RESUMO
An efficient municipal solid waste (MSW) system is critical to modern cities in order to enhance sustainability and liveability of urban life. With this aim, the planning phase of the MSW system should be carefully addressed by decision makers. However, planning success is dependent on many sources of uncertainty that can affect key parameters of the system, for example, the waste generation rate in an urban area. With this in mind, this article contributes with a robust optimization model to design the network of collection points (i.e. location and storage capacity), which are the first points of contact with the MSW system. A central feature of the model is a bi-objective function that aims at simultaneously minimizing the network costs of collection points and the required collection frequency to gather the accumulated waste (as a proxy of the collection cost). The value of the model is demonstrated by comparing its solutions with those obtained from its deterministic counterpart over a set of realistic instances considering different scenarios defined by different waste generation rates. The results show that the robust model finds competitive solutions in almost all cases investigated. An additional benefit of the model is that it allows the user to explore trade-offs between the two objectives.
RESUMO
Municipal solid waste management is a major challenge for nowadays urban societies, because it accounts for a large proportion of public budget and, when mishandled, it can lead to environmental and social problems. This work focuses on the problem of locating waste bins in an urban area, which is considered to have a strong influence in the overall efficiency of the reverse logistic chain. This article contributes with an exact multiobjective approach to solve the waste bin location in which the optimization criteria that are considered are: the accessibility to the system (as quality of service measure), the investment cost, and the required frequency of waste removal from the bins (as a proxy of the posterior routing costs). In this approach, different methods to obtain the objectives ideal and nadir values over the Pareto front are proposed and compared. Then, a family of heuristic methods based on the PageRank algorithm is proposed which aims to optimize the accessibility to the system, the amount of collected waste and the installation cost. The experimental evaluation was performed on real-world scenarios of the cities of Montevideo, Uruguay, and Bahía Blanca, Argentina. The obtained results show the competitiveness of the proposed approaches for constructing a set of candidate solutions that considers the different trade-offs between the optimization criteria.