Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Heliyon ; 10(16): e36138, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39229519

RESUMO

Xylotrechus arvicola Olivier 1795 (Coleoptera: Cerambycidae) is an insect pest that affects Vitis vinifera L. 1753 (Vitales: Vitaceae) plants in the main wine-producing regions of Spain. X. arvicola larvae bore into grapevine wood, causing both direct damage (ingestion of vascular tissues) and indirect damages (introduction of wood fungi) to the plant. The aim of research was to evaluate the effective section of wood damaged by larvae and assess its resistance capacity through compression tests and loading and breaking times. Compressive tests (on trunks) and flexural tests (on branches) were performed to evaluate the effective section. Trunk samples exhibited a higher effective section than branches samples, with effective section percentages ranging from 91.49 % to 93.53 % in trunks and decreasing from 84.91 % to 86.95 % in branches. Both loading times (Time 1) and breakage times (Time 2) increased with the effective section of the wood, although these times were lower in damaged wood samples of both trunks and branches. Additionally, significant differences were observed in the interactions between loading time x effective section and breakage time x effective section in dry trunks. This indicates a stronger relationship between the effective section and increased resistance in trunks. The results suggest that, in 'Tempranillo' variety, branches with a lower effective section are more prone to breakage when affected by X. arvicola larvae, whereas trunks, with a greater effective section, maintain better stability. This research should be continued with the evaluation of other vine varieties and different years of X. arvicola attacks, as the current findings are based on a single variety ('Tempranillo') over a period of ten years.

2.
Ecotoxicol Environ Saf ; 284: 116994, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236652

RESUMO

The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions. Pesticide dissipation half-lives ranged from 27 to over 300 days, depending on the physicochemical properties of the pesticides and the soil conditions. In both autoclaved and non-autoclaved soil experiments, over 50 % of hydrophobic pesticides (dimethomorph > isoxaben > simazine = atrazine = carbendazim) dissipated within 200 days at 20°C and 30°C. However, the contribution of biodegradation to the overall dissipation of soluble pesticides (rac-metalaxyl > isoproturon = pyrimethanil > S-metolachlor) increased to over 75 % at 30°C and 40 % water content. This suggests that soluble pesticides became more bioavailable, with degradation activity increasing with higher temperature and soil water content. In contrast, the primary process contributing to the dissipation of hydrophobic pesticides was sequestration to soil. High-throughput amplicon sequencing analysis indicated that water content, temperature, and pesticides had domain-specific effects on the diversity and taxonomic composition of bacterial, fungal, and protistan communities. Soil physicochemical properties had a more significant effect than pesticides on the various microbial domains in the vineyard soil. However, pesticide exposure emerged as a secondary factor explaining the variations in microbial communities, with a more substantial effect on protists compared to bacterial and fungal communities. Overall, our results highlight the variability in the dissipation kinetics and processes of pesticides in a multi-contaminated vineyard soil, as well as their effects on bacterial, fungal, and protistan communities.

3.
Heliyon ; 10(16): e36407, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253168

RESUMO

Glyphosate, an herbicide largely used in various contexts, can have adverse effects on human health. Although it is currently the most applied pesticide worldwide, few studies evaluated the extent of human exposure via biomonitoring. To expand such information, biological monitoring of exposure to glyphosate was conducted. The study has a before-and-after design to demonstrate the immediate impact of short-term interventions. Accordingly, the urine concentrations of glyphosate and its main biodegradation product (amino-methylphosphonic acid- AMPA) were measured before and the day after the single herbicide application in 17 male winegrowers. Urine samples were analyzed by high performance liquid chromatography coupled with a triple quadrupole mass spectrometer equipped with an electrospray ionization source. Glyphosate and AMPA were not detectable in pre-application urine samples (limit of quantification for glyphosate (LOQG) was 0.1 µg/L; limit of quantification for AMPA (LOQAMPA) was 0.5 µg/L). After application, glyphosate urinary levels were above LOQG in all workers. The median, min, and max values were 2.30, 0.51, and 47.2 µg/L, respectively. The same values were found for 50 %, 5 % and 95 % percentiles. After assigning numerical values, such as one half the LOQ, to each of the non-detects, the "z" of Wilcoxon matched-pairs signed-ranks test was -3.62 (p = 0.0003), suggesting the pre-application values being significantly lower than the post-application urinary glyphosate concentration. A similar analysis was not feasible with AMPA urinary levels, which were detectable only in 3 workers, after application. 12 (71 %) workers were significantly exposed to glyphosate, but adherence to the adoption of personal protective equipment was good: 14 (82 %) workers used gloves, 13 (76 %) used overalls and 13 (76 %) facial masks. Our data show that glyphosate can be absorbed by the workers after a single application and confirms the usefulness of biomonitoring in exposed workers. Further studies are needed in larger working populations and with multiple glyphosate applications, as well as to evaluate the correlations of glyphosate urine levels with exposure questionnaire data, in order to assess the actual relevance of risk and protection factors.

