Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Biomedicines ; 12(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39200216

RESUMO

α-Lipoic acid (LA) is an antioxidant of endogenous production, also obtained exogenously. Oxidative stress is closely associated with hypertension, which causes kidney injury and endothelial dysfunction. Here, we evaluated the cardiovascular and renal effects of LA in the two-kidney-one-clip (2K1C) hypertension model. The rats were divided into four groups: Sham surgery (Sham), the two-kidneys-one-clip (2K1C) group, and groups treated with LA for 14 days (Sham-LA and 2K1C-LA). No changes were observed in the pattern of food, water intake, and urinary volume. The left/right kidney weight LKw/RKw ratio was significantly higher in 2K1C animals. LA treatment did not reverse the increase in cardiac mass. In relation to vascular reactivity, there was an increase in the potency of phenylephrine (PHE) curve in the hypertensive animals treated with LA compared to the 2K1C group and also compared to the Sham group. Vasorelaxation induced by acetylcholine (Ach) and sodium nitroprusside (SNP) were not improved by treatment with LA. Urea and creatinine levels were not altered by the LA treatment. In conclusion, the morphological changes in the aorta and heart were not reversed; however, the treatment with LA mitigated the contraction increase induced by the 2K1C hypertension.

2.
Toxicol Appl Pharmacol ; 484: 116873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417591

RESUMO

This study analyzed how glyphosate exposure in the gestational period affects vascular function in their female offspring and whether oxidative stress is involved in this effect. To this, pregnant Wistar rats were exposed through drinking water to 0.2% of a glyphosate commercial formulation, and we analyzed the response to acetylcholine and phenylephrine in the aorta from offspring of Glyphosate-based herbicide (O-GBH) and controls (O-CON) rats at six months of age. Relaxation to acetylcholine was reduced in O-GBH than in O-CON. Acute Indomethacin and Apocynin increased relaxation to acetylcholine in O-GBH. The aorta from O-GBH was hyperactive to phenylephrine; the preincubation with N-nitro-L-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in O-CON than O-GBH. TEMPOL similarly reduced phenylephrine response, and L-NAME prevented this effect. The TBARS and GSH levels were increased in O-GBH than in O-CON. Results reinforce the concept that oxidative stress during the perinatal period contributes to the development of vascular changes in adulthood. Results also reveal that oxidative stress parameters altered, and the current levels considered safe for exposure to Glyphosate deserve further investigation, especially in the female gender.


Assuntos
Glifosato , Herbicidas , Gravidez , Humanos , Ratos , Animais , Feminino , Herbicidas/toxicidade , Ratos Wistar , NG-Nitroarginina Metil Éster , Exposição Materna/efeitos adversos , Acetilcolina , Glicina/toxicidade , Fenilefrina/toxicidade
3.
Life Sci ; 338: 122405, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176584

RESUMO

AIMS: To evaluate the effects of testosterone on endothelium-dependent vasodilation and oxidative stress in mesenteric resistance arteries. MAIN METHODS: Spontaneously hypertensive rats (SHR), aged 8 to 10 weeks, were divided into four groups: intact (SHAM), intact treated with testosterone (TTO; 3 mg/kg/day) via subcutaneous route (s.c.), intact treated with testosterone and anastrozole [aromatase enzyme inhibitor (TTO + ANA; 0.1 mg/kg/day, s.c.)] and intact treated with testosterone and finasteride [5 α-reductase enzyme inhibitor (TTO + FIN; 5 mg/kg/day, s.c.)] for four weeks. Concentration-response curves to acetylcholine (ACh, 0.1 nmol/L - 10 µmol/L) were obtained in mesenteric resistance arteries previously contracted with phenylephrine (PE, 3 µmol/L), before and after the use of selective inhibitors. Reactive oxygen species (ROS) levels were assessed in the vessels and the endothelium analyzed by scanning electron microscopy. KEY FINDINGS: TTO group showed a lower participation of nitric oxide (NO), increased oxidative stress, and participation of prostanoids and endothelium-dependent hyperpolarization (EDH), possibly to maintain the vasodilator response. Lower participation of NO and prostanoids, combined to an increased participation of EDH, were observed in the TTO + ANA group, in addition to higher levels of ROS and altered endothelial morphology. The vasodilation to ACh was impaired in TTO + FIN, along increased participation of NO, reduction of prostanoids, and greater EDH-dependent vasodilation. SIGNIFICANCE: Testosterone contributes to endothelial vasodilation by enhancing EDH through an increased participation of epoxyeicosatrienoic acids. While the decrease in NO appears to involve the participation of dihydrotestosterone, 17 ß-estradiol seems to stimulate the action of the NO pathway and prostanoids.


Assuntos
Hipertensão , Vasodilatação , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Hipertensão/metabolismo , Ratos Endogâmicos SHR , Inibidores Enzimáticos/farmacologia , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Artérias Mesentéricas , Óxido Nítrico/metabolismo , Prostaglandinas/metabolismo , Endotélio Vascular/metabolismo
4.
Life Sci ; 332: 122082, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722587

RESUMO

AIMS: Hypercholesterolemia is an important risk factor for development of cardiovascular disturbances, such as atherosclerosis, and its treatment remains challenging in modern medicine. Cilostazol is a selective inhibitor of phosphodiesterase 3 clinically prescribed for intermittent claudication treatment. Due to its pleiotropic properties, such as lipid lowering, anti-inflammatory, and antioxidant effects, the therapeutic repurposing of cilostazol has become a strategic approach for atherosclerosis treatment. This study aimed to investigate the effects of subacute administration of cilostazol on the aortas of hypercholesterolemic rats, focusing on the signaling pathways involved in these actions. MAIN METHODS: A murine model of hypercholesterolemia was employed to mimic the early stages of atherosclerosis development. Vascular reactivity assays were performed on thoracic aorta rings to assess the vascular response, as well as the non-invasive blood pressure was evaluated by plethysmography method. Pro-inflammatory markers and malondialdehyde (MDA) levels were measured to investigate the anti-inflammatory and antioxidant effects of cilostazol. Western Blot analysis was performed in aortas homogenates to evaluate the role of cilostazol on PLC-γ/PKC-α/p38-MAPK/IκB-α/NF-кB and PKA/eNOS/PKG pathways. KEY FINDINGS: The hypercholesterolemic diet induced the production of pro-inflammatory mediators such as TNF-α, TXB2, VCAM, and worsened vascular function, marked by increased contractile response, decreased maximum relaxation, and elevated systolic and diastolic blood pressure. Cilostazol seems to counteract the deleterious effects promoted by hypercholesterolemic diet, showing important anti-inflammatory and vasculoprotective properties possibly through the inhibition of the PLC-γ/PKC-α/p38-MAPK/IκB-α/NF-кB pathway and activation of the PKA/eNOS/PKG pathway. SIGNIFICANCE: Cilostazol suppressed hypercholesterolemia-induced vascular dysfunction and inflammation. Our data suggest the potential repurposing of cilostazol as a pharmacological treatment for atherosclerosis.

5.
Biometals ; 36(6): 1405-1420, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37651061

RESUMO

Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl2, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl2 damaged the architecture of the vascular endothelium. CdCl2 incubation increased the production and release of O2•-, reduced the participation of potassium (K+) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies. Graphical Abstract. Own source from Canva and Servier Medical Art servers.


Assuntos
Cádmio , Metais Pesados , Ratos , Masculino , Feminino , Animais , Cádmio/metabolismo , Ratos Wistar , Fenilefrina/metabolismo , Fenilefrina/farmacologia , Aorta/metabolismo , Metais Pesados/farmacologia , Estresse Oxidativo
6.
Nutrients ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447275

RESUMO

Background: Sirtuin 1 (SIRT1) has been associated with longevity and protection against cardiometabolic diseases, but little is known about how it influences human vascular function. Therefore, this study evaluated the effects of SIRT1 activation by resveratrol and energy restriction on vascular reactivity in adults. Methods: A randomized trial allocated 48 healthy adults (24 women and 24 men), aged 55 to 65 years, to resveratrol supplementation or energy restriction for 30 days. Blood lipids, glucose, insulin, C-reactive protein, noradrenaline, SIRT1 (circulating and gene expression), and flow-mediated vasodilation (FMD) and nitrate-mediated vasodilation (NMD) were measured. Results: Both interventions increased circulating SIRT1 (p < 0.001). Pre- and post-tests changes of plasma noradrenaline were significant for both groups (resveratrol: p = 0.037; energy restriction: p = 0.008). Baseline circulating SIRT1 was inversely correlated with noradrenaline (r = -0.508; p < 0.01), and post-treatment circulating SIRT1 was correlated with NMD (r = 0.433; p < 0.01). Circulating SIRT1 was a predictor of FMD in men (p = 0.045), but not in women. SIRT1 was an independent predictor of NMD (p = 0.026) only in the energy restriction group. Conclusions: Energy restriction and resveratrol increased circulating SIRT1 and reduced sympathetic activity similarly in healthy adults. SIRT1 was independently associated with NMD only in the energy restriction group.


Assuntos
Sirtuína 1 , Estilbenos , Masculino , Adulto , Humanos , Feminino , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Glucose/metabolismo , Lipídeos , Insulina , Estilbenos/farmacologia
7.
Life Sci ; 327: 121819, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257581

RESUMO

AIMS: This study aimed to evaluate the short- and long-term adverse effects of blood pressure (BP), vascular endothelial function, and estrogen receptor (ERα and ERß) modulation on endothelial function in female Wistar rats treated with topiramate (TPM), an antiepileptic drug, during the peripubertal period. MATERIALS AND METHODS: Female Wistar rats were treated with TPM (41 mg/kg) or water (CTR group) by gavage from postnatal day (PND) 28 to 50 (peripubertal phase). At the end of the treatment, the TPM and CTR rats were divided into two groups and evaluated after 24 h or from PND 85 (adulthood). The rats were evaluated for: thoracic aorta reactivity to phenylephrine (Phenyl), acetylcholine (ACh), and sodium nitroprusside (SNP); aortic ring reactivity after ERα and ERß antagonism; and BP. KEY FINDINGS: It was observed that vascular response to Phenyl, ACh, and SNP was similar between TPM and CTR rats in the short- and long-term evaluations. In addition, the ER antagonism did not interfere with aortic contraction or relaxation in either TPM or CTR. SIGNIFICANCE: Taken together, the results show that TPM treatment during the peripubertal period does not alter aortic endothelial function and its estrogen modulation via classic ER in female Wistar rats, suggesting that TPM treatment in this period is safe for the vascular system.


Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Ratos , Feminino , Animais , Ratos Wistar , Topiramato/farmacologia , Vasoconstrição , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Receptores de Estrogênio , Acetilcolina/farmacologia , Endotélio Vascular
8.
Nitric Oxide ; 134-135: 49-60, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054808

RESUMO

INTRODUCTION: Available studies have shown the involvement of nitric oxide (NO) in the processes that lead to neurodegeneration in Parkinson's disease (PD). Also, the use of inhibitors of the inducible isoform of NO-synthase (iNOS) promotes neuroprotection and attenuates dopamine (DA) loss in experimental models of Parkinsonism. In addition, NO also appears to be involved in cardiovascular changes in 6-hydroxydopamine (6-OHDA)-induced Parkinsonism. The current study aimed to evaluate the effects of iNOS inhibition on cardiovascular and autonomic function in animals that were subjected to Parkinsonism by the administration of 6-OHDA. MATERIALS AND METHODS: The animals underwent stereotaxic surgery for bilateral microinfusion of the neurotoxin 6-OHDA (6 mg/mL in 0.2% ascorbic acid in sterile saline solution) or vehicle solution for the Sham group. From the day of stereotaxis until the day of femoral artery catheterization, the animals were treated with the iNOS inhibitor, S-methylisothiourea (SMT; 10 mg/kg; i. p.) or saline solution (0.9%; i. p.) for 7 days. The animals were divided into four groups: Sham-Saline, Sham-SMT, 6-OHDA-Saline, and 6-OHDA-SMT. Subsequent analyses were performed on these four groups. After 6 days, they underwent catheterization of the femoral artery, and 24 h later, mean arterial pressure (MAP) and heart rate (HR) were recorded. Another group of animals (the 6-OHDA and Sham groups) was assessed for aortic vascular reactivity after 7 days of bilateral infusion of 6-OHDA or vehicle, in which cumulative concentration-effect curves (CCEC) were made for phenylephrine (Phenyl), acetylcholine and sodium nitroprusside (NPS). Also, CCEC in the presence of Nw-nitro-arginine-methyl-ester (l-NAME) (10-5 M), SMT (10-6 M), and indomethacin (10-5 M) blockers were made. RESULTS: The effectiveness of the 6-OHDA lesion was confirmed with the reduction of DA in 6-OHDA animals. However, treatment with SMT could not reverse the loss of DA. Concerning the baseline parameters, SBP and MAP values were lower in 6-OHDA animals compared to their Sham control, with no effect of treatment with SMT. In the analysis of SBP variability, a decrease in variance, the VLFabs component, and the LFabs component were observed in the 6-OHDA groups when compared to their controls, regardless of treatment with SMT. It was also observed that intravenous injections of SMT resulted in an increase in BP and a decrease in HR. However, the response was not different between the Sham and 6-OHDA groups. In vascular function, there was a hyporeactivity to Phenyl in the 6-OHDA group, and when investigating the mechanisms of this hyporeactivity, it was seen that the Rmax to Phenyl increased with incubation with SMT, indicating that iNOS could be involved in the vascular hyporeactivity of animals with Parkinsonism. CONCLUSION: Thus, the set of results presented in this study suggests that part of the cardiovascular dysfunction in animals subjected to 6-OHDA Parkinsonism may be peripheral and involve the participation of endothelial iNOS.


Assuntos
Sistema Cardiovascular , Transtornos Parkinsonianos , Animais , Masculino , Ratos , Dopamina , Inibidores Enzimáticos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Oxidopamina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Fenilefrina , Ratos Wistar , Solução Salina
9.
Microvasc Res ; 147: 104494, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731768

RESUMO

AIMS: Animal models are essential to investigate cardiovascular pathophysiology and pharmacology, but phylogenetic diversity makes it necessary to identify the model with vasculature most similar to that of humans. METHODS AND RESULTS: In this study, we compared the mesenteric arteries of humans, pigs, rabbits and rats in terms of the i) evolutionary changes in the amino acid sequences of α1 and ß2 adrenoceptors; M1, M2, and M3 muscarinic receptors; and bradykinin (BKR) and thromboxane-prostanoid (TP) receptors, through bioinformatics tools; ii) expression of α1, ß2, M1, M3 and TP receptors in each tunica, as assessed by immunofluorescence; and iii) reactivity to receptor-dependent and independent contractile agonists and relaxants, by performing organ bath assays. Phylogenetically, pigs showed the highest degree of evolutionary closeness to humans for all receptors, and with the exception of BKR, rabbits presented the greatest evolutionary difference compared to humans, pigs and rats. The expression of the measured receptors in the three vascular tunica in pigs was most similar to that in humans. Using a one-way ANOVA to determine the differences in vascular reactivity, we found that the reactivity of pigs was the most similar to that of humans in terms of sensitivity (pD2) and maximum effect of vascular reactivity (Emax) to KCl, phenylephrine, isoproterenol and carbachol. CONCLUSIONS: The pig is a better vascular model than the rabbit or rat to extrapolate results to human mesenteric arteries. Comparative vascular studies have implications for understanding the evolutionary history of different species. TRANSLATIONAL PERSPECTIVE: The presented findings are useful for identifying an animal model with a vasculature that is similar to that of humans. This information is important to extrapolate, with greater precision, the findings in arterial pathophysiology or pharmacology from animal models to the healthy or diseased human being.


Assuntos
Artérias Mesentéricas , Contração Muscular , Humanos , Ratos , Coelhos , Animais , Suínos , Filogenia , Fenilefrina/farmacologia , Receptores Muscarínicos/metabolismo , Prostaglandinas/metabolismo
10.
Life Sci ; 318: 121473, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746355

RESUMO

AIMS: This study investigated the influence of exposure to stress during adolescence in autonomic, cardiovascular, neuroendocrine and somatic changes evoked by chronic stress in adult rats. MAIN METHODS: Animals were subjected to a 10-days protocol of repeated restraint stress (RRS, habituating) or chronic variable stress (CVS, non-habituating) during adolescence, adulthood, or repeated exposure to either RRS or CVS in adolescence and adulthood (adolescence+adulthood group). The trials to measure autonomic, cardiovascular, neuroendocrine and somatic changes in all experimental groups were performed in adulthood. KEY FINDINGS: CVS increased basal circulating corticosterone levels and caused adrenal hypertrophy in the adolescence+adulthood group, an effect not identified in animals subjected to this stressor only in adulthood or adolescence. CVS also caused a sympathetically-mediated resting tachycardia in the adulthood group. This effect of CVS was not identified in the adolescence+adulthood group once the increased cardiac sympathetic activity was buffered by a decrease in intrinsic heart rate in these animals. Moreover, the impairment in baroreflex function observed in the adulthood group subjected to CVS was shifted to an improvement in animals subjected to repeated exposure to this stressor during adolescence and adulthood. The RRS in the adolescence+adulthood group caused a sympathetically-mediated resting tachycardia, which was not observed in the adulthood group. SIGNIFICANCE: Our findings suggest that enduring effects of adverse events during adolescence included a vulnerability to neuroendocrine changes and a resilience to autonomic and cardiovascular dysfunctions caused by the CVS. Furthermore, results of RRS indicated a vulnerability to cardiovascular and autonomic changes evoked by homotypic stressors.


Assuntos
Sistema Cardiovascular , Ratos , Animais , Corticosterona , Frequência Cardíaca/fisiologia , Taquicardia , Barorreflexo/fisiologia , Estresse Psicológico , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal
11.
Life Sci ; 316: 121416, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690245

RESUMO

AIMS: Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown. AIM: To investigate the role of miRNA-22 on vascular reactivity and its impact on obesity-induced PVAT dysfunction. MAIN METHODS: Wild-type and miRNA-22 knockout (KO) mice were fed a control or a high-fat (HF) diet. To characterize the vascular response, concentration-responses curves to noradrenaline were performed in PVAT- or PVAT+ thoracic aortic rings in absence and presence of L-NAME. Expression of adipogenic and thermogenic markers and NOS isoforms were evaluated by western blotting or qPCR. KEY FINDINGS: HF diet and miRNA-22 deletion reduced noradrenaline-induced contraction in PVAT- aortic rings. Additionally, miRNA-22 deletion increased noradrenaline-induced contraction in PVAT+ aortic rings without affecting its sensitivity; however, this effect was not observed in miRNA-22 KO mice fed a HF diet. Interestingly, miRNA-22 deletion reduced the contraction of aortic rings to noradrenaline via a NOS-dependent mechanism. Moreover, HF diet abolished the NOS-mediated anticontractile effect of PVAT, which was attenuated by miRNA-22 deletion. Mechanistically, we found that PVAT from miRNA-22 KO mice fed a HF diet presented increased protein expression of nNOS. SIGNIFICANCE: These results suggest that miRNA-22 is important for aorta reactivity under physiological circumstances and its deletion attenuates the loss of the NOS-mediated anticontractile effect of PVAT in obesity.


Assuntos
Tecido Adiposo , Aorta , MicroRNAs , Obesidade , Animais , Camundongos , Tecido Adiposo/metabolismo , Aorta/metabolismo , MicroRNAs/metabolismo , Norepinefrina/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Vasoconstrição
12.
Microvasc Res ; 147: 104492, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36709859

RESUMO

Cancer is a public health problem, and it needs blood vessels to grow. Knowing more about the processes of vascular adaptation to cancer improves our chances of attacking it, since the tumor for its extension needs such adaptation to satisfy its progressive demand for nutrients. The main objective of this review is to present the reader with some fundamental molecular pathways for vascular adaptation to cancer, highlighting within them the regulatory role of homologous tensin and phosphatase protein (PTEN). Hence the review describes vascular adaptation to cancer through somewhat known processes, such as angiogenesis, but emphasizes others that are much less explored, namely the changes in vascular reactivity and remodeling of the vascular wall -intima-media thickness and adjustments in the extracellular matrix- The role of PTEN in physiological and pathological vascular mechanisms in different types of cancer is deepened, as a crucial mediator in vascular adaptation to cancer, and points pending further exploration in cancer vascularization are suggested.


Assuntos
Espessura Intima-Media Carotídea , Neoplasias , Humanos , Neovascularização Patológica , PTEN Fosfo-Hidrolase/metabolismo
13.
Reprod Toxicol ; 115: 94-101, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543306

RESUMO

This study analyzed how glyphosate exposure in the gestational period affects vascular function in their offspring, focusing on the influence of age and whether oxidative stress is involved in this effect. To this, pregnant Wistar rats were exposed through drinking water to 0.2% of a glyphosate commercial formulation, and we analyzed the response to acetylcholine and phenylephrine in the aorta from offspring of glyphosate herbicide-based (O-GHB) and controls (O-CON) rats at 3, 6, and 12 months of age. O-GHB groups showed no changes in arterial blood pressure or aorta histological analysis. Relaxation to acetylcholine was reduced in O-GHB than O-CON. Acute TEMPOL increased relaxation to acetylcholine in O-GHB at 6 and 12 months of age. The aorta from O-GHB was hyperactive to phenylephrine only at 6 months of age. Preincubation with N-nitro-L-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in O-CON than O-GHB. TEMPOL similarly reduced phenylephrine response. This effect was prevented by L-NAME. Results reinforce the concept that oxidative stress during the perinatal period contributes to the development of vascular changes in adulthood. Results also reveal that although no changes in cardiac or histological parameters have been demonstrated, the current levels considered safe for exposure to glyphosate deserve further investigation, especially during pregnancy.


Assuntos
Herbicidas , Hipertensão , Oxibato de Sódio , Gravidez , Humanos , Feminino , Ratos , Animais , NG-Nitroarginina Metil Éster/farmacologia , Ratos Wistar , Acetilcolina/farmacologia , Herbicidas/toxicidade , Exposição Materna/efeitos adversos , Oxibato de Sódio/farmacologia , Fenilefrina/toxicidade , Endotélio Vascular , Pressão Sanguínea , Glifosato
14.
J Mol Endocrinol ; 70(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476761

RESUMO

The role of androgens in vascular reactivity is controversial, particularly regarding their age-related actions. The objective of this study was to conduct a temporal evaluation of the vascular reactivity of resistance arteries of young male rats, as well as to understand how male sex hormones can influence the vascular function of these animals. Endothelium-mediated relaxation was characterized in third-order mesenteric arteries of 10-, 12-, 16-, and 18w (week-old) male rats. Concentration-response curves to acetylcholine (ACh, 0.1 nmol/L-10 µmol/L) were constructed in arteries previously contracted with phenylephrine (PE, 3 µmol/L), before and after the use of nitric oxide synthase or cyclooxygenase inhibitors. PE concentration-response curves (1 nmol/L-100 µmol/L) were also built. The levels of vascular nitric oxide, superoxide anion, and hydrogen peroxide were assessed and histomorphometry analysis was performed. The 18w group had impaired endothelium-dependent relaxation. All groups showed prostanoid-independent and nitric oxide-dependent vasodilatory response, although this dependence seems to be smaller in the 18w group. The 18w group had the lowest nitric oxide and hydrogen peroxide production, in addition to the highest superoxide anion levels. Besides functional impairment, 18w animals showed morphological differences in third-order mesenteric arteries compared with the other groups. Our data show that time-dependent exposure to male sex hormones appears to play an important role in the development of vascular changes that can lead to impaired vascular reactivity in mesenteric arteries, which could be related to the onset of age-related cardiovascular changes in males.


Assuntos
Óxido Nítrico , Superóxidos , Masculino , Ratos , Animais , Peróxido de Hidrogênio , Artérias , Hormônios Esteroides Gonadais
15.
Kinesiologia ; 41(4): 327-340, 20221215.
Artigo em Espanhol, Inglês | LILACS-Express | LILACS | ID: biblio-1552421

RESUMO

Introducción. La hipertensión arterial pulmonar (HAP) es una enfermedad que presenta un elevado índice de mortalidad en la población pediátrica. Para su diagnóstico, el gold standard es la prueba de reactividad vascular pulmonar (PRVP), debido a que permite medir la respuesta vasodilatadora del lecho vascular pulmonar frente a la administración de moléculas con acción terapéutica, como el óxido nítrico inhalado (iNO). Esta prueba al ser positiva se asocia a un mejor pronóstico. En la actualidad existe incertidumbre y falta de consenso sobre la indicación y administración de iNO durante la PRVP. Objetivo. Describir el uso reportado en la literatura sobre iNO en PRVP en sujetos pediátricos con HAP. Métodos. Revisión sistemática exploratoria sensible en bases de datos PubMed, Epistemonikos, Cochrane, Scopus, Lilacs y Scielo, que describen el uso de iNO durante la PRVP en sujetos pediátricos con HAP. Resultados. se identificaron 8.906 artículos, de los cuales se seleccionaron 5 para la revisión cualitativa. La PRVP se realizó durante el cateterismo cardiaco derecho (CCD) en sujetosentre 2 semanas y 18 años de edad. Los diagnósticos fueron HAP primaria, idiopática y asociada a patología cardiaca congénita, cardiomiopatía y enfermedad pulmonar. Esta prueba fue realizada en sujetos sólo con soporte de oxígeno o con sedación profunda en ventilación mecánica invasiva, con dosis variables de oxígeno (21 y 100%) e iNO (3 y 80 ppm), o asociado a otras moléculas como iloprostol®, dilitiazem, sildenafil y/o epoprostenol. La administración de iNO disminuyó presión de arteria pulmonar y la resistencia vascular pulmonar, con mantención de presión arterial sistémica y gasto cardiaco y sin complicaciones asociadas a su uso. Conclusiones. Existen escasos estudios sobre iNO en PRVP pediátrica y con calidad metodológica limitada. El iNO se utiliza como método diagnóstico de vaso reactividad en sujetos pediátricos con HAP asociada a cardiopatía congénita, primaria o secundaria. Los protocolos para su uso son variables con dosis entre 20 y 40 ppm, con o sin uso de oxigeno adicional, con tiempos poco precisos y sin consenso en equipos de administración.


Background. Pulmonary arterial hypertension (PAH) is a disease that has a high mortality rate among the pediatric population. For its diagnosis, the pulmonary vascular reactivity test (PVRT) is considered the "Gold Standard", because it allows to measure the vasodilator response of pulmonary vascular circulation with the administration of molecules with therapeutic action, such as inhaled nitric oxide (iNO). This test, when positive, is associated with a better prognosis of the disease. Currently, there's uncertainty and lack of consensus on the indication and administration of iNO during the PVRT. Objetives. to describe use of iNO in PVRT in pediatric users with PAH reported in the literature. Methods. Scoping review of studies published between 1992 and 2021 in PubMed, Epistemonikos, Cochrane, Scopus, Lilacs and Scielo databases, which describe the use of iNO during PVRT in pediatric users with PAH, in English and Spanish. Primary and secondary studies with a sensitive search strategy were considered. Results. 8,906 articles were identified, 40 were selected by title, 8 by full text, and 5 for final qualitative review. Of the total of articles selected, 3 were primary and 2 secondary studies. PVRT was performed during right heart catheterization (RHC) in a population between 2 weeks and 18 years old. Diagnoses were primary PAH, idiopathic PAH and PAH associated with congenital heart disease, cardiomyopathy and pulmonary disease. This test was carried out in subjects on spontaneous ventilation with oxygen support or with deep sedation in invasive mechanical ventilation, with variable oxygen doses between 21 and 100%, with exclusive use of iNO between 3 and 80 ppm, being more used between 20 and 40 ppm, or associated with other molecules such as iloprostol®, dilithiazim, sildenafil and / or epoprostenol. In all selected studies, administration of iNO decreased PAP (pulmonary artery pressure) and PVR (pulmonary vascular resistance), with maintenance of SBP (systemic arterial blood pressure) and cardiac output. The primary studies were made up of pre and post-test of serial or parallel interventions. The selected studies of iNO in PVRT did not report complications associated with its use. Conclusions. studies on iNO in pediatric PVRT are scarce in number of publications and methodological quality. iNO is used as a diagnostic method of vasoreactivity in pediatric users with PAH associated with congenital, primary, or secondary heart disease. The protocols for its use are variable with recommended doses between 20 and 40 ppm, with or without the use of additional O2, with imprecise times and without consensus in administration equipment. The response to PVRT serves as a guide for the treatment and prognosis of pediatric users with PAH.

16.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36355483

RESUMO

Vascular endothelium is a protective layer of cells lining the lumen of blood vessels that plays important roles by releasing factors responsible for controlling the vascular tone, regulating the expression of pro-inflammatory cytokines, and expressing adhesion molecules involved in vascular hemostasis. Imbalance of vascular properties leads to endothelial dysfunction (ED) and cardiovascular damage. Some diseases, such as sickle cell anemia, are characterized by ED with reduction in the levels of nitric oxide (NO). Previously, we have shown that the fetal hemoglobin inducer agent 3-(1,3-dioxoisoindolin-2-yl) benzyl nitrate (Lapdesf-4c) could act as NO donor, inhibiting platelet aggregation and reducing the inflammation associated with SCA. However, the vascular effect of this compound was not yet studied. Herein, we evaluated the effects of Lapdesf-4c in vascular reactivity experiments using aortic rings from male Wistar rats (300 g/90 days). We have found that Lapdesf-4c induced vasodilation in the presence (E+) or absence of endothelium (E-) with an average of EMax values of 101.8 ± 3.33% and 111.8 ± 3.21%. The mechanism of action was studied using 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), L-NG-nitroarginine methyl ester (L-NAME), and hydroxocobalamin. The EMax values for those pathways were hydroxocobalamin (30.6 ± 2.21%), ODQ (4.75 ± 0.51%), and L-NAME (109 ± 3.65), suggesting that Lapdesf-4c exhibits NO-dependent mechanisms. Lapdesf-4c was able to prevent angiotensin-induced ED after incubation of aorta rings for 1 h. We found based on the concentration-effect curve using acetylcholine (ACh) that pEC50 values for the control, Ang II, and combination of (Ang II + Lapdesf-4c) were 6.73, 6.46, and 7.15, respectively. In conclusion, Lapdesf-4c has emerged as a new drug candidate that can promote vasodilation and act as a protective agent against ED, being useful to prevent vascular damage.

17.
Toxicon ; 218: 57-65, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36113683

RESUMO

Rhinella marina toad is abundant in Brazil. Its poison contains cardiac glycosides called bufadienolides, which are extensively investigated for their bioactivity. Our aim was to characterize the vasoactivity of Rhinella marina poison (RmP) on the aorta of male Wistar rats. For this, the RmP was first collected and processed to obtain an alcoholic extract. To determine cardiovascular effects of RmP, we performed in vivo tests by administering RmP intravenously in doses of 0.1-0.8 mg/kg. Vascular reactivity was also performed through concentration-response curves to RmP (10 ng/mL to 200 µg/mL) in aortic segments with and without endothelium. RmP induced a concentration-dependent contraction in rat aorta which was partly endothelium-mediated. Nitric oxide contributes with this response in view that incubation with L-NAME increased the contractile response. Additionally, treatment with indomethacin [cyclooxygenase, (COX) inhibitor], nifedipine (L-type voltage-gated calcium channels blocker), and BQ-123 (ETA receptors antagonist) decreased maximum response, and ketanserin (5-HT2 receptors antagonist) decreased pEC50, suggesting active participation of these pathways in the contractile response. On the other hand, apocynin (NADPH oxidase inhibitor) did not alter contractility. Incubation with prazosin (α1-adrenergic receptor antagonist) abolished the contractile response, suggesting that the RmP-induced contraction is dependent on the adrenergic pathway. In the Na+/K+ ATPase protocol, a higher Emax was observed in the RmP experimental group, suggesting that RmP potentiated Na+/K+ATPase hyperpolarizing response. When this extract was injected (i.v.) in vivo, increase in blood pressure and decrease in heart rate were observed. The results were immediate and transitory, and occurred in a dose-dependent manner. Overall, these data suggest that the poison extract of R. marina toad has an important vasoconstrictor action and subsequent vasopressor effects, and its use can be investigated to some cardiovascular disorders.


Assuntos
Bufanolídeos , Venenos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/farmacologia , Animais , Bufanolídeos/toxicidade , Bufo marinus/metabolismo , Canais de Cálcio , Endotélio Vascular , Hemodinâmica , Indometacina/farmacologia , Ketanserina/farmacologia , Masculino , Metanol/farmacologia , NADPH Oxidases , NG-Nitroarginina Metil Éster , Nifedipino/farmacologia , Óxido Nítrico/metabolismo , Prazosina/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Wistar , Serotonina/farmacologia , Vasoconstritores
18.
Mini Rev Med Chem ; 22(18): 2383-2405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507746

RESUMO

Adrenoceptors are the receptors for catecholamines, adrenaline, and noradrenaline. They are divided in α (α1 and α2) and ß (ß1, ß2 and ß3). α1-adrenoceptors are subdivided in α1A, α1B and α1D. Most tissues express mixtures of α1-adrenoceptors subtypes, which appear to coexist in different densities and ratios, and in most cases, their responses are probably due to the activation of more than one type. The three subtypes of α1-adrenoceptors are G-protein-coupled receptors (GPCR), specifically coupled to Gq/11. Additionally, the activation of these receptors may activate other signaling pathways or different components of these pathways, which leads to a great variety of possible cellular effects. The first clinically used α1 antagonist was Prazosin for Systemic Arterial Hypertension (SAH). It was followed by its congeners, Terazosin and Doxazosin. Nowadays, there are many classes of α-adrenergic antagonists with different selectivity profiles. In addition to SAH, the α1-adrenoceptors are used to treat Benign Prostatic Hyperplasia (BPH) and urolithiasis. This antagonism may be part of the mechanism of action of tricyclic antidepressants. Moreover, the activation of these receptors may lead to adverse effects such as orthostatic hypotension, similar to what happens with antidepressants and with some antipsychotics. Structure-activity relationships can explain, in part, how antagonists work and how selective they can be for each one of the subtypes. However, it is necessary to develop new molecules which antagonize the α1- adrenoceptors or make chemical modifications in these molecules to improve the selectivity and pharmacokinetic profile and/or reduce the adverse effects of known drugs.


Assuntos
Antipsicóticos , Doxazossina , Antagonistas Adrenérgicos alfa/farmacologia , Antidepressivos Tricíclicos , Epinefrina , Norepinefrina , Prazosina/metabolismo , Receptores Adrenérgicos alfa 1/análise , Receptores Adrenérgicos alfa 1/metabolismo
19.
Eur J Pharmacol ; 925: 174997, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513014

RESUMO

Insulin vasorelaxant effect in metabolic syndrome has been shown on precontracted vessels. However, the insulin effects on basal vascular tone and its interrelationship with nitric oxide (NO) and K-channels are unknown. To test the effect of insulin on the basal vascular tone in isolated aortic rings from the cafeteria diet-induced hypertensive rats and to determine the role of NO and K-channels on this insulin effect. Male Wistar rats were randomized into two groups: one group fed with a cafeteria diet (CafR) and another fed with a standard chow diet (control rats: CR). Then, in isolated aortic rings, the insulin effect on the basal tone and the role of K-channels were evaluated. Also, the endothelial function, NO levels, and resting membrane potential were measured. CafR increased blood pressure (138 ± 6.2 mmHg; n = 9 vs. CR: 109 ± 1.4 mmHg; n = 9; p < 0.001) and vascular basal tone. Insulin 400 mU/ml reduced basal tone in aortic rings (-284 ± 47 mg; n = 9). This effect was unaffected by endothelium removal or NG-nitro-l-arginine methyl ester (L-NAME) treatment. Likewise, CafR showed low NO levels and a hyperpolarized resting membrane potential. Insulin decreased the resting membrane potential and the KCa and Kv channels blockers abolished this effect. In CafR, endothelial dysfunction is accompanied by an increased basal tone. Insulin reduced it by Kv and KCa channels dependent mechanisms, using an endothelium-independent pathway. These results highlight a novel insulin effect on basal tone of aortic rings from animals with metabolic syndrome and endothelial dysfunction, pathophysiological conditions associated with human hypertension.


Assuntos
Hipertensão , Síndrome Metabólica , Animais , Dieta , Endotélio Vascular , Hipertensão/metabolismo , Insulina/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Vasodilatação
20.
Food Chem X ; 13: 100259, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35498981

RESUMO

Aiming to understand the impact of hardening on the biological potential of bean protein and peptides, we evaluated the antioxidant and vasorelaxant properties of common beans after and before hardening. It was also evaluated the effect of extrusion and autoclaving in the biological potential of hardened beans. In general, hardening caused a reduction from 13.5 to 39.6% on the antioxidant activity of the peptide-rich fractions. On the other hand, hardening did not strongly interfere with the vascular reactivity in thoracic aorta rings, being observed maximal relation varying from 801% to 84.7%. The thermal treatment caused a general increase in the antioxidant and vasorelaxant potential of these fractions, being observed EC50 values ranging from 0.22 mg mL-1 to 0.26 mg mL-1. We can conclude that hardening did not seem to affect definitively the bioactivity of the obtained peptide-rich fractions. Finally, this study allows suggesting practical applications of extrusion as a thermal process in the production of functional food ingredients, and as ready-to-eat products presenting nutraceutical potential. In addition, autoclaving can be used as a pre-treatment of the hardened grains aiming to use them as whole grains with potentialized benefits for human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA