Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Heliyon ; 10(12): e33230, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022067

RESUMO

A combination of the dispersive liquid-liquid microextraction (DLLME) method based on the total vaporization procedure and cooling-assisted organic solvent-coated thin film microextraction (TFME) was applied for extracting chlorpyrifos (as the model compound). Based on the high thermal conductivity, a nickel foam thin film with the dimensions of 5.0 mm × 5.0 mm was used as a substrate for holding the organic solvent. Supporting thin film by organic solvent increases the thickness and contact area of the film relative to TFME or single drop microextraction (SDME) alone, resulting in a dramatic increase in the extraction efficiency. To protect the organic solvent and enhance the analyte distribution coefficient between the film and the vapor phase, a cooling system was applied. The proposed design was effective due to condensing the target analyte only on the uniform cooled thin film and not on the other regions in the extraction chamber. A corona discharge ionization source-ion mobility spectrometer was employed to identify the analyte. After optimizing the effective parameters, the limits of quantification (S/N = 10) and detection (S/N = 3) were calculated 0.1 and 0.03 µg L-1, respectively, and the dynamic range was measured between 0.1 and 7.0 µg L-1, with a determination coefficient of 0.9997. For three concentration levels of 0.1, 3.0, and 7.0 µg L-1, the relative standard deviations (n = 3) as the repeatability index were to be 6 %, 5 %, and 4 % for intra-day and 9 %, 6 %, and 5 % for inter-day, respectively. The enrichment factor was also calculated to be 3630 for the analyte concentration of 1.0 µg L-1. Well water, potato, and agricultural wastewater were analyzed as the real samples and the relative recovery values were measured between 92 % and 99 %. The accuracy of the proposed technique was validated by the European Standards EN 12393 method. In this approach, two steps of analyte extraction (DLLME and TFME) were used consecutively, resulting in better preconcentration and reduced matrix interference during cleaning-up.

2.
Int Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028370

RESUMO

In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.

3.
Heliyon ; 10(11): e32080, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873665

RESUMO

Adding value to agricultural leftovers and turning them into biochar is a viable way to replenish soil nutrients and boost crop productivity. To further validate the efficacy of enriched rice husk biochar, an incubation study and a pot experiment were conducted: (1) to describe the effect of enriched rice husk biochar addition on soil total N, soil exchangeable NH4 + and available NO3 - and (2) to describe the effect of enriched rice husk biochar on improving N, P, K, Ca, and Mg uptake, use efficiency, and dry matter production of rice plants. The amount of NH3 loss that was considerably reduced by rice husk biochar at 5 and 10 t ha-1 was 34 % lower than the control. The availability of soil total N, exchangeable NH4 +, available NO3 -, available P, and exchangeable cations was greatly enhanced by the addition of rice husk biochar. Due to the effective nutrient uptake that occurs with an increase in soil nutrient level, the physical growth of the rice plant (height, tiller number, greenness, and panicle number) increeased significantly in treatments supplemented with 5 t ha-1 rice husk biochar. When rice plants were treated with 5 t ha-1 rice husk biochar, their absorption of N, P, and K increased by >80 %, respectively. The production of dry matter in rice plants increased as a result of the increased N intake. The application of 5 t ha-1 of rice husk biochar enhanced the soil nutrients by reducing NH3 loss and augmenting soil nutrients for efficient plant absorption, as demonstrated by the favourable enhancement of soil macro- and micronutrients and biomass of rice plants.

4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886427

RESUMO

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Assuntos
Amônia , Fertilizantes , Nitrogênio , Óxido Nitroso , Triticum , Água , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Amônia/análise , Amônia/metabolismo , China , Água/análise , Água/metabolismo , Irrigação Agrícola/métodos , Estações do Ano , Biomassa , Solo/química
5.
Environ Sci Technol ; 58(27): 12062-12072, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38917340

RESUMO

Dicamba is a semivolatile herbicide that has caused widespread unintentional damage to vegetation due to its volatilization from genetically engineered dicamba-tolerant crops. Strategies to reduce dicamba volatilization rely on the use of formulations containing amines, which deprotonate dicamba to generate a nonvolatile anion in aqueous solution. Dicamba volatilization in the field is also expected to occur after aqueous spray droplets dry to produce a residue; however, dicamba speciation in this phase is poorly understood. We applied Fourier transform infrared (FTIR) spectroscopy to evaluate dicamba protonation state in dried dicamba-amine residues. We first demonstrated that commercially relevant amines such as diglycolamine (DGA) and n,n-bis(3-aminopropyl)methylamine (BAPMA) fully deprotonated dicamba when applied at an equimolar molar ratio, while dimethylamine (DMA) allowed neutral dicamba to remain detectable, which corresponded to greater dicamba volatilization. Expanding the amines tested, we determined that dicamba speciation in the residues was unrelated to solution-phase amine pKa, but instead was affected by other amine characteristics (i.e., number of hydrogen bonding sites) that also correlated with greater dicamba volatilization. Finally, we characterized dicamba-amine residues containing an additional component (i.e., the herbicide S-metolachlor registered for use alongside dicamba) to investigate dicamba speciation in a more complex chemical environment encountered in field applications.


Assuntos
Aminas , Dicamba , Herbicidas , Aminas/química , Dicamba/química , Volatilização , Herbicidas/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Sci Rep ; 14(1): 11743, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778072

RESUMO

Agricultural field experiments are costly and time-consuming, and often struggling to capture spatial and temporal variability. Mechanistic crop growth models offer a solution to understand intricate crop-soil-weather system, aiding farm-level management decisions throughout the growing season. The objective of this study was to calibrate and the Crop Environment Resource Synthesis CERES-Maize (DSSAT v 4.8) model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based maize system. The model was also used to investigate the relationship between, temperature, nitrate and ammoniacal concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on maize yields. Using field data from 2019 and 2020, the DSSAT-CERES-Maize model was calibrated for plant growth stages, leaf area index-LAI, biomass, and yield. Data from 2021 were used to evaluate the model's performance. The treatments consisted of four nitrogen management options, viz., N0 (without nitrogen), N150 (150 kg N/ha through urea), GS (Green seeker-based urea application) and USG (urea super granules @150kg N/ha) in two contrasting tillage systems, i.e., CA-based zero tillage-ZT and conventional tillage-CT. The model accurately simulated maize cultivar's anthesis and physiological maturity, with observed value falling within 5% of the model's predictions range. LAI predictions by the model aligned well with measured values (RMSE 0.57 and nRMSE 10.33%), with a 14.6% prediction error at 60 days. The simulated grain yields generally matched with measured values (with prediction error ranging from 0 to 3%), except for plots without nitrogen application, where the model overestimated yields by 9-16%. The study also demonstrated the model's ability to accurately capture soil nitrate-N levels (RMSE 12.63 kg/ha and nRMSE 12.84%). The study concludes that the DSSAT-CERES-Maize model accurately assessed the impacts of tillage and nitrogen management practices on maize crop's growth, yield, and soil nitrogen dynamics. By providing reliable simulations during the growing season, this modelling approach can facilitate better planning and more efficient resource management. Future research should focus on expanding the model's capabilities and improving its predictions further.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Nitrogênio/metabolismo , Agricultura/métodos , Solo/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Biomassa
7.
Plants (Basel) ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732494

RESUMO

Microplastic might affect the crop yield, nitrogen (N) use efficiency and reactive N losses from agricultural soil systems. However, evaluation of these effects in infertile soil planted with different rice cultivars is lacking. We conducted a soil column experiment to determine the influence of a typical microplastic polyethylene (PE) input into an infertile soil with 270 kg N ha-1 and planted with two rice cultivars, i.e., a common rice Nangeng 5055 (NG) and a hybrid rice Jiafengyou 6 (JFY). The results showed that JFY produced a significantly (p < 0.05) greater grain yield than NG (61.6-66.2 vs. 48.2-52.5 g pot-1) but was not influenced by PE. Overall, PE hardly changed the N use efficiency of NG and JFY. Unexpectedly, PE significantly (p < 0.05) increased the total amino acid content of NG. Compared with JFY, NG volatilized significantly (p < 0.05) more ammonia (NH3) (0.84-0.92 vs. 0.64-0.67 g N pot-1) but emitted equal nitrous oxide (N2O). PE exerted no effect on either NH3 volatilization or the N2O emission flux pattern and cumulative losses of the rice growth cycle, whether with NG or JFY. Some properties of tested soils changed after planting with different rice cultivars and incorporating with microplastic. In conclusion, the rice production, N use efficiency, NH3 volatilization and N2O emission from the N-fertilized infertile soil were pronouncedly influenced by the rice cultivar, but not the PE. However, PE influenced the grain quality of common rice and some properties of tested soils with both rice cultivars.

8.
Sci Total Environ ; 934: 173256, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763195

RESUMO

Green manuring is a conservation agricultural practice that improves soil quality and crop yield. However, increasing the active nitrogen (N) and carbon (C) pools during green manure (GM) amendment may accelerate soil N transformation and stimulate N loss. Previous studies have reported the effects of cover crop incorporation on N2O emission; however, the driving mechanisms and other N losses remain unclear. Therefore, we conducted a comprehensive meta-analysis of 109 published articles (517 paired observations) to clarify the effects of GM amendment on soil reactive N (Nr) losses (N2O emissions, NH3 volatilization, and N leaching and runoff), N pools, and N cycling functional gene abundance. The results showed that green manuring increased soil microbial biomass N (MBN) and NO3--N concentrations and stimulated N2O emission but significantly lowered N leaching and yield-scaled NH3 volatilization. Practices of green manuring made a dominant contribution to the variation in N2O emissions and NH3 volatilization after GM application. Furthermore, applying legume-based GM, using N derived from GM (GMN) as an additional input, and short-term GM amendment each stimulated N2O emissions. In contrast, adopting non-legume GM, using GMN to partially substitute mineral N, and applying GM to the soil surface or paddy field mitigated NH3 loss during GM amendment. Additionally, the variation in NH3 volatilization was positively related to soil pH and N application rate (NAR) but had a negative relationship with mean annual precipitation (MAP). This study highlighted the marked effects of green manuring on soil N retention and loss. Agricultural operations that adopt GM amendment should select suitable GM species and optimize mineral N inputs to minimize N loss.

9.
Sci Total Environ ; 945: 173517, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38821290

RESUMO

Sewage sludge, a complex mixture of contaminants and pathogenic agents, necessitates treatment or stabilization like anaerobic digestion (AD) before safe disposal. AD-derived products (solid digestate and liquid fraction) can be used as fertilizers. During AD, biogas is also produced, and used for energy purposes. All these fractions can be contaminated with various compounds, whose amount depends on the feedstocks used in AD (and their mutual proportions). This paper reviews studies on the distribution of organic contaminants across AD fractions (solid digestate, liquid fraction, and biogas), delving into the mechanisms behind contaminant dissipation and proposing future research directions. AD proves to be a relatively effective method for removing polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pharmaceuticals, antibiotic resistance genes and hydrocarbons. Contaminants are predominantly removed through biodegradation, but many compounds, especially hydrophobic (e.g. per- and polyfluoroalkyl substances), are also sorbed onto digestate particles. The process of sorption is suggested to reduce the bioavailability of contaminants. As a result of sorption, contaminants accumulate in the largest amount in the solid digestate, whereas in smaller amounts in the other AD products. Polar pharmaceuticals (e.g. metformin) are particularly leached, while volatile methylsiloxanes and polycyclic aromatic hydrocarbons, characterized by a high Henry's law constant, are volatilized into the biogas. The removal of compounds can be affected by AD operational parameters, the type of sludge, physicochemical properties of contaminants, and the sludge pretreatment used.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo
10.
Chemosphere ; 360: 142398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789053

RESUMO

Both thermal and environmental processes are significant factors influencing the existing characteristics, e.g., congener distributions, and existing levels, of polychlorinated naphthalenes (PCNs) in the environment. Soil plays an important role in the life cycle of PCNs, but degradation of PCNs in soils has never been reported. In this study, we collected surface soil samples from 13 cities in the Yangtze River Delta, which is one of the most crowded areas of China and analyzed the samples for 75 PCNs. The long-range transportation from polluted areas was the major source for PCNs in remote areas, but the PCN profiles in remote areas reported in our previous studies were different from those in human settlement in this study, indicating there is a transformation of PCNs after emissions from anthropogenic activities. Two experiments were then designed to reveal the degradation mechanisms, including influencing factors, products, and pathways, of PCNs in surface soils. Based on the experiments, we found that the major factor driving the losses of PCNs in surface soils was volatilization, followed by photo irradiation and microbial metabolism. Under photo-irradiation, the PCN structures would be destroyed through a process of dechlorination followed by oxidation. In addition, the dechlorination pathways of PCNs have been established and found to be significantly influenced by the structure-related parameters.


Assuntos
Naftalenos , Rios , Poluentes do Solo , Solo , China , Naftalenos/química , Naftalenos/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Rios/química , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/química , Biodegradação Ambiental
11.
Sci Total Environ ; 935: 173373, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38796001

RESUMO

HYDRUS 2D was used to simulate chloropicrin (CP) emissions across a range of expected application and environmental conditions present within California, where CP is widely used in the pre-plant treatment of soils for high-value specialty crops. Simulations were developed based on field calibration work and physicochemical parameters from literature with additional consideration of application rate-dependent degradation and applicator practices including application depth, application mode, and tarp material. Model output was compared to the distribution of indirect whole-field flux estimates derived from field monitoring studies using measures of maximum 8-h, maximum 24-h, and cumulative emissions due to their relevance to public health. We observed a strong linear relationship (R2 ≥ 0.80, p < 0.001) between HYDRUS-simulated and field-based maximum flux estimates and no evidence of statistical difference depending on the estimation source for maximum 24-h flux. A linear relationship of similar strength (R2 = 0.82, p < 0.001) was observed between simulated and field-based cumulative emission estimates, although mean HYDRUS estimates were lower than field-estimated values for some high-emission application methods. Analysis of simulation output demonstrated large differences in CP emissions in response to application method and a non-linear increase in CP emissions with increasing application rate, with considerable interaction between application variables including application depth, tarp types, and field layout. The findings generally support the use of simulated CP emission estimates as a tool to address gaps in field-based flux estimates, particularly where characterization of short-term peak emissions is needed.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38619980

RESUMO

Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.


Assuntos
Achromobacter , Cardamine , Selênio , Ácidos Graxos/química , Análise de Sequência de DNA , Cardamine/genética , Filogenia , Rizosfera , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , Ácido Selenioso
13.
Sci Total Environ ; 924: 171673, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479519

RESUMO

Limited research has been conducted on ammonia (NH3) volatilization and greenhouse gases (GHGs) emissions in saline-alkali paddy fields, along with complex interaction involving various genes (16sRNA, amoA, narG, nirK, nosZ, and nifH). This study employed mesocosm-scale experiment to investigate NH3 volatilization and GHGs emissions, focusing on bacterial communities and genic abundance, in saline-alkali paddy fields with desulfurized gypsum (DG) and organic fertilizer (OF) amendments. Compared to the control (CK) treatment, DG and OF treatments reduced methane (CH4) and carbon dioxide (CO2) emissions by 78.05 % and 26.18 %, and 65.84 % and 11.62 %, respectively. However, these treatments increased NH3 volatilization by 26.26 % and 45.23 %, and nitrous oxide (N2O) emission by 41.00 % and 12.31 %. Notably, NH3 volatilization primarily stemmed from ammonia nitrogen (NH4+-N), rather than total nitrogen (TN) in soil and water. N2O was mainly produced from nitrate nitrogen (NO3--N) in soil and water, as well as NH4+-N in water. The increase in NH3 volatilization and N2O emission in DG and OF treatments, was attributed to the reduced competition among bacterial communities, rather than the increased bacterial activity and genic copies. These findings offer valuable insights for managing nutrient loss and gaseous emissions in saline-alkali paddy fields.


Assuntos
Gases de Efeito Estufa , Oryza , Solo , Dióxido de Carbono/análise , Amônia/análise , Álcalis , Gases de Efeito Estufa/análise , Nitrogênio/análise , Óxido Nitroso/análise , Fertilizantes/análise , Metano/análise , Água , Agricultura
14.
Sci Total Environ ; 926: 171845, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521269

RESUMO

Biochar, which including pyrochar (PBC) and hydrochar (HBC), has been tested as a soil enhancer to improve saline soils. However, the effects of PBC and HBC application on ammonia (NH3) volatilization and dissolved organic matter (DOM) in saline paddy soils are poorly understood. In this research, marsh moss-derived PBC and HBC biochar types were applied to paddy saline soils at 0.5 % (w/w) and 1.5 % (w/w) rates to assess their impact on soil NH3 volatilization and DOM using a soil column experiment. The results revealed that soil NH3 volatilization significantly increased by 56.1 % in the treatment with 1.5 % (w/w) HBC compared to the control without PBC or HBC. Conversely, PBC and the lower application rate of HBC led to decrease in NH3 volatilization ranging from 2.4 % to 12.1 %. Floodwater EC is a dominant factor in NH3 emission. Furthermore, the fluorescence intensities of the four fractions (all humic substances) were found to be significantly higher in the 1.5 % (w/w) HBC treatment applied compared to the other treatments, as indicated by parallel factor analysis modeling. This study highlights the potential for soil NH3 losses and DOM leaching in saline paddy soils due to the high application rate of HBC. These findings offer valuable insights into the effects of PBC and HBC on rice paddy saline soil ecosystems.

15.
Chemosphere ; 354: 141681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467199

RESUMO

Dimethylsilanediol (DMSD) is the common breakdown product of methylsiloxanes such as polydimethylsiloxane (PDMS) and volatile methylsiloxanes (VMS) in soil. In this work, we first present a sorbent selection experiment aiming to identify a sorbent that can trap gas-phase DMSD without causing DMSD condensation and VMS hydrolysis at environmentally relevant humidities. With a proper sorbent (Tenax) identified, the volatilization of DMSD from water and various wet soil and soil materials were measured in a controlled environment. It was demonstrated that DMSD underwent volatilization after soil water was completely evaporated. Various types of soil constituents show drastic differences in preventing DMSD from volatilization. Analysis of the sorbent-captured products provides further insight, most notably that virtually no cyclic methylsiloxanes are formed during the volatilization of DMSD from water or soil materials, except in one extreme case where only traces are detected.


Assuntos
Compostos de Organossilício , Solo , Água , Volatilização
16.
J Environ Manage ; 354: 120261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354608

RESUMO

The future of reactive nitrogen (N) for subtropical lowland rice to be characterised under diverse N-management to develop adequate sustainable practices. It is a challenge to increase the efficiency of N use in lowland rice, as N can be lost in various ways, e.g., through nitrous oxide (N2O) or dinitrogen (N2) emissions, ammonia (NH3) volatilization and nitrate (NO3-) leaching. A field study was carried out in the subsequent wet (2021) and dry (2022) seasons to assess the impacts of different N management strategies on yield, N use efficiency and different N losses in a double-cropped rice system. Seven different N-management practices including application of chemical fertilisers, liquid organic fertiliser, nitrification inhibitors, organic nutrient management and integrated nutrient management (INM) were studied. The application of soil test-based neem-coated urea (NCU) during the wet season resulted in the highest economic yield, while integrated nutrient management showed the highest economic yield during the dry season. Total N losses by volatilization of NH3, N2O loss and leaching were 0.06-4.73, 0.32-2.14 and 0.25-1.93 kg ha-1, corresponding to 0.06-5.84%, 0.11-2.20% and 0.09-1.81% of total applied N, respectively. The total N-uptake in grain and straw was highest in INM (87-89% over control) followed by the soil test-based NCU (77-82% over control). In comparison, recovery efficiency of N was maximum from application of NCU + dicyandiamide during both the seasons. The N footprint of paddy rice ranged 0.46-2.01 kg N-eq. t-1 during both seasons under various N management. Ammonia volatilization was the process responsible for the largest N loss, followed by N2O emissions, and NO3- leaching in these subtropical lowland rice fields. After ranking the different N management practices on a scale of 1-7, soil test-based NCU was considered the best N management approach in the wet year 2021, while INM scored the best in the dry year 2022.


Assuntos
Oryza , Nitrogênio/análise , Agricultura/métodos , Amônia/análise , Solo , Fertilizantes/análise , Óxido Nitroso/análise
17.
Chemosphere ; 352: 141454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354863

RESUMO

Dimethylsilanediol (DMSD) is the degradation product of methylsiloxane polymers and oligomers such as volatile cyclic methylsiloxanes (cVMS). To better understand the environmental fate of this key degradation product, we conducted a three-part study on the movement of DMSD in soil. The objective of this third and final study was to determine the fate of DMSD in soil-plant systems under constant irrigation. Soil columns were constructed using two soils with the upper 20 cm layers spiked with 14C-labeled DMSD. Corn seedlings were transplanted into the soil columns and placed in a field plot underneath a transparent cover that prevented rainwater from reaching the soil columns while allowing soil water to be volatilized freely. The soil-plant columns were regularly irrigated with known amounts of DMSD-free plant growth solution to sustain the plant growth. At pre-determined time intervals (15-67 days), the plant and soil columns were sectioned and the distribution of 14Corganosilicon species in the soil profile and plant parts was determined using a combination of Liquid Scintillation Counting and High-Performance Liquid Chromatography-Flow Scintillation Analysis, while soil water loss was determined gravimetrically. It was found that the majority (>92 %) of DMSD initially spiked into the soil was removed from the soil-plant systems. Although DMSD was transported from the soil to the plant, it was subsequently volatilized from the plant via transpiration, with only a small fraction (∼5%) remaining at the conclusion of the experiments. In addition, little non-extractable DMSD was found in the top layer of soil in the soil-plant systems, suggesting that the air-drying of soil is a necessary pre-condition for the formation of such non-extractable silanol residue on topsoil.


Assuntos
Compostos de Organossilício , Poluentes do Solo , Poluentes Químicos da Água , Solo , Água , Poluentes Químicos da Água/análise , Poluentes do Solo/análise
18.
Chemosphere ; 352: 141478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364924

RESUMO

Dimethylsilanediol (DMSD) is a primary degradation product of silicone materials in the environment. Due to its low air/water partition coefficient and low soil/water distribution coefficient, this compound is not expected to undergo sorption and volatilization in wet soil. In an accompanying paper, we confirm that under controlled indoor conditions in test tubes, there is little to no volatilization of DMSD from soil and soil constituents if soil is wet. However, a significant amount of DMSD was volatilized when the soil substrates became air dried. Given the importance of water on the partition and fate of DMSD, we now report a continuation of this study focusing on the relation between DMSD removal and water loss in re-constituted soil columns under outdoor conditions. Consistent with predictions based on its partition properties and reconciling this evidence with previously reported field and laboratory studies, DMSD distribution was found to be largely dependent on water partitioning. The results suggested that DMSD moved upward in soil profile as soil water was evaporated from topmost layers with little DMSD retention by the soil matrix. As soil dried, a fraction of DMSD was sorbed by the soil matrix in the topmost layer, while most of the spiked radio-labeled DMSD was removed from soil through volatilization.


Assuntos
Compostos de Organossilício , Poluentes do Solo , Água/química , Solo , Silicones , Poluentes do Solo/análise
19.
Heliyon ; 10(4): e26023, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390045

RESUMO

The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124009, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335588

RESUMO

Microemulsion is usually a transparent and isotropic liquid mixture composed of oil phase, water phase, surfactant and cosurfactant. The surfactant-framed nanoscale droplets in the microemulsion can penetrate into the skin surface to reduce its barrier function. This makes microemulsion an ideal preparation for the transdermal drug delivery. The permeability of microemulsion may be further enhanced when botanical essential oils that can dissolve the stratum corneum are used as the oil phase. However, the volatility of essential oils is possible to shorten the retention time of the microemulsion on the skin surface. Therefore, analytical methods are required to understand the volatilization process of the microemulsion composed of essential oils to develop the reasonable topical drug carrier system. In this research, Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflection (ATR) accessory cooperated with two-dimensional correlation spectroscopy (2DCOS) to elucidate the volatilization processes of some microemulsions composed of peppermint essential oil. Principal component analysis (PCA) and moving-window two-dimensional correlation spectroscopy (MW2DCOS) revealed the multiple stages of the volatilization processes of the microemulsions. Synchronous 2D correlation infrared spectra indicated the compositional changes during each stage. It was found that the successive volatilizations of ethanol, water and menthone were the major events during the volatilization process of the microemulsion composed of peppermint essential oil. Ethanol can accelerate the volatilization of water, while the composite herbal extract seemed to not influence the volatilization of the other ingredients. After a 20-min-long volatilization process, the remaining microemulsion still contained considerable peppermint essential oil to affect the skin. The above results showed the feasibility of developing the microemulsion composed of peppermint essential oil for the transdermal drug delivery of composite herbal extract. This research also proved that the combination of ATR-FTIR spectroscopy and 2DCOS was valuable to study the volatilization process of the microemulsion.


Assuntos
Óleos Voláteis , Volatilização , Mentha piperita , Tensoativos/química , Água/química , Etanol , Emulsões/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...