Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(18): e37339, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309770

RESUMO

Monitoring the building blast vibration signal is an efficient way to determine the power of blast vibration hazards. Due to the harsh measurement environment, noise is inevitably introduced into the recorded signals. This research presents a denoising approach based on Improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN) and Composite Multiscale Permutation Entropy (CMPE). First, the noisy blast vibration signal is decomposed into different intrinsic mode functions using ICEEMDAN; then multiple intrinsic mode functions (IMFs) are separated into pure and noisy using CMPE, the noisy IMFs are denoised using wavelet thresholding; finally the blast wave is reconstructed using the pure and denoised mixed IMFs. The proposed approach was compared with four other approaches (CEEMDAN-CMPE, VMD-CMPE, SVMD-CMPE, and WST). The results indicate that the proposed approach has better performance and can be considered as an effective denoising method for building blast vibration signals.

2.
Entropy (Basel) ; 26(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39330056

RESUMO

A mechanical vibration fault diagnosis is a key means of ensuring the safe and stable operation of transformers. To achieve an accurate diagnosis of transformer vibration faults, this paper proposes a novel fault diagnosis method based on time-shift multiscale increment entropy (TSMIE) combined with CatBoost. Firstly, inspired by the concept of a time shift, TSMIE was proposed. TSMIE effectively solves the problem of the information loss caused by the coarse-graining process of traditional multiscale entropy. Secondly, the TSMIE of transformer vibration signals under different operating conditions was extracted as fault features. Finally, the features were sent into the CatBoost model for pattern recognition. Compared with different models, the simulation and experimental results showed that the proposed model had a higher diagnostic accuracy and stability, and this provides a new tool for transformer vibration fault diagnoses.

3.
Pest Manag Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324448

RESUMO

BACKGROUND: Forest ecosystems are under constant threat from wood-boring pests such as the Emerald ash borer (EAB), which remain elusive owing to their hidden life cycles within tree trunks. Early detection is vital to mitigate economic and ecological damage. The main current monitoring method is manual detection which is ineffective at early stages of infestation. This study introduces VibroEABNet, a deep learning-based joint recognition network designed to enhance the detection of EAB boring vibration signals, with a novel approach integrating denoising and recognition modules. RESULTS: The proposed VibroEABNet model demonstrated exceptional performance, achieving an average accuracy of 98.98% across multiple signal-to-noise ratios (SNRs) in test datasets and a remarkable 97.5% accuracy in real forest datasets, surpassing traditional models and other deep learning networks evaluated in this study. These findings were supported by rigorous noise resistance analysis and real dataset evaluation, indicating the model's robustness and reliability in practical applications. Furthermore, the model's efficiency was highlighted by its inference time of 26 ms and a compact model size of 8.43 MB, underscoring its suitability for deployment in resource-limited environments. CONCLUSION: The development of VibroEABNet marks a significant advancement in pest detection methodologies, offering a scalable, accurate and efficient solution for early monitoring of wood-boring pests. The integration of a denoising module within the network structure addresses the challenge of environmental noise, one of the primary limitations in acoustic monitoring of pests. Currently, this research is limited to a specific pest. Future work will focus on the applicability of this network to other wood-boring pests. © 2024 Society of Chemical Industry.

4.
Sensors (Basel) ; 24(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39204817

RESUMO

Changes in operating conditions often cause the distribution of signal features to shift during the bearing fault diagnosis process, which will result in reduced diagnostic accuracy of the model. Therefore, this paper proposes a dual-channel parallel adversarial network (DPAN) based on vision transformer, which extracts features from acoustic and vibration signals through parallel networks and enhances feature robustness through adversarial training during the feature fusion process. In addition, the Wasserstein distance is used to reduce domain differences in the fused features, thereby enhancing the network's generalization ability. Two sets of bearing fault diagnosis experiments were conducted to validate the effectiveness of the proposed method. The experimental results show that the proposed method achieves higher diagnostic accuracy compared to other methods. The diagnostic accuracy of the proposed method can exceed 98%.