4.
Foods ; 13(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39200402

RESUMO

Microbes found in soil can have a significant impact on the taste and quality of wine, also referred to as wine terroir. To date, wine terroir has been thought to be associated with the physical and chemical characteristics of the soil. However, there is a fragmented understanding of the contribution of vineyard soil microbes to wine terroir. Additionally, vineyards can play an important role in carbon sequestration since the promotion of healthy soil and microbial communities directly impacts greenhouse gas emissions in the atmosphere. We review 24 studies that explore the role of soil microbial communities in vineyards and their influence on grapevine health, grape composition, and wine quality. Studies spanning 2015 to 2018 laid a foundation by exploring soil microbial biogeography in vineyards, vineyard management effects, and the reservoir function of soil microbes for grape-associated microbiota. On the other hand, studies spanning 2019 to 2023 appear to have a more specific and targeted approach, delving into the relationships between soil microbes and grape metabolites, the microbial distribution at different soil depths, and microbial influences on wine flavor and composition. Next, we identify research gaps and make recommendations for future work. Specifically, most of the studies utilize targeted sequencing (16S, 26S, ITS), which only reveals community composition. Utilizing high-throughput omics approaches such as shotgun sequencing (to infer function) and transcriptomics (for actual function) is vital to determining the specific mechanisms by which soil microbes influence grape chemistry. Going forward, understanding the long-term effects of vineyard management practices and climate change on soil microbiology, grapevine trunk diseases, and the role of bacteriophages in vineyard soil and wine-making would be a fruitful investigation. Overall, the studies presented shed light on the importance of soil microbiomes and their interactions with grapevines in shaping wine production. However, there are still many aspects of this complex ecosystem that require further exploration and understanding to support sustainable viticulture and enhance wine quality.

5.
Pest Manag Sci ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172057

RESUMO

BACKGROUND: Stilbenoid extracts, such as those originating from grapevine by-products (e.g. canes), are of interest for use as biopesticides in vineyard owing to their antimicrobial activities. However, stilbenoids are unstable in the environment, especially under light. This study aimed to chemically characterize the effect of UV light on stilbenoids present in a grapevine cane extract (CE), and to evaluate the antimicrobial activities against two major grapevine pathogens (Plasmopara viticola and Botrytis cinerea) of grapevine extracts exposed to UV. RESULTS: Treatment with UV (365 nm) on a grapevine CE led to degradation of stilbenoids (up to 71% after 1 h). The stilbenoid stability depended on their chemical structure: only those possessing CC, as trans-resveratrol and trans-ε-viniferin, were affected with first their isomerization and secondly their oxidation/cyclization. As a consequence, UV-exposed extracts (UV-CEs) showed reduced antimicrobial activities against the two pathogens (mycelium and spores). For instance, regarding P. viticola, an UV-CE exposed during 4 h showed an almost total loss of its activity on oomycete development and a 2.4-fold inhibition of zoospore mobility in comparison to CE. For B. cinerea, the inhibition capacity of the same UV-CE was reduced by only 1.1-fold on mycelial development and by 3.2-fold on conidial germination compared to CE. CONCLUSION: UV light triggered modifications on the structure of bioactive stilbenoids, resulting in losses of their antimicrobial activities. Photoprotection of stilbenoids has to be considered in the perspective of using them in vineyards as biopesticides. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
Biol Futur ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066977

RESUMO

Changes resulting from different tillage practices can affect the structure of microbial communities, thereby altering soil ecosystems and their functioning. The aim of this study was to explore and compare the physical, chemical properties and bacterial community composition of soils from different land use types (forest, grassland, vineyard, and arable field) in a small catchment. 16S rRNA gene-based amplicon sequencing was used to reveal the taxonomic diversity of summer and autumn soil samples taken from two different slope positions. The greater the anthropogenic impact was on the type of land use, the greater the change was in soil physical and chemical parameters. All sample types were dominated by the phyla Pseudomonadota, Acidobacteriota, Actinobacteriota, Bacteroidota and Verrucomicrobiota. Differences in the relative abundance of various bacterial taxa reflected the different land use types, the seasonality, and the topography. These diversity changes were consistent with the differences in soil properties.

7.
Biol Futur ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073547

RESUMO

The common grape (Vitis vinifera L.) has been cultivated for thousands of years. Nowadays, it is cultivated using a variety of tillage practices that affect the structure of the soil microbial communities and thus the health of the vine. The aim of this study was to explore and compare the effects of tillage (shallow tillage with bare soil) and no-tillage (perennial grass cover) practices on soil physical and chemical properties and soil bacterial community diversities in a small catchment. Soil samples were taken in July and October 2020 at different slope positions of two vineyards exposed to erosion. The two sampling sites were separated by the agricultural inter-row management type: tilled and no-tilled slopes. The taxonomic diversity of bacterial communities was determined using 16S rRNA gene-based amplicon sequencing method on Illumina MiSeq platform. Based on the examined soil properties, the sampling areas were separated from each other according to the positions of the upper and lower slopes and the sampling times. Both the tilled and no-tilled soil samples were dominated by sequences assigned to phyla Pseudomonadota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Gemmatimonadota. The results showed that tillage had no significant effect compared to the no-tilled samples in the studied area. Water runoff and seasonally changed soil physical and chemical properties affected mainly the bacterial community structures.

8.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890855

RESUMO

The microbial diversity on the carposphere (berry) surface of the grape cultivar Cabernet Sauvignon grown in eight different locations/vineyards of Henan Province was determined by high-throughput sequencing of the bacterial 16S rRNA gene and fungal 18S rRNA gene. The structure of bacterial and fungal communities varied according to the sampling sites, but with some common phyla. Proteobacteria and Ascomycota were dominant/common phyla for bacteria and fungi, respectively. A total of 27 and 20 bacterial and fungal families, respectively, and 39 and 20 bacterial and fungal genera, respectively, with statistically significant differences, were found among different sampling sites. The difference for metabolic pathways of bacteria among the sampling sites existed. In addition, various abundances of enzymes from different sites might indicate that different function patterns exist in microbiota from different sites. The results revealed that locations of grape vineyards might play a significant role in shaping the microbiome, as well as the fact that vineyards can be distinguished based on the abundance of several key bacterial and fungal taxa. Overall, these findings extend our understanding of the similarities and differences in microbial community and their metabolic function on Cabernet Sauvignon grape surfaces from different geographic locations.

9.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731406

RESUMO

The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.


Assuntos
Antocianinas , Quitosana , Fenóis , Vitis , Compostos Orgânicos Voláteis , Vinho , Antocianinas/análise , Quitosana/química , Vinho/análise , Vitis/química , Fenóis/análise , Compostos Orgânicos Voláteis/análise , Itália , Cromatografia Líquida de Alta Pressão
10.
J Econ Entomol ; 117(3): 1152-1163, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38691142

RESUMO

The grape berry moth, Paralobesia viteana (Clemens), is an important pest of cultivated grapes in eastern North America. Damage is caused directly by larval feeding of grape clusters and indirectly by increasing fruit susceptibility to fungal and bacterial pathogens. Despite the impact of grape berry moth on grapes being widely recognized, there is a lack of understanding of the influence that different grape cultivars may have on grape berry moth development, reproduction, and population dynamics. In this study, we constructed age-stage 2-sex life tables for grape berry moth fed on 5 grape cultivars: Concord, Niagara, Riesling, Chambourcin, and Vidal, to examine the effects of diet on insect population development, survival, reproduction, and demographic parameters such as net reproductive rate, intrinsic rate of increase, finite rate of increase, and mean generation time. Our findings reveal that grape cultivar significantly influenced the neonate wandering period, larval developmental time, adult and female longevity, pupal weight, adult preoviposition period, oviposition period, mean generation time, age-stage-specific life expectancy, and reproductive value of P. viteana. However, diet type did not affect grape berry moth total fecundity or other demographic parameters. The highest female reproductive value was observed at 30-40 days of age, indicating that control tactics implemented during this time frame would have the greatest impact on reducing population increase. This study provides critical information on the effects of different grape cultivars on grape berry moth development, reproduction, and demography. These insights could lead to the development of management strategies that improve pest control and reduce economic losses in vineyards.


Assuntos
Larva , Tábuas de Vida , Mariposas , Pupa , Vitis , Animais , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Feminino , Masculino , Pupa/crescimento & desenvolvimento , Longevidade , Dieta , Reprodução , Características de História de Vida
11.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38637314

RESUMO

Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.


Assuntos
Produtos Agrícolas , Malus , Fixação de Nitrogênio , Microbiologia do Solo , Malus/microbiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Citrus/microbiologia , Ecossistema , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Solo/química , Agricultura , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteobactérias/genética , Estações do Ano
12.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621715

RESUMO

AIMS: To compare the species diversity and composition of indigenous yeast communities of hybrid grapes from conventionally and organically cultivated vineyards of an emerging cool-climate wine producing region. METHODS AND RESULTS: Illumina MiSeq sequences from L'Acadie blanc grape musts were processed and filtered to characterize indigenous yeast communities in organic and conventional vineyards of the Annapolis Valley wine region in Nova Scotia, Canada. While cultivation practice was not associated with yeast diversity or species richness, there was a strong effect on yeast community composition, with conventional vineyards characterized by higher proportions of Sporidiobolales and Filobasidium magnum, and organic vineyards supporting Filobasidium species other than F. magnum and higher proportions of Symmetrospora. There was also variation in yeast community composition among individual vineyards, and from year to year. CONCLUSIONS: This is the first comprehensive assessment of yeasts associated with hybrid grapes grown using different cultivation practices in a North American cool climate wine region. Communities were dominated by basidiomycete yeasts and species composition of these yeasts differed significantly between vineyards employing organic and conventional cultivation practices. The role of basidiomycete yeasts in winemaking is not well understood, but some species may influence wine characteristics.


Assuntos
Vitis , Vinho , Leveduras , Vitis/microbiologia , Vinho/microbiologia , Vinho/análise , Leveduras/genética , Leveduras/classificação , Leveduras/isolamento & purificação , Nova Escócia , Fazendas , Agricultura Orgânica
13.
BMC Plant Biol ; 24(1): 258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594637

RESUMO

BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.


Assuntos
Vitis , Vinho , Vitis/metabolismo , Transcriptoma , Antocianinas/metabolismo , Microclima , Fazendas , Frutas , Vinho/análise
14.
Microorganisms ; 12(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38543648

RESUMO

Agricultural management influences the soil ecosystem by affecting its physicochemical properties, residues of pesticides and microbiome. As vineyards grow crops with the highest incidence of pesticides, the aim of this study was to evaluate the impact of conventional and sustainable management systems of vineyards from DOP Ribeiro on the soil's condition. Samples from soils under three different management systems were collected, and the main soil physicochemical properties were evaluated. A selection of 50 pesticides were investigated by liquid chromatography with tandem mass spectrometry. The bacterial and fungal microbiomes were characterized through amplicon sequencing. The results show that organic agriculture positively influences soil pH and the concentration of some nutrients compared to conventional management. Our microbiome analysis demonstrated that transitioning from conventional to organic management significantly improves several BeCrop® indexes related to key microbial metabolism and soil bio-sustainability. Such a transition does not affect soil alpha diversity, but leads to a higher interconnected microbial network structure. Moreover, differential core genera and species for each management system are observed. In addition, the correlation of the microbiome with geographical distance is evidence of the existence of different microbial terroirs within DOP Ribeiro. Indeed, sustainable management leads to higher nutrient availability and enhances soil health in the short term, while lowering pesticide usage.

15.
Front Microbiol ; 15: 1348259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414771

RESUMO

Introduction: Continuous cropping affected the stability of soil enzyme activity and the structural characteristics of microbial community. Owing to challenges in the study of complex rhizosphere microbial communities, the composition and function of these microbial communities in farmland ecosystems remain elusive. Here, we studied the microbial communities of the rhizosphere of wine grapes with different years of continuous cropping and investigated their relationships with soil enzyme activity. Methods: Metagenomic sequencing was conducted on the rhizosphere soils from one uncultivated wasteland and four vineyards with varying durations of continuous cropping. Results: The predominant microbial were bacteria (98.39%), followed by archaea (1.15%) and eukaryotes (0.45%). Continuous cropping caused a significant increase in the relative abundance of Rhizobiales and Micrococcales but a marked decrease in Solirubrobacterales. At the genus level, 75, 88, 65, 132, and 128 microbial genera were unique to uncultivated wasteland, 5, 10, 15, and 20 years of continuous cropping, respectively. The relative abundance of genes with signal transduction function was the highest. The activity of all enzymes measured in this study peaked at 5 years of continuous cropping, and then decreased with 10 to 15 year of continuous cropping, but increased at 20 years again. In addition, soil enzyme activity, especially of alkaline phosphatase was significantly correlated with the diversity of the dominant microorganisms at the genus level. Moreover, the coupled enzyme activities had a greater impact on the diversity of the microbial community than that of individual enzymes. Conclusion: Our findings reveal the composition and function of the soil microbial communities and enzymes activity in response to changes in cropping years, which has important implications for overcoming continuous cropping obstacles and optimizing land use.

16.
Front Plant Sci ; 15: 1334215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405587

RESUMO

Canopy conductance is a crucial factor in modelling plant transpiration and is highly responsive to water stress. The objective of this study is to develop a straightforward method for estimating canopy conductance (gc) in grapevines. To predict gc, this study combines stomatal conductance to water vapor (gsw) measurements from grapevine leaves, scaled to represent the canopy size by the leaf area index (LAI), with atmospheric variables, such as net solar radiation (Rn) and air vapor pressure deficit (VPD). The developed model was then validated by comparing its predictions with gc values calculated using the inverse of the Penman Monteith equation. The proposed model demonstrates its effectiveness in estimating the gc, with the highest root-mean-squared-error (RMSE=1.45x10-4 m.s-1) being lower than the minimum gc measured in the field (gc obs=0.0005 m.s-1). The results of this study reveal the significant influence of both VPD and gsw on grapevine canopy conductance.

17.
Environ Sci Pollut Res Int ; 31(9): 13141-13154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240981

RESUMO

Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.


Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Mutagenicidade
18.
Heliyon ; 10(1): e23852, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192796

RESUMO

The chemo-morphological properties of soils on ancient landforms (quarzitic pliocene alluvial fans, pleistocene terraces), namely "rañizos", on middle-high mountains (Eastern-Central System, Iberian Peninsula, Rio Negro, Cogolludo) were investigated. Several properties were analyzed by standard procedures. A detailed soil diagnostics and classification on "rañizos" were done, unlike those widely studied on "rañas" (similar landform), by identifying parallel pedogenetic processes in both formations. The genetic and geographic features of Alfisols, Ultisols and Inceptisols are closely related to the nature of their parent materials, based on quartzite and quartz conglomerates, sometimes with an arkosic matrix, red shale, polygenic gravels and pebbles. Soil features were determined by genuine soil-forming inherent lithological rock properties. Other driving factors were flat topography and enough soil formation time to allow intense pedogenesis. The main soil-forming processes were intense weathering, clay enrichment horizons with illuviation, red color caused by iron oxide dehydration and signs of pseudogleyzation processes. Such pedological formations can be considered endemisms; that is, "rare" soils and, up to a point, "relict". The soil reaction is acid/slightly acid with low base saturation. Despite lying on mountains, soils are characterized by moderate-low organic matter content. Soil conditions and climate provide good vine production requirements despite acidity levels. A common feature of all Rio Negro soils is the presence of gravel (size up to 3-5 cm), which is evenly distributed on arable layers. The results can be used to assess vineyard soil use in a potential Pago (Protected Denomination of Origin) and to extend the database of vineyard soils from poorly studied Mediterranean continental mountain regions.

19.
J Occup Rehabil ; 34(1): 100-115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37635160

RESUMO

PURPOSE: Agriculture is one of the sectors that are the most concerned by musculoskeletal disorders (MSDs). Workplace physical activity programs are one of the most promising solutions to prevent adverse consequences of MSDs such as pain or impairment in physical capacities. The aims of this study were twofold: (1) to investigate the acute effect of a warm-up session on pain, work performance, physical capacities and psychosocial perceptions among vineyard workers; (2) to determine the most beneficial warm-up modality for vineyard workers. METHODS: A cluster randomized study was implemented among 92 French vineyard workers. A 15 min single session of warm-up was implemented among four groups corresponding to four different conditions: (1) hybrid warm-up intervention (HWU); (2) dynamic warm-up intervention (DWU); (3) stretching warm-up intervention (SWU); (4) no warm-up intervention (CONTROL). RESULTS: DWU showed significant increased performance (p < 0.05), increased heart rate (p < 0.001), better readiness to work (p < 0.05) and lower workload (p < 0.05) than the CONTROL. HWU showed a better readiness to work (p < 0.01). SWU showed better work quality (p < 0.05). However, the three different warm-up protocols did significantly not differ from the CONTROL group in terms of perceived pain intensity, and physical capacities. CONCLUSION: The present findings confirm some beneficial acute effects on performance, heart rate and psychological perceptions of a single warm-up session performed before pruning. The DWU seems to be the most beneficial warm-up modality. TRIAL REGISTRATION: NCT05425693. Registered 06/16/2022 in www. CLINICALTRIALS: gov .


Assuntos
Doenças Musculoesqueléticas , Dor , Humanos , Fazendas , Exercício Físico , Doenças Musculoesqueléticas/prevenção & controle , Local de Trabalho
20.
Sci Total Environ ; 912: 169273, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086475

RESUMO

In this research, aged plastic fragments collected from vineyards were characterized in terms of composition, residues of pesticides, and their potential to exchange these compounds with the aquatic media. To this end, we employed the qualitative and quantitative information provided by complementary analytical techniques, including chromatography, organic and inorganic mass spectrometry, infrared spectroscopy and electronic microscopy. Debris of weathered plastics were identified as polypropylene and polyethylene, containing different types of additives, from organic UV stabilizers to inorganic fillers, such as calcium salts. Regardless of polymer type, plastic litter collected from vineyards contained residues of pesticides, and particularly of fungicides, with total concentrations in the range of values from 114 ng g-1 to 76.4 µg g-1. Data obtained under different extraction conditions suggested that a fraction of these compounds was absorbed in aged polymers, penetrating inside the material. The parallel analysis of plastic litter and vineyard soils reflected higher pesticide residues in the former matrix. Furthermore, several fungicides, considered as labile in vineyard soils (i.e. zoxamide and folpet), were those showing the highest levels in plastic litter. Simulated sorption-desorption studies, with plastic debris in contact with surface water, demonstrated the higher affinity of aged materials by moderately polar pesticides than their new counterparts. For the first time, the manuscript highlights the presence of plastic litter in vineyards soils, reflecting the accumulation of several fungicides in this matrix, in some cases, with a different stability pattern to that observed in the soil from same vineyards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA