


Assuntos
Bibliometria , Vírus da Dengue , Humanos , Dengue/epidemiologia , Dengue/virologia , Animais , Pesquisa Biomédica/tendências , História do Século XXI , História do Século XX
9.
Sci Rep ; 14(1): 22665, 2024 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349584

RESUMO

Group B Streptococcus (GBS) is a major cause of pneumonia, sepsis, and meningitis in infants younger than 3 months of age. Furthermore, GBS infection in pregnant women is associated with stillbirths and pre-term delivery. It also causes disease in immunocompromised adults and the elderly, but the highest incidence of the disease occurs in neonates and young infants. At this time, there are no licensed vaccines against GBS. Complete GBS genome sequencing has helped identify genetically conserved and immunogenic proteins, which could serve as vaccine immunogens. In this study, in silico reverse vaccinology method were used to evaluate the prevalence and conservation of GBS proteins in invasive and colonizing isolates from South African infants and women, respectively. Furthermore, this study aimed to predict potential GBS vaccine targets by evaluating metrics such as antigenicity, physico-chemical properties, subcellular localization, secondary and tertiary structures, and epitope prediction and conservation. A total of 648 invasive and 603 colonizing GBS isolate sequences were screened against a panel of 89 candidate GBS proteins. Ten of the 89 proteins were highly genetically conserved in invasive and colonizing GBS isolates, nine of which were computationally inferred proteins (gbs2106, SAN_1577, SAN_0356, SAN_1808, SAN_1685, SAN_0413, SAN_0990, SAN_1040, SAN_0226) and one was the surface Immunogenic Protein (SIP). Additionally, the nine proteins were predicted to be more antigenic than the SIP protein (antigenicity score of > 0.6498), highlighting their potential as GBS vaccine antigen targets.


Assuntos
Infecções Estreptocócicas , Vacinas Estreptocócicas , Streptococcus agalactiae , Humanos , África do Sul/epidemiologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Feminino , Vacinas Estreptocócicas/imunologia , Lactente , Simulação por Computador , Gravidez , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Recém-Nascido , Adulto
10.
Microorganisms ; 12(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203573

RESUMO

Toxoplasmosis represents a significant public health and veterinary concern due to its widespread distribution, zoonotic transmission, and potential for severe health impacts in susceptible individuals and animal populations. The ability to design and produce recombinant proteins with precise antigenic properties is fundamental, as they serve as tools for accurate disease detection and effective immunization strategies, contributing to improved healthcare outcomes and disease control. Most commonly, a prokaryotic expression system is employed for the production of both single antigens and multi-epitope chimeric proteins; however, the cloning strategies, bacterial strain, vector, and expression conditions vary. Moreover, literature reports show the use of alternative microbial systems such as yeast or Leishmania tarentolae. This review provides an overview of the methods and strategies employed for the production of recombinant Toxoplasma gondii antigenic proteins for the serological detection of T. gondii infection and vaccine development.

11.
Vaccines (Basel) ; 12(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39203985

RESUMO

A vaccine protecting against malaria caused by Plasmodium falciparum is urgently needed. The blood-stage invasion complex PCRCR consists of the five malarial proteins PfPTRAMP, PfCSS, PfRipr, PfCyRPA, and PfRH5. As each subcomponent represents an essential and highly conserved antigen, PCRCR is considered a promising vaccine target. Furthermore, antibodies targeting the complex can block red blood cell invasion by the malaria parasite. However, extremely high titers of neutralizing antibodies are needed for this invasion-blocking effect, and a vaccine based on soluble PfRH5 protein has proven insufficient in inducing a protective response in a clinical trial. Here, we present the results of two approaches to increase the neutralizing antibody titers: (A) immunofocusing and (B) increasing the immunogenicity of the antigen via multivalent display on capsid virus-like particles (cVLPs). The immunofocusing strategies included vaccinating with peptides capable of binding the invasion-blocking anti-PfCyRPA monoclonal antibody CyP1.9, as well as removing non-neutralizing epitopes of PfCyRPA through truncation. Vaccination with PfCyRPA coupled to the AP205 cVLP induced nearly two-fold higher IgG responses compared to vaccinating with soluble PfCyRPA protein. Immunofocusing using a linear peptide greatly increased the neutralizing capacity of the anti-PfCyRPA antibodies. However, significantly lower total anti-PfCyRPA titers were achieved using this strategy. Our results underline the potential of a cVLP-based malaria vaccine including full-length PfCyRPA, which could be combined with other leading malaria vaccine antigens presented on cVLPs.