5.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894129

RESUMO

The current paper presents helical gearbox defect detection models built from raw vibration signals measured using a triaxial accelerometer. Gear faults, such as localized pitting, localized wear on helical pinion tooth flanks, and low lubricant level, are under observation for three rotating velocities of the actuator and three load levels at the speed reducer output. The emphasis is on the strong connection between the gear faults and the fundamental meshing frequency GMF, its harmonics, and the sidebands found in the vibration spectrum as an effect of the amplitude modulation (AM) and phase modulation (PM). Several sets of features representing powers on selected frequency bands or/and associated peak amplitudes from the vibration spectrum, and also, for comparison, time-domain and frequency-domain statistical feature sets, are proposed as predictors in the defect detection task. The best performing detection model, with a testing accuracy of 99.73%, is based on SVM (Support Vector Machine) with a cubic kernel, and the features used are the band powers associated with six GMF harmonics and two sideband pairs for all three accelerometer axes, regardless of the rotation velocities and the load levels.

6.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894135

RESUMO

To enhance fault detection in slewing bearing vibration signals, an advanced noise-reduction model, HRCSA-VMD-WT, is designed for effective signal noise elimination. This model innovates by refining the Chameleon Swarm Algorithm (CSA) into a more potent Hybrid Reinforcement CSA (HRCSA), incorporating strategies from Chaotic Reverse Learning (CRL), the Whale Optimization Algorithm's (WOA) bubble-net hunting, and the greedy strategy with the Cauchy mutation to diversify the initial population, accelerate convergence, and prevent local optimum entrapment. Furthermore, by optimizing Variate Mode Decomposition (VMD) input parameters with HRCSA, Intrinsic Mode Function (IMF) components are extracted and categorized into noisy and pure signals using cosine similarity. Subsequently, the Wavelet Threshold (WT) denoising targets the noisy IMFs before reconstructing the vibration signal from purified IMFs, achieving significant noise reduction. Comparative experiments demonstrate HRCSA's superiority over Particle Swarm Optimization (PSO), WOA, and Gray Wolf Optimization (GWO) regarding convergence speed and precision. Notably, HRCSA-VMD-WT increases the Signal-to-Noise Ratio (SNR) by a minimum of 74.9% and reduces the Root Mean Square Error (RMSE) by at least 41.2% when compared to both CSA-VMD-WT and Empirical Mode Decomposition with Wavelet Transform (EMD-WT). This study improves fault detection accuracy and efficiency in vibration signals and offers a dependable and effective diagnostic solution for slewing bearing maintenance.

7.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793833

RESUMO

Any bearing faults are a leading cause of motor damage and bring economic losses. Fast and accurate identification of bearing faults is valuable for preventing damaging the whole equipment and continuously running industrial processes without interruption. Vibration signals from a running motor can be utilized to diagnose a bearing health condition. This study proposes a detection method for bearing faults based on two types of neural networks from motor vibration data. The proposed method uses an autoencoder neural network for constructing a new motor vibration feature and a feed-forward neural network for the final detection. The constructed signal feature enhances the prediction performance by focusing more on a fault type that is difficult to detect. We conducted experiments on the CWRU bearing datasets. The experimental study shows that the proposed method improves the performance of the feed-forward neural network and outperforms the other machine learning algorithms.

8.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676087

RESUMO

Rotary machines commonly use rolling element bearings to support rotation of the shafts. Most machine performance imperfections are related to bearing defects. Thus, reliable bearing condition monitoring systems are critically needed in industries to provide early warning of bearing fault so as to prevent machine performance degradation and reduce maintenance costs. The objective of this paper is to develop a smart monitoring system for real-time bearing fault detection and diagnostics. Firstly, a smart sensor-based data acquisition (DAQ) system is developed for wireless vibration signal collection. Secondly, a modified variational mode decomposition (MVMD) technique is proposed for nonstationary signal analysis and bearing fault detection. The proposed MVMD technique has several processing steps: (1) the signal is decomposed into a series of intrinsic mode functions (IMFs); (2) a correlation kurtosis method is suggested to choose the most representative IMFs and construct the analytical signal; (3) envelope spectrum analysis is performed to identify the representative features and to predict bearing fault. The effectiveness of the developed smart sensor DAQ system and the proposed MVMD technique is examined by systematic experimental tests.

9.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610329

RESUMO

Surface roughness prediction is a pivotal aspect of the manufacturing industry, as it directly influences product quality and process optimization. This study introduces a predictive model for surface roughness in the turning of complex-structured workpieces utilizing Gaussian Process Regression (GPR) informed by vibration signals. The model captures parameters from both the time and frequency domains of the turning tool, encompassing the mean, median, standard deviation (STD), and root mean square (RMS) values. The signal is from the time to frequency domain and it is executed using Welch's method complemented by time-frequency domain analysis employing three levels of Daubechies Wavelet Packet Transform (WPT). The selected features are then utilized as inputs for the GPR model to forecast surface roughness. Empirical evidence indicates that the GPR model can accurately predict the surface roughness of turned complex-structured workpieces. This predictive strategy has the potential to improve product quality, streamline manufacturing processes, and minimize waste within the industry.

10.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475233

RESUMO

Among unmanned surface vehicle (USV) components, underwater thrusters are pivotal in their mission execution integrity. Yet, these thrusters directly interact with marine environments, making them perpetually susceptible to malfunctions. To diagnose thruster faults, a non-invasive and cost-effective vibration-based methodology that does not require altering existing systems is employed. However, the vibration data collected within the hull is influenced by propeller-fluid interactions, hull damping, and structural resonant frequencies, resulting in noise and unpredictability. Furthermore, to differentiate faults not only at fixed rotational speeds but also over the entire range of a thruster's rotational speeds, traditional frequency analysis based on the Fourier transform cannot be utilized. Hence, Continuous Wavelet Transform (CWT), known for attributions encapsulating physical characteristics in both time-frequency domain nuances, was applied to address these complications and transform vibration data into a scalogram. CWT results are diagnosed using a Vision Transformer (ViT) classifier known for its global context awareness in image processing. The effectiveness of this diagnosis approach was verified through experiments using a USV designed for field experiments. Seven cases with different fault types and severity were diagnosed and yielded average accuracy of 0.9855 and 0.9908 at different vibration points, respectively.

11.
ACS Appl Mater Interfaces ; 16(6): 7904-7916, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38302102

RESUMO

Noncontact triboelectric sensors (TESs) have the potential to enhance self-powered sensing performance by eliminating the need for physical contact. This study demonstrates a strategy to construct noncontact TES that enables self-powered sensing and vibration signal acquisition with high sensitivity and wide bandwidth. The incorporation of carbon nanotubes into nitrocellulose (CNTs/NC) endows the tribopositive layer with larger inner micro/nanocapacitances, consequently augmenting the charge storage capacity. As a result, the contactless sensing performance of CNTs/NC-based TES (CNTs/NC-TES) was enhanced by 146%. Correspondingly, the related theory and working mechanism of noncontact sensing were demonstrated. Furthermore, the CNTs/NC-TES exhibits optimal distance response sensitivity of 57.10 V mm-1, a wide-bandwidth response from 0.1 to 4000 Hz, and relative humidity (RH) stability. This contactless CNTs/NC-TES has the potential for high sensitivity and wide frequency vibration monitoring in a high-RH environment.

12.
Heliyon ; 10(1): e23420, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187272

RESUMO

The health status of the battery of new energy electric vehicles is related to the quality of vehicle use, so it is of high practical application value to predict the health status of the battery of electric vehicles. In order to predict the health status of lithium battery, this study proposes to optimize the empirical modal decomposition method and obtain the ensemble empirical modal decomposition algorithm, and use this algorithm to collect the vibration signal of the battery, then use wavelet transform to pre-process the collected signal, and finally combine K-mean clustering and particle swarm algorithm to cluster the signal types to complete the prediction of battery State of Health. The experimental results show that the ensemble empirical modal decomposition algorithm proposed in this study can effectively perform signal acquisition for different state types of batteries, and the K-mean clustering-particle swarm algorithm predicts a 63 % decrease in the health state of the battery at 600 cycles, with a prediction error of 2.6 %. Therefore, the algorithm proposed in this study is feasible in predicting the battery health state.

13.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960469

RESUMO

A study on the gearbox (speed reducer) defect detection models built from the raw vibration signal measured by a triaxial accelerometer and based on convolutional neural networks (CNNs) is presented. Gear faults such as localized pitting, localized wear on helical pinion tooth flanks, and lubricant low level are under observation for three rotating velocities of the actuator and three load levels at the reducer output. A deep learning approach, based on 1D-CNN or 2D-CNN, is employed to extract from the vibration image significant signal features that are used further to identify one of the four states (one normal and three defects) of the system, regardless of the selected load level or the speed. The best-performing 1D-CNN-based detection model, with a testing accuracy of 98.91%, was trained on the signals measured on the Y axis along the reducer input shaft direction. The vibration data acquired from the X and Z axes of the accelerometer proved to be less relevant in discriminating the states of the gearbox, the corresponding 1D-CNN-based models achieving 97.15% and 97% testing accuracy. The 2D-CNN-based model, built using the data from all three accelerometer axes, detects the state of the gearbox with an accuracy of 99.63%.

14.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960473

RESUMO

We propose a method based on Synchrosqueezing Transform (SST) for vibration event analysis and identification in Phase Sensitive Optical Time-Domain Reflectometry (Φ-OTDR) systems. SST has high time-frequency resolution and phase information, which can distinguish and enhance different vibration events. We use six tap events with different intensities and six other events as experimental data and test the effect of attenuation. We use Visual Geometry Group (VGG), Vision Transformer (ViT), and Residual Network (ResNet) as deep classifiers for the SST transformed data. The results show that our method outperforms the methods based on Continuous Wavelet Transform (CWT) and Short-Time Fourier Transform (STFT), while ResNet is the best classifier. Our method can achieve high recognition rate under different signal strengths, event types, and attenuation levels, which shows its value for Φ-OTDR system.

15.
Sensors (Basel) ; 23(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005542

RESUMO

In this paper, a quadratic convolution neural network (QCNN) using both audio and vibration signals is utilized for bearing fault diagnosis. Specifically, to make use of multi-modal information for bearing fault diagnosis, the audio and vibration signals are first fused together using a 1 × 1 convolution. Then, a quadratic convolution neural network is applied for the fusion feature extraction. Finally, a decision module is designed for fault classification. The proposed method utilizes the complementary information of audio and vibration signals, and is insensitive to noise. The experimental results show that the accuracy of the proposed method can achieve high accuracies for both single and multiple bearing fault diagnosis in the noisy situations. Moreover, the combination of two-modal data helps improve the performance under all conditions.

16.
Insects ; 14(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887829

RESUMO

The larvae of certain wood-boring beetles typically inhabit the interior of trees and feed on the wood, leaving almost no external traces during the early stages of infestation. Acoustic techniques are commonly employed to detect the vibrations produced by these larvae while they feed on wood, significantly increasing detection efficiency compared to traditional methods. However, this method's accuracy is greatly affected by environmental noise interference. To address the impact of environmental noise, this paper introduces a signal separation system based on a multi-channel attention mechanism. The system utilizes multiple sensors to receive wood-boring vibration signals and employs the attention mechanism to adjust the weights of relevant channels. By utilizing beamforming techniques, the system successfully removes noise from the wood-boring vibration signals and separates the clean wood-boring vibration signals from the noisy ones. The data used in this study were collected from both field and laboratory environments, ensuring the authenticity of the dataset. Experimental results demonstrate that this system can efficiently separate the wood-boring vibration signals from the mixed noisy signals.

17.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837161

RESUMO

In modern power systems or new energy power stations, the medium voltage circuit breakers (MVCBs) are becoming more crucial and the operation reliability of the MVCBs could be greatly improved by online monitoring technology. The purpose of this research is to put forward a fault diagnosis approach based on vibration signal envelope analysis, including offline fault feature training and online fault diagnosis. During offline fault feature training, the envelope of the vibration signal is extracted from the historic operation data of the MVCB, and then the typical fault feature vector M is built by using the wavelet packet-energy spectrum. In the online fault diagnosis process, the fault feature vector T is built based on the extracted envelope of the real-time vibration signal, and the MVCB states are assessed by using the distance between the feature vectors T and M. The proposed method only needs to handle the envelope of the vibration signal, which dramatically reduces the signal bandwidth, and then the cost of the processing hardware and software could be cut down.

18.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571687

RESUMO

The vibration signals from rotating machinery are constantly mixed with other noises during the acquisition process, which has a negative impact on the accuracy of signal feature extraction. For vibration signals from rotating machinery, the conventional linear filtering-based denoising method is ineffective. To address this issue, this paper suggests an enhanced signal denoising method based on maximum overlap discrete wavelet packet transform (MODWPT) and variational mode decomposition (VMD). VMD decomposes the vibration signal of rotating machinery to produce a set of intrinsic mode functions (IMFs). By computing the composite weighted entropy (CWE), the phantom IMF component is then removed. In the end, the sensitive component is obtained by computing the value of the degree of difference (DID) after the high-frequency noise component has been decomposed through MODWPT. The denoised signal reconstructs the signal's intrinsic characteristics as well as the denoised high-frequency IMF component. This technique was used to analyze the simulated and real-world signals of gear faults and it was compared to wavelet threshold denoising (WTD), empirical mode decomposition reconstruction denoising (EMD-RD), and ensemble empirical mode decomposition wavelet threshold denoising (EEMD-WTD). The outcomes demonstrate that this method can accurately extract the signal feature information while filtering out the noise components in the signal.

19.
Sensors (Basel) ; 23(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37631737

RESUMO

To address the problem of mechanical defect identification in a high-voltage circuit breaker (HVCB), this paper studies the circuit breaker vibration signal and proposes a method of feature extraction based on phase-space reconstruction of the vibration substages. To locate mechanical defects in circuit breakers, vibration signals are divided into different substages according to the time sequence of the parts of the circuit breakers. The largest Lyapunov exponent (LLE) of the vibration signals' substages is calculated, and then the substages are reconstructed in high-dimensional phase space. The geometric features of the phase trajectory mean center distance (MCD) and vector diameter offset (VDO) are calculated, and the LLE, MCD, and VDO are selected as the three fault identification features of the vibration substages. The eigenvalue anomaly rate of each substage of the vibration signal under defect state are calculated and analyzed to locate the vibration substage of the mechanical defect. Finally, a fault diagnosis model is constructed by a support vector machine (SVM), and the common mechanical defects of circuit breakers simulated in the laboratory are effectively identified.

20.
Data Brief ; 49: 109414, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520651

RESUMO

Globally, wind turbines play a significant role in generating sustainable and clean energy. Ensuring optimal performance and reliability is crucial to minimize failures and reduce operating and maintenance costs. However, due to their conventional design, identifying faults in wind turbines is challenging. This dataset provides vibration data for faulty wind turbine blades, which covers common vibration excitation mechanisms associated with various faults and operating conditions, including wind speed. The introduced faults in the wind turbine blades include surface erosion, cracked blade, mass imbalance, and twist blade fault. This data article serves as a valuable resource for validating condition monitoring methods in industrial wind turbine applications and facilitates a better understanding of vibration signal characteristics associated with different faults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA