Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963412

RESUMO

Introduction. In India, the SARS-CoV-2 Delta wave (2020-2021) faded away with the advent of the Omicron variants (2021-present). Dengue incidences were observed to be less in Southeast Asia during the active years of the pandemic (2020-2021). However, dengue virus type 3 (DV3) cases were increasingly reported in this region (including India) concurrent with the progression of the Omicron waves since 2022.Hypothesis. What could be the reason(s) behind this unusual DV3 surge after an overall dip in dengue incidences in many parts of Southeast Asia?Aim. We, therefore, investigated the current state of cross-reactivity of prevalent (Omicron era) SARS-CoV-2 serums with different DV serotypes and evaluated the impact of such serums on DV neutralization in cell culture.Methodology. Fifty-five COVID-19 serum samples (January-September 2022) and three pre-pandemic archived serum samples from apparently healthy individuals were tested for DV or SARS-CoV-2 IgM/IgG using the lateral flow immunoassays. DV1-4 virus neutralization tests (VNTs) were done with the SARS-CoV-2 antibody (Ab)-positive serums in Huh7 cells. DV3 envelope (env) gene was PCR amplified and sequenced for three archived DV isolates, one from 2017 and two from 2021.Results. SARS-CoV-2 Ab-positive samples constituted 74.5 % of the serums. Of these, 41.5 % were DV cross-reactive and 58.5 % were not. The DV cross-reactive serums neutralized all DV serotypes (DV1-4), as per previous results and this study. The DV non-cross-reactive serums (58.5 %) also cross-neutralized DV1, 2 and 4 but increased DV3 infectivity by means of antibody-dependent enhancement of infection as evident from significantly higher DV3 titres in VNT compared to control serums. The DV3 envelope was identical among the three isolates, including isolate 1 used in VNTs. Our results suggest that DV cross-reactivity of SARS-CoV-2 serums diminished with the shift from Delta to Omicron prevalence. Such COVID-19 serums (DV non-cross-reactive) might have played a major role in causing DV3 surge during the Omicron waves.Conclusion. Patients suspected of dengue or COVID-19 should be subjected to virus/antigen tests and serological tests for both the diseases for definitive diagnosis, prognosis and disease management.


Assuntos
Anticorpos Antivirais , COVID-19 , Reações Cruzadas , Vírus da Dengue , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/sangue , COVID-19/imunologia , Anticorpos Antivirais/sangue , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Vírus da Dengue/classificação , Índia/epidemiologia , Dengue/virologia , Dengue/sangue , Dengue/epidemiologia , Dengue/imunologia , Testes de Neutralização , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue
2.
J Virol Methods ; : 114999, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025132

RESUMO

The Chinese government's reclassification of Classical Swine Fever (CSF) from a class Ⅰ to a class Ⅱ animal infectious disease, now also including CSF under the disease eradication program, reflects the significant progress made through extensive immunization with CSF vaccines. In light of this advancement, there is an imperative need for an expedient and accurate method to assess the levels of immunoprotection against classical swine fever virus (CSFV) in vaccinated pigs, a critical component in the campaign to eradicate the disease. This study develops an indirect enzyme-linked immunosorbent assay (iELISA) based on a highly glycosylated E2 protein stable expressed in CHO-K1 mammalian cells. Statistical analysis revealed strong positive correlations between the iELISA and VNT results (r = 0.9063, p < 0.0001) that were much greater than those between the IDEXX ELISA and VNT results (r = 0.8126, p < 0.0001). Taking the VNT data as the standard, the consistency of the iELISA (κ =0.880) was greater than that of the IDEXX ELISA (κ =0.699). In summary, the iELISA provides a more efficient and precise method for assessing CSFV immunity in pigs. Its reliable detection of immunoprotection levels against CSFV makes it an essential tool for optimizing CSF vaccination strategies. Consequently, its application can significantly support the ongoing efforts to eradicate CSF.

3.
J Med Virol ; 96(6): e29771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932494

RESUMO

COVID-19 tended to be less aggressive in dengue endemic regions. Conversely, dengue cases plummeted in dengue endemic zones during the active years of the pandemic (2020-2021). We and others have demonstrated serological cross-reactivity between these two viruses of different families. We further demonstrated that COVID-19 serum samples that were cross-reactive in dengue virus (DV) serological tests, "cross-neutralized" all DV serotypes in Huh7 cells. Here we showed by co-immunoprecipitation (Co-IP) and atomic force microscopy (AFM) imaging that severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 (SARS-CoV-2) spike (S) protein subunit S1 and S2 monoclonal antibodies can indeed, bind to DV particles. Likewise, DV envelope antibodies (DV E Abs) showed high docking frequency with other human pathogenic beta-CoVs and murine hepatitis virus-1 (MHV-1). SARS-CoV-2 Ab didn't show docking or Co-IP with MHV-1 supporting poor cross-protection among CoVs. DV E Abs showed binding to MHV-1 (AFM, Co-IP, and immunofluorescence) and prepandemic dengue patients' serum samples even "cross-neutralized" MHV-1 plaques in cell culture. Furthermore, dengue serum samples showed marked inhibition potential in a surrogate virus-based competitive enzyme-linked immunosorbent assay, used for determining neutralizing Abs against SARS-CoV-2 S protein receptor-binding domain in COVID-19 serum samples. We therefore, provide multiple evidence as to why CoVs are epidemiologically less prevalent in highly dengue endemic regions globally.


Assuntos
Anticorpos Antivirais , COVID-19 , Reações Cruzadas , Vírus da Dengue , Dengue , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vírus da Dengue/imunologia , Humanos , Dengue/imunologia , Dengue/epidemiologia , Dengue/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Animais , Anticorpos Monoclonais/imunologia , Doenças Endêmicas
4.
Emerg Infect Dis ; 30(7): 1496-1498, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916587

RESUMO

We analyzed West Nile Virus (WNV) exposure from 1,222 blood donors during 2017-2018 from an area of south-central Spain. Results revealed WNV seroprevalence of 0.08% (95% CI 0.004%-0.4%) in this population. Our findings underscore the need for continued surveillance and research to manage WNV infection in this region.


Assuntos
Anticorpos Antivirais , Doadores de Sangue , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Espanha/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/imunologia , Estudos Soroepidemiológicos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Adulto Jovem , Adolescente , Idoso
5.
Biochemistry (Mosc) ; 89(5): 862-871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880647

RESUMO

Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Neutralizantes/imunologia
6.
Vaccines (Basel) ; 12(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932390

RESUMO

T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.

7.
Int J Infect Dis ; 146: 107121, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823622

RESUMO

OBJECTIVES: To investigate multi-dose and timings of COVID-19 vaccines in preventing antenatal infection. DESIGN: Prospective observational study investigating primary vaccinations, boosters, antenatal COVID-19 infections, neutralizing antibody (Nab) durability, and cross-reactivity to Delta and Omicron variants of concern (VOCs). RESULTS: Ninety-eight patients completed primary vaccination prepregnancy (29.6%) and antenatally (63.3%), 24.2% of whom had antenatal COVID-19, while 7.1% were unvaccinated (28.6% had antenatal COVID-19). None had severe COVID-19. Prepregnancy vaccination resulted in vaccination-to-infection delay of 23.3 weeks, which extended to 45.2 weeks with a booster, compared to 16.9 weeks following antenatal vaccination (P < 0.001). Infections occurred at 26.2 weeks gestation in women vaccinated prepregnancy compared to 36.2 weeks gestation in those vaccinated during pregnancy (P < 0.007). The risk of COVID-19 infection was higher without antenatal vaccination (hazard ratio [HR] 14.6, P = 0.05) and after prepregnancy vaccination without a booster (HR 10.4, P = 0.002). Antenatal vaccinations initially led to high Nab levels, with mild waning but subsequent rebound. Significant Nab enhancement occurred with a third-trimester booster. Maternal-neonatal Nab transfer was efficient (transfer ratio >1), and cross-reactivity to VOCs was observed. CONCLUSION: Completing vaccination during any trimester delays COVID-19 infection and maintains effective neutralizing activity throughout pregnancy, with robust cross-reactivity to VOCs and efficient maternal-neonatal transfer.

8.
Front Vet Sci ; 11: 1303424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835894

RESUMO

This study aimed to determine the persistent duration of maternal immunity against lumpy skin disease virus (LSDV) in dairy calves born from vaccinated cows using a virus neutralization test (VNT). The performance of the VNT and an in-house-ELISA test was also determined. Thirty-seven pregnant cows from 12 LSD-free dairy farms in Lamphun province, Thailand were immunized with a homologous Neethling strain-based attenuated vaccine and calved from December 2021 to April 2022. Blood samples from dam-calve pairs were collected within the first week after calving. Subsequently, blood samples were taken from the calves at monthly intervals over a period of 4 months and tested for the humoral immune response using a VNT. The calf sera were also tested with an in-house ELISA test to estimate the accuracy of both tests using a Bayesian approach. For the results, antibodies against LSDV can persist in cows for 4-9 months post-vaccination. Moreover, neutralizing antibodies and LSDV-specific antibodies against LSDV were detected in the majority of calves (75.68%) during the first week after colostrum intake. However, the percentage of seropositive calves declined to zero by day 120, with seropositivity dropping below 50% after day 60. Only a small number of seropositive calves (approximately 13.51%) were observed on day 90. These findings indicated that passive immunity against LSDV can last up to 3 months. The median of posterior estimates for sensitivity (Se) and specificity (Sp) of the VNT were 87.3% [95% posterior probability interval (PPI) = 81.1-92.2%] and 94.5% (95% PPI = 87.7-98.3%), respectively. The estimated Se and Sp for the ELISA test were 83.1% (95% PPI = 73.6-92.6%) and 94.7% (95% PPI = 88.4-98.5%), respectively. In conclusion, this study illustrates the transfer and persistence of maternal passive immunity against LSDV to calves under field conditions. This highlights a potential three-month vaccination gap in calves born from vaccinated cows, while an in-house ELISA test can be used as an ancillary test for LSDV immune response detection. However, further research is required to assess the vaccination protocols for calves as young as 2 months old to precisely determine the duration of maternal immunity.

9.
J Wildl Dis ; 60(3): 647-659, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752344

RESUMO

Wild pigs (Sus scrofa) are among the most detrimental invasive species in the USA. They are damaging to crops and agriculture, pose a public health risk as reservoirs of zoonotic pathogens, and may also spread disease to livestock. One pathogen identified in wild pigs is bovine viral diarrhea virus (BVDV), a virus that causes an economically important disease of cattle (Bos taurus and Bos indicus). We sought to determine the BVDV seroprevalence in wild pigs in 17 states across the US and to determine whether age category, sex, or location were associated with a positive antibody titer. Serum samples from 945 wild pigs were collected from 17 US states. Virus neutralization assays were performed to determine antibody titers against BVDV-1b and BVDV-2a. Total BVDV seroprevalence for the study area was 5.8% (95% confidence interval [CI], 4.11-8.89). Seroprevalence across all evaluated states was determined to be 4.4% (95% CI, 2.48-6.82) for BVDV-1b and 3.6% (95% CI, 1.54-5.60) for BVDV-2a. The seroprevalence for individual states varied from 0% to 16.7%. There was no statistical difference in median antibody titer for BVDV-1b or BVDV-2a by sex or age category. State seroprevalences for both BVDV-1b and BVDV-2a were associated with wild pig population estimates for those states.


Assuntos
Vírus da Diarreia Viral Bovina , Infecções por Pestivirus , Sus scrofa , Doenças dos Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Vírus da Diarreia Viral Bovina/fisiologia , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Animais Selvagens/virologia , Estudos Soroepidemiológicos , Densidade Demográfica , Anticorpos Antivirais/sangue , Masculino , Feminino , Animais , Vírus da Diarreia Viral Bovina Tipo 1/fisiologia , Vírus da Diarreia Viral Bovina Tipo 2/fisiologia , Estados Unidos/epidemiologia
10.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793727

RESUMO

Outbreaks caused by foot-and-mouth disease (FMD) A/ASIA/G-VII lineage viruses have often occurred in Middle Eastern and Southeast Asian countries since 2015. Because A/ASIA/G-VII lineage viruses are reported to have distinct antigenic relatedness with available commercial FMD vaccine strains, it is necessary to investigate whether inoculation with vaccines used in Korea could confer cross-protection against A/ASIA/G-VII lineage viruses. In the present study, we conducted two vaccination challenge trials to evaluate the efficacy of three commercial FMD vaccines (O/Manisa + O/3039 + A/Iraq, O/Campos + A/Cruzeiro + A/2001, and O/Primorsky + A/Zabaikalsky) against heterologous challenge with ASIA/G-VII lineage viruses (A/TUR/13/2017 or A/BHU/3/2017 strains) in pigs. In each trial, clinical signs, viremia, and salivary shedding of virus were measured for 7 days after challenge. In summary, the O/Campos + A/Cruzeiro + A/2001 vaccine provided full protection against two A/ASIA/G-VII lineage viruses in vaccinated pigs, where significant protection was observed. Although unprotected animals were observed in groups vaccinated with O/Manisa + O/3039 + A/Iraq or O/Primorsky + A/Zabaikalsky vaccines, the clinical scores and viral RNA levels in the sera and oral swabs of vaccinated animals were significantly lower than those of unvaccinated controls.

11.
Vox Sang ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740559

RESUMO

BACKGROUND AND OBJECTIVES: Initial therapeutic efforts to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) included the use of plasma from convalescent donors containing anti-SARS-CoV-2 antibodies. High-neutralizing antibody titres are required for therapeutic efficacy. This study aims to show that immunoadsorption followed by tangential flow filtration can be used to obtain antibody concentrates with high-neutralizing capacities. MATERIALS AND METHODS: Eligible donors (n = 10, five males and three females) underwent immunoadsorption using adsorber columns specific for human antibodies. Glycine-washed out eluates of 1.5 L volume were further concentrated by tangential flow filtration using 30 kDa ultrafiltration membranes. The same membranes were applied for diafiltrations to exchange residual glycine for 0.9% normal saline. RESULTS: Antibody concentrates were obtained within 8 h from the start of donation and had 4.58 ± 1.95, 3.28 ± 1.28 and 2.02 ± 0.92 times higher total IgG, IgA and IgM concentrations, 3.29 ± 1.62 and 3.74 ± 0.6 times higher SARS-CoV-2 N and S antibody concentrations and 3.85 ± 1.71 times higher SARS-CoV-2 S-specific IgG concentrations compared to the donors' peripheral blood. The specific SARS-CoV-2 virus neutralization capacities increased in all but one concentrate. All antibody concentrates (50-70 mL final volume) passed microbiological tests, were free of hazardous glycine levels and could be stored at -80°C and 4°C for 1 year with 20 ± 3% antibody loss. CONCLUSION: Immunoadsorption followed by tangential flow filtration is a feasible procedure to collect IgG, IgA and IgM as well as SARS-CoV-2 N- and S-specific antibody concentrates of low volume, free of albumin and coagulation factors. Whether these concentrates can be used as passive immunisation in infected patients remains to be elucidated.

12.
Animals (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731260

RESUMO

This study aims to determine the serological profile of high-yielding dairy cows for four main viruses (bovine alphaherpesvirus 1 (BoAHV1), bovine viral diarrhea virus (BVDV), bovine parainfluenza virus 3 (BPIV3), and bovine respiratory syncytial virus (BRSV)) related to bovine respiratory disease (BRD) in cattle herds worldwide. In this survey, 497 blood serum samples were collected from non-vaccinated dairy cows without clinical respiratory signs in 39 herds in the central-eastern mesoregion of Paraná State, South Brazil. The presence of neutralizing antibodies was determined by virus neutralization (VN) tests. VN antibodies against BoAHV1, BVDV, BPIV3, and BRSV were detected in 355 (71.4%), 280 (56.3%), 481 (96.8%), and 315 (63.4%) serum samples, respectively. The frequencies of seropositive herds for BoAHV1, BVDV, BPIV3, and BRSV were 79.5 (n = 31), 82.0 (n = 32), 100 (n = 39), and 84.6% (n = 33), respectively. The frequencies of seropositive cows varied according to the type of herd management and the number of cows in the herd. The detection of VN antibodies in unvaccinated dairy cattle herds demonstrated the endemic circulation of the four viruses in the herds evaluated. For BRD prevention, it is recommended to implement a vaccination program for cows that provides passive immunity in calves and active immunity in cows.

13.
Front Immunol ; 15: 1349749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629077

RESUMO

Background: Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections (LRTIs) in young children around the world and an important cause of LRTI in the elderly. The available treatments and FDA-approved vaccines for RSV only lessen the severity of the infection and are recommended for infants and elderly people. Methods: We focused on developing a broad-spectrum vaccine that activates the immune system to directly combat RSV. The objective of this study is to identify CD4+ and CD8+ T-cell epitopes using an immunoinformatics approach to develop RSV vaccines. The efficacy of these peptides was validated through in-vitro and in-vivo studies involving healthy and diseased animal models. Results: For each major histocompatibility complex (MHC) class-I and II, we found three epitopes of RSV proteins including F, G, and SH with an antigenic score of >0.5 and a projected SVM score of <5. Experimental validation of these peptides on female BALB/c mice was conducted before and after infection with the RSV A2 line 19f. We found that the 3RVMHCI (CD8+) epitope of the F protein showed significant results of white blood cells (19.72 × 103 cells/µl), neutrophils (6.01 × 103 cells/µl), lymphocytes (12.98 × 103 cells/µl), IgG antibodies (36.9 µg/ml), IFN-γ (86.96 ng/L), and granzyme B (691.35 pg/ml) compared to control at the second booster dose of 10 µg. Similarly, 4RVMHCII (CD4+) of the F protein substantially induced white blood cells (27.08 × 103 cells/µl), neutrophils (6.58 × 103 cells/µl), lymphocytes (16.64 × 103 cells/µl), IgG antibodies (46.13 µg/ml), IFN-γ (96.45 ng/L), and granzyme B (675.09 pg/ml). In-vitro studies showed that 4RVMHCII produced a significant level of antibodies in sera on day 45 comparable to mice infected with the virus. 4RVMHCII also induced high IFN-γ and IL-2 secretions on the fourth day of the challenge compared to the preinfectional stage. Conclusion: In conclusion, epitopes of the F protein showed considerable immune response and are suitable for further validation.


Assuntos
Epitopos de Linfócito T , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Camundongos , Anticorpos Antivirais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/metabolismo , Granzimas , Imunoglobulina G , Peptídeos , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/metabolismo
14.
J Infect Dis ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592952

RESUMO

The association between granulomas and vaccine-derived rubella virus (VDRV) in people with primary immune deficiencies (PID) has raised concerns about the ability of immunoglobulin (IG) preparations to neutralize VDRVs. We investigated the capacity of IG to neutralize rubella vaccine virus and four VDRV strains. As expected, the rubella vaccine virus itself was potently neutralized by IG preparations; however, the VDRV isolates from patients after intra-host evolution, 2-6 times less so. Diagnosis of immune deficiencies before possible live-virus vaccination is thus of critical importance, while IG replacement therapy can be expected to provide protection from rubella virus infection.


The occurrence of granulomas associated with vaccine derived rubella viruses (VDRV) in people with primary immune deficiencies (PID) challenges immunoglobulin (IG) preparations regarding their rubella neutralizing ability. This study confirmed potent rubella virus neutralization capacity of IG preparations and thus suggests protection of IG-treated PID patients against rubella. The study also highlights the importance of early diagnosis and timely given IG to prevent possible systemic spread of VDRV persisting locally in granulomas.

15.
Microorganisms ; 12(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38543560

RESUMO

BACKGROUND: Understanding the immune response to evolving viral strains is crucial for evidence-informed public health strategies. The main objective of this study is to assess the influence of vaccination on the neutralizing activity of SARS-CoV-2 delta and omicron infection against various SARS-CoV-2 variants. METHODS: A total of 97 laboratory-confirmed COVID-19 cases were included. To assess the influence of vaccination on neutralizing activity, we measured the neutralizing activity of SARS-CoV-2 delta or omicron (BA.1 or BA.2) infection against wild-type (WT), delta, BA.1, and BA.2, with the results stratified based on vaccination status. RESULTS: The neutralizing activity against the WT, delta, and omicron variants (BA.1 and BA.2) was significantly higher in the vaccinated patients than those in the unvaccinated patients. In the unvaccinated individuals infected with the delta variant, the decrease in binding to BA.1 and BA.2 was statistically significant (3.9- and 2.7-fold, respectively) compared to the binding to delta. In contrast, vaccination followed by delta breakthrough infection improved the cross-neutralizing activity against omicron variants, with only 1.3- and 1.2-fold decreases in BA.1 and BA.2, respectively. Vaccination followed by infection improved cross-neutralizing activity against WT, delta, and BA.2 variants in patients infected with the BA.1 variant, compared to that in unvaccinated patients. CONCLUSIONS: Vaccination followed by delta or BA.1 infection is associated with improved cross-neutralizing activity against different SARS-CoV-2 variants. The enhanced protection provided by breakthrough infections could have practical implications for optimizing vaccination strategies.

16.
Nano Lett ; 24(12): 3614-3623, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497742

RESUMO

Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers. Once the viruses were recognized by the apatmers, they would be captured and trapped in the nanocaves via multisite synergistic interactions. Meanwhile, the size of nanocatchers was optimized to prevent their cellular uptake, which further guaranteed inhibition of virus infection. By taking SARS-CoV-2 variants as a model target, we demonstrated the broad virus-trapping capability of a DNA nanocatcher in engulfing the variants and blocking the infection to host cells.


Assuntos
Aptâmeros de Nucleotídeos , Vírus , Aptâmeros de Nucleotídeos/farmacologia , DNA de Cadeia Simples , Antivirais/farmacologia
17.
J Virol Methods ; 326: 114915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479590

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne zoonotic orthonairovirus of public health concern and widespread geographic distribution. Several animal species are known to seroconvert after infection with CCHFV without showing clinical symptoms. The commercial availability of a multi-species ELISA has led to an increase in recent serosurveillance studies as well as in the range of species reported to be exposed to CCHFV in the field, including wild boar (Sus scrofa). However, development and validation of confirmatory serological tests for swine based on different CCHFV antigens or test principles are hampered by the lack of defined control sera from infected and non-infected animals. For the detection of anti-CCHFV antibodies in swine, we established a swine-specific in-house ELISA using a panel of swine sera from CCHFV-free regions and regions with reported CCHFV circulation. We initially screened more than 700 serum samples from wild boar and domestic pigs and observed a correlation of ≃67% between the commercial and the in-house test. From these sera, we selected a panel of 60 samples that were further analyzed in a newly established indirect immunofluorescence assay (iIFA) and virus neutralization test. ELISA-non-reactive samples tested negative. Interestingly, only a subset of samples reactive in both ELISA and iIFA displayed CCHFV-neutralizing antibodies. The observed partial discrepancy between the tests may be explained by different test sensitivities, antibody cross-reactivities or suggests that the immune response to CCHFV in swine is not necessarily associated with eliciting neutralizing antibodies. Overall, this study highlights that meaningful CCHFV serology in swine, and possibly other species, should involve the performance of multiple tests and careful interpretation of the results.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Suínos , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/veterinária , Anticorpos Neutralizantes , Testes Sorológicos , Sus scrofa , Anticorpos Antivirais
18.
Vet Microbiol ; 292: 110035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484577

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global pork industry, resulting in substantial economic losses. Current control measures rely on modified live virus (MLV) vaccines with safety concerns. However, the lack of consensus on protective PRRSV antigens is impeding the development of effective and safety subunit vaccines. In this study, we conducted in vitro virus neutralization (VN) assays in MARC-145 and CRL-2843CD163/CD169 cell lines and primary porcine alveolar macrophages (PAMs) to systemically identify PRRSV structural proteins (SPs) recognized by virus-neutralizing antibodies in hyperimmune serum collected from piglets infected with highly pathogenic PRRSV (HP-PRRSV). Additionally, piglets immunized with different combinations of recombinant PRRSV-SPs were challenged with HP-PRRSV to evaluate their in vivo protection potential. Intriguingly, different in vitro VN activities of serum antibodies elicited by each PRRSV SP were observed depending on the cell type used in the VN assay. Notably, antibodies specific for GP3, GP4, and M exhibited highest in vitro VN activities in PAMs, correlating with complete protection (100% survival) against HP-PRRSV challenge in vivo after immunization of piglets with combination of GP3, GP4, M and N (GP3/GP4/M/N). Further analysis of lung pathology, weight gain, and viremia post-challenge revealed that the combination of GP3/GP4/M/N provided superior protective efficacy against severe infection. These findings underscore the potential of this SP combination to serve as an effective PRRSV subunit vaccine, marking a significant advancement in pork industry disease management.


Assuntos
Guanidinas , Piperazinas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Macrófagos Alveolares , Anticorpos Antivirais
19.
Microbiol Spectr ; 12(4): e0419922, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363137

RESUMO

In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE: Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Anticorpos de Domínio Único/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
20.
Viruses ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399961

RESUMO

Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos de Domínio Único/genética , SARS-CoV-2/genética , Pandemias , Encéfalo , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...