12.
Vaccines (Basel) ; 12(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39204059

RESUMO

The COVID-19 (coronavirus disease 2019) pandemic had an extensive impact on global morbidity and mortality. Several other common respiratory viruses, such as the influenza virus and respiratory syncytial virus (RSV), are endemic or epidemic agents causing acute respiratory infections that are easily transmissible and pose a significant threat to communities due to efficient person-to-person transmission. These viruses can undergo antigenic variation through genetic mutations, resulting in the emergence of novel strains or variants, thereby diminishing the effectiveness of current vaccines, and necessitating ongoing monitoring and adjustment of vaccine antigens. As the virus-specific immunity is maintained only for several weeks or months after the infection, there is an emergent need to develop effective and durable vaccines. Additionally, specific populations, such as elderly or immunocompromised individuals, may exhibit reduced immune responses to respiratory viruses, posing significant challenges to develop vaccines that elicit durable and potent immunity. We present a comprehensive review of the molecular mechanisms underlying the pathogenesis and virulence of common respiratory viruses, such as RSV, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss several vaccine approaches that are under development. A thorough understanding of the current strategies and the challenges encountered during the vaccine development process can lead to the advancement of effective next-generation vaccines.

13.
J Funct Biomater ; 15(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39194663

RESUMO

The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.

14.
Front Mol Biosci ; 11: 1429180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114367

RESUMO

Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.

15.
Front Immunol ; 15: 1406929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114655

RESUMO

Numerous enveloped viruses, such as coronaviruses, influenza, and respiratory syncytial virus (RSV), utilize class I fusion proteins for cell entry. During this process, the proteins transition from a prefusion to a postfusion state, undergoing substantial and irreversible conformational changes. The prefusion conformation has repeatedly shown significant potential in vaccine development. However, the instability of this state poses challenges for its practical application in vaccines. While non-native disulfides have been effective in maintaining the prefusion structure, identifying stabilizing disulfide bonds remains an intricate task. Here, we present a general computational approach to systematically identify prefusion-stabilizing disulfides. Our method assesses the geometric constraints of disulfide bonds and introduces a ranking system to estimate their potential in stabilizing the prefusion conformation. We hypothesized that disulfides restricting the initial stages of the conformational switch could offer higher stability to the prefusion state than those preventing unfolding at a later stage. The implementation of our algorithm on the RSV F protein led to the discovery of prefusion-stabilizing disulfides that supported our hypothesis. Furthermore, the evaluation of our top design as a vaccine candidate in a cotton rat model demonstrated robust protection against RSV infection, highlighting the potential of our approach for vaccine development.


Assuntos
Dissulfetos , Proteínas Virais de Fusão , Dissulfetos/química , Animais , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Estabilidade Proteica , Desenho Assistido por Computador , Conformação Proteica , Vírus Sinciciais Respiratórios/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Ratos , Modelos Moleculares
16.
Vaccine ; 42(23): 126220, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39182314

RESUMO

Sheep farming contributes to the socioeconomic development of small and medium-scale livestock farmers. However, several factors can hinder successful animal production, as is the case for infectious diseases, such as the one caused by Corynebacterium pseudotuberculosis, known as caseous lymphadenitis (CLA). CLA has >90% prevalence in Brazilian herds and antibiotic treatment is not effective, consequently causing significant economic losses to farmers. Given the above, effective vaccines need to be developed to prevent this disease. This study aimed to evaluate the adjuvant activity of the lipid extract from the macroalgae Iridaea cordata as a candidate for developing an effective vaccine formulation. For such, four groups of six sheep each were inoculated with sterile 0.9% saline solution (G1), rCP01850 (G2), rCP01850 + I. cordata (G3), and rCP01850 + saponin (G4). Each sheep received two vaccine doses 30 days apart. Total IgG production levels significantly increased in experimental groups G3 and G4 on days 30, 60, and 90. On day 90, G3 showed higher total IgG production (p < 0.05) when compared to G4. When analyzing cytokine production, G3 was the only experimental group with significantly increased IFN-γ, IL-12, TNF-α, and IL-10 mRNA expression levels. Our results show the vaccine formulation containing rCP01850 adjuvanted with the I. cordata lipid extract elicited a Th1 immune response in sheep, indicating I. cordata lipid extract may be a promising adjuvant for developing an effective vaccine against infection caused by C. pseudotuberculosis.


Assuntos
Adjuvantes Imunológicos , Vacinas Bacterianas , Corynebacterium pseudotuberculosis , Doenças dos Ovinos , Células Th1 , Animais , Ovinos , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Células Th1/imunologia , Corynebacterium pseudotuberculosis/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Imunoglobulina G/sangue , Infecções por Corynebacterium/prevenção & controle , Infecções por Corynebacterium/imunologia , Lipídeos/imunologia , Brasil , Proteínas de Bactérias/imunologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-39177789

RESUMO

This paper reviews the importance of vaccine trials to public health. Vaccines are developed to build immunity to disease, which have helped to completely eliminate smallpox, and reduced incidence of polio and measles. A variety of breakthroughs made many years ago, such as the smallpox vaccine by Edward Jenner and the discoveries by Louis Pasteur, also set the stage for modern international immunization programs. A few events, such as the licensing of the polio vaccine and the passage of the Vaccination Assistance Act helped to improve the study of vaccines. In particular, vaccine trials may be RCTs, cluster trials, or cohort studies. The sample sizes will depend on the objectives, which would include the primary and secondary endpoints. The population under study and the geographical location also affect the trial design. Preclinical evaluation is usually the starting point of vaccine trials, where the safety and efficacy are researched on animal models or cell cultures. Animal models are selected based on their similarity to the target disease. Safety is checked in Phase I, efficacy in Phase II, and both in Phase III. Phase IV is a post-marketing surveillance of the vaccine's safety in real life. Regulatory bodies play a very vital role in ensuring that vaccines adhere to a very high standard of safety and efficacy, such as the FDA, as required. Ethical considerations, such as informed consent and the rights of participants, are innate and are implemented and enforced through laws, regulations, and ethical committees. Vaccine studies vary from the drug studies as it is focused on preventing illness in healthy patients as opposed to cure of diseases in drug trials. The dramatic development in vaccine research was driven by recent pandemics, with parallel processing and data collection in real time. Clinical trials of the vaccine are a foundation stone of public health in the reduction of sickness, offering immunity to diseases, and continuing the fight against infectious diseases. The present review is aimed at describing vaccine trials and their important aspects.

19.
Protein Pept Lett ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39162285

RESUMO

BACKGROUND: The spread of the COVID-19 disease is the result of an infection caused by the SARS-CoV2 virus. Four crucial proteins, spike [S], membrane [M], nucleocapsid [N], and envelope [E] in coronaviruses have been considered to a large extent. OBJECTIVE: This research aimed to express the recombinant protein of a multiepitope immunogen construct and evaluate the immunogenicity of the multiepitope vaccine that was previously designed as a candidate immunogenic against SARS-Cov-2. MATERIALS AND METHODS: Plasmid pET26b was transferred to the expression host E. coli BL21 [DE3] and the recombinant protein was expressed with IPTG induction. The recombinant protein was purified by Ni-NTA column affinity chromatography, and western blotting was used to confirm it. Finally, mice were immunized with recombinant protein in three doses. Then, the interaction of the 3D structure of the vaccine with the human neutralizing antibodies3D structures [7BWJ and 7K8N] antibody was evaluated by docking and molecular dynamics simulation. RESULTS: The optimized gene had a codon compatibility index of 0.96. The expression of the recombinant protein of the SARS-Cov-2 vaccine in an E. coli host led to the production of the recombinant protein with a weight of about 70 kDa with a concentration of 0.7 mg/ml. Immunization of mice with recombinant protein of SARS-Cov-2 vaccine-induced IgG serum antibody response. Statistical analysis showed that the antibody titer in comparison with the control sample has a significant difference, and the antibody titer was acceptable up to 1/256000 dilution. The simulation of vaccine binding with human antibodies by molecular dynamics showed that Root Mean Square Deviation [RMSD], Root Mean Square Fluctuation [RMSF], Radius of Gyration, and H-bond as well as van der Waals energies and electrostatic of Molecular mechanics Poisson- Boltzmann surface area [MM/PBSA] analysis have stable interaction. CONCLUSION: This recombinant protein can probably be used as an immunogen candidate for the development of vaccines against SARS-CoV2 in future research.

20.
Virus Evol ; 10(1): veae048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119137

RESUMO

Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA