Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
Chemosphere ; : 142763, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969216

RESUMO

The loss of carbon and nitrogen from broiler litter limits nutrient recycling and is damaging to the environment. This study investigated lignite, a low-rank brown coal, as an amendment to reduce the loss of carbon and nitrogen from broiler litter over 3 consecutive grow-out cycles, November 2021 to May 2022, at a commercially operated farm in Victoria, Australia. Lignite-treated litter contained significantly more carbon and nitrogen, with an increase of 70.1 g/bird and 12.6 g/bird for carbon and nitrogen, respectively. Lignite also reduced aerobic microbial respiration, with a 46.0% reduction in CO2 flux recorded in week 7 of the study, resulting in reduced mass loss. It is expected that this is a key mechanism responsible for nutrient retention in litter following treatment with lignite. Furthermore, lignite treatment lowered litter moisture content by 7, 6 and 3 percentage points for grow-out 1, 2 and 3, respectively. These findings present lignite as a beneficial litter amendment for increasing the nutrient value of waste and reducing carbon dioxide emissions. The study highlights the potential of lignite to reduce the environmental impact of poultry production and presents an alternative use for lignite as an existing resource.

2.
Angew Chem Int Ed Engl ; : e202409871, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953787

RESUMO

Proton batteries have attracted increasing interests because of their potential for grid-scale energy storage with high safety and great low-temperature performances. However, their development is significantly retarded by electrolyte design due to free water corrosion. Herein, we report a layer intercalatable electrolyte (LIE) by introducing trimethyl phosphate (TMP) into traditional acidic electrolyte. Different from conventional role in batteries, the presence of TMP intriguingly achieves co-intercalation of solvent molecules into the interlayer of anode materials, enabling a new working mechanism for proton reactions. The electrode corrosion was also strongly retarded with expanded electrochemical stability window. The half-cell therefore showed an outstanding long-term cycling stability with 91.0% capacity retention at 5 A g-1 after 5000 cycles. Furthermore, the assembled full batteries can even deliver an ultra-long lifetime with a capacity retention of 74.9% for 2 months running at -20 °C. This work provides new opportunities for electrolyte design of aqueous batteries.

3.
J Pharm Sci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936475

RESUMO

For a pair of hydrated and anhydrous crystals, the hydrate is more stable than the anhydrate when the water activity is above the critical water activity (awc). Conventional methods to determine awc are based on either hydrate-anhydrate competitive slurries at different aw or solubilities measured at different temperatures. However, these methods are typically resource-intensive and time-consuming. Here, we present simple and complementary solution- and solid-based methods and illustrate them using carbamazepine and theophylline. In the solution-based method, awc can be predicted using intrinsic dissolution rate (IDR) ratio or solubility ratio of the hydrate-anhydrate pair measured at a known water activity. In the solid-based method, awc is predicted as a function of temperature from the dehydration temperature and enthalpy obtained by differential scanning calorimetry (DSC) near a water activity of unity. For carbamazepine and theophylline, the methods yielded awc values in good agreement with those from the conventional methods. By incorporating awc as an additional variable, the hydrate-anhydrate relationship is categorized into four classes based on their dehydration temperature (Td) and enthalpy (ΔHd) in analogy with the monotropy/enantiotropy classification for crystal polymorphs. In Class 1 (ΔHd< 0 and Td ≥ 373 K), no awc exists. In Class 2 (ΔHd>0andTd≥373K), awc always exists under conventional crystallization conditions. In Class 3 (ΔHd<0andTd<373K), awc exists when T>Td. In Class 4 (ΔHd>0andTd<373K), awc exists only when T

4.
J Appl Glycosci (1999) ; 71(1): 15-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799416

RESUMO

Water-soluble carbohydrates commonly exist in an amorphous state in foods and undergo glass-rubber transition (glass transition) at the glass transition temperature (Tg). The critical water content (Wc) and critical water activity (awc) are the water content and water activity (aw) at which the glass transition occurs at 298 K (typical ambient temperature), respectively. For amorphous water-soluble carbohydrates, Wc can be predicted from the Tg of anhydrous solid (Tgs) using previously reported equations. However, an approach for predicting awc is still lacking. This study aimed to establish an awc-predictive approach for amorphous water-soluble carbohydrates based on Tgs. First, the water sorption isotherms of four hydrogenated starch hydrolysates were investigated, and the results were analyzed using the Guggenheim-Anderson-de Boer (GAB) model. Second, the effect of Tgs on the GAB parameters (C, K, and Wm) was evaluated using the Tgs values reported in previous literatures. C and Wm decreased and increased logarithmically, respectively, with increasing 1/Tgs. K was fixed to 1 (constant), as it showed little variation. These results enabled the prediction of the GAB parameters from Tgs. The GAB model could then predict awc from Wc, which was determined using the previously established equations. The predicted awc values were in good agreement with the experimentally determined awc. Additionally, we demonstrated that this awc-prediction approach is also applicable to amorphous water-soluble electrolytes and partially water-insoluble carbohydrates. Thus, this approach can be used for the quality control of amorphous water-soluble carbohydrates and carbohydrate-based foods.

5.
J Food Prot ; 87(7): 100297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734414

RESUMO

Salmonella is capable of surviving dehydration within various foods, such as dried fruit. Dried fruit, including apple slices, have been the subject of product recalls due to contamination with Salmonella. A study was conducted to determine the fate of Salmonella on apple slices, following immersion in three antimicrobial solutions (viz., ε-polylysine [epsilon-polylysine or EP], sodium bisulfate [SBS], or peracetic acid [PAA]), and subsequent hot air dehydration. Gala apples were aseptically cored and sliced into 0.4 cm thick rings, bisected, and inoculated with a five-strain composite of desiccation-resistant Salmonella, to a population of 8.28 log CFU/slice. Slices were then immersed for 2 min in various concentrations of antimicrobial solutions, including EP (0.005, 0.02, 0.05, and 0.1%), SBS (0.05, 0.1, 0.2, and 0.3%), PAA (18 or 42 ppm), or varying concentrations of PAA + EP, and then dehydrated at 60°C for 5 h. Salmonella populations in positive control samples (inoculated apple slices washed in sterile water) declined by 2.64 log after drying. In the present study, the inactivation of Salmonella, following EP and SBS treatments, increased with increasing concentrations, with maximum reductions of 3.87 and 6.20 log (with 0.1 and 0.3% of the two compounds, respectively). Based on preliminary studies, EP concentrations greater than 0.1% did not result in lower populations of Salmonella. Pretreatment washes with either 18 or 42 ppm of PAA inactivated Salmonella populations by 4.62 and 5.63 log, respectively, following desiccation. Combining PAA with up to 0.1% EP induced no greater population reductions of Salmonella than washing with PAA alone. The addition of EP to PAA solutions appeared to destabilize PAA concentrations, reducing its biocidal efficacy. These results may provide antimicrobial predrying treatment alternatives to promote the reduction of Salmonella during commercial or consumer hot air drying of apple slices.


Assuntos
Contagem de Colônia Microbiana , Microbiologia de Alimentos , Malus , Ácido Peracético , Polilisina , Salmonella , Malus/microbiologia , Ácido Peracético/farmacologia , Salmonella/efeitos dos fármacos , Polilisina/farmacologia , Humanos , Sulfatos/farmacologia , Conservação de Alimentos/métodos , Relação Dose-Resposta a Droga , Dessecação , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Qualidade de Produtos para o Consumidor
6.
Int J Food Microbiol ; 420: 110767, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38820989

RESUMO

Peanut-based products have been associated with Salmonella foodborne outbreaks and/or recalls worldwide. The ability of Salmonella to persist for a long time in a low moisture environment can contribute to this kind of contamination. The objective of this study was to analyse the genome of five S. enterica enterica strains isolated from the peanut supply chain in Brazil, as well as to identify genetic determinants for survival under desiccation and validate these findings by phenotypic test of desiccation stress. The strains were in silico serotyped using the platform SeqSero2 as Miami (M2851), Javiana (M2973), Oranienburg (M2976), Muenster (M624), and Glostrup/Chomedey (M7864); with phylogenomic analysis support. Based on Multilocus Sequence Typing (MLST) the strains were assigned to STs 140, 1674, 321, 174, and 2519. In addition, eight pathogenicity islands were found in all the genomes using the SPIFinder 2.0 (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, SPI-13, SPI-14). The absence of a SPI-4 may indicate a loss of this island in the surveyed genomes. For the pangenomic analysis, 49 S. enterica genomes were input into the Roary pipeline. The majority of the stress related genes were considered as soft-core genes and were located on the chromosome. A desiccation stress phenotypic test was performed in trypticase soy broth (TSB) with four different water activity (aw) values. M2976 and M7864, both isolated from the peanut samples with the lowest aw, showed the highest OD570nm in TSB aw 0.964 and were statistically different (p < 0.05) from the strain isolated from the peanut sample with the highest aw (0.997). In conclusion, genome analyses have revealed signatures of desiccation adaptation in Salmonella strains, but phenotypic analyses suggested the environment influences the adaptive ability of Salmonella to overcome desiccation stress.


Assuntos
Arachis , Genoma Bacteriano , Tipagem de Sequências Multilocus , Filogenia , Salmonella enterica , Arachis/microbiologia , Brasil , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/classificação , Microbiologia de Alimentos , Ilhas Genômicas , Dessecação , Genômica
7.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1540-1548, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621937

RESUMO

This study aims to reveal the effects of maltodextrin(MD) on the water adsorption and thermodynamic properties of Codonopsis Radix(DS) spray-dried powder by determining the moisture and energy changes of the powder in the process of moisture absorption. The static weighing method was used to obtain the isothermal water adsorption data of the spray-dried powder in 6 saturated salt solutions(KAc, MgCl_2·6H_2O, K_2CO_3, NaBr, NaCl, and KCl) at 3 temperatures(25, 35, and 45 ℃). Six models were used for fitting of the water adsorption process, and the most suitable model was selected based on the model performance. Furthermore, the corresponding net equivalent adsorption heat and differential entropy were calculated, and the adsorption entropy change was integrated. The linear relationship between net equivalent adsorption heat and differential entropy was drawn based on the entropy-enthalpy complementarity theory. The results showed that the water adsorption properties of DS and DS-MD spray-dried powder followed the type Ⅲ isotherm and was well fitted by the GAB model. The monolayer water content M_0 decreased with the increase in temperature. At the same temperature, the M_0 of DS spray-dried powder decreased after the addition of MD. The net equivalent adsorption heat and differential entropy of DS and DS-MD spray-dried powder decreased with the increase in water content, which presented a linear relationship. The addition of MD decreased the water activity corresponding to the lowest integral adsorption entropy of the powder, and the system became more stable. The results indicated that the spray-dried powder became more stable after the addition of MD.


Assuntos
Codonopsis , Polissacarídeos , Água , Adsorção , Pós , Termodinâmica
8.
Food Microbiol ; 121: 104515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637077

RESUMO

Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.


Assuntos
Escherichia coli , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Viabilidade Microbiana , Salmonella/fisiologia , Água/análise , Temperatura Alta
9.
Microorganisms ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543557

RESUMO

This work proposes a novel drying method suitable for probiotic bacteria, called flash freeze-drying (FFD), which consists of a cyclic variation in pressure (up-down) in a very short time and is applied during primary drying. The effects of three FFD temperatures (-25 °C, -15 °C, and -3 °C) on the bacterial survival and water activity of Lactobacillus acidophilus LA5 (LA), previously microencapsulated with calcium alginate and chitosan, were evaluated. The total process time was 900 min, which is 68.75% less than the usual freeze-drying (FD) time of 2880 min. After FFD, LA treated at -25 °C reached a cell viability of 89.94%, which is 2.74% higher than that obtained by FD, as well as a water activity of 0.0522, which is 55% significantly lower than that observed using FD. Likewise, this freezing temperature showed 64.72% cell viability at the end of storage (28 days/20 °C/34% relative humidity). With the experimental data, a useful mathematical model was developed to obtain the optimal FFD operating parameters to achieve the target water content in the final drying.

10.
Sci Rep ; 14(1): 7175, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532041

RESUMO

The Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 µmoles of Martian atmospheric gas. Using in-situ observations acquired by the Perseverance rover, we show that the present-day environmental conditions at Jezero allow for the hydration of sulfates, chlorides, and perchlorates and the occasional formation of frost as well as a diurnal atmospheric-surface water exchange of 0.5-10 g water per m2 (assuming a well-mixed atmosphere). At night, when the temperature drops below 190 K, the surface water activity can exceed 0.5, the lowest limit for cell reproduction. During the day, when the temperature is above the cell replication limit of 245 K, water activity is less than 0.02. The environmental conditions at the surface of Jezero Crater, where these samples were acquired, are incompatible with the cell replication limits currently known on Earth.

11.
Food Res Int ; 182: 114064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519157

RESUMO

Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Temperatura , Temperatura Alta , Meios de Cultura , Alanina
12.
Int J Food Microbiol ; 413: 110592, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308878

RESUMO

Raw almonds have been associated with Salmonella outbreaks and multiple recalls related to Listeria monocytogenes contamination. While steam treatment has been approved for pasteurizing both conventional and organic whole almonds, there is limited understanding of how water activity (aw) influences the effectiveness of steam treatments in decontaminating almonds. Hence, this study aimed to assess and compare the efficacy of steam treatments against Listeria innocua and Enterococcus faecium NRRL B-2354, the known non-pathogenic surrogates, on almonds. It also sought to investigate the impact of almond's aw on bacterial resistance during steam treatments. Almond kernels were inoculated with ~8 log10 CFU/g of either E. faecium or L. innocua and equilibrated to aw 0.25 or 0.45 before being subjected to steam treatments at temperatures of 100-135 °C. Our results revealed that L. innocua exhibited lower resistance to steam compared to E. faecium, with 1.2-2.6 log10 CFU/g reductions for L. innocua and 1.0-2.0 log10 CFU/g reductions for E. faecium when the surface temperature of almonds reached 100-130 °C, depending on the aw of the almonds. The obtained DL. innocua, 100-130°C-values were 2.0-16.6 s, and DE. faecium, 100-130°C-values were 4.0-21.8 s, depending on the aw of almonds. In general, elevating steam temperatures and almond aw decreased the tolerance of L. innocua and E. faecium during steam inactivation. In addition, the z-values indicated that E. faecium on almonds was less sensitive to change in steam temperature compared to L. innocua, especially at lower aw. The zL. innocua-values were 36.6 °C and 35.7 °C, while zE. faecium-values were 48.9 °C and 42.7 °C in almonds with aw 0.25 and 0.45, respectively. Results from this study suggest that steam treatments serve as effective interventions for controlling pathogen contaminations in raw almonds.


Assuntos
Enterococcus faecium , Listeria , Prunus dulcis , Vapor , Água/análise , Enterococcus faecium/fisiologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos
13.
J Fungi (Basel) ; 10(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38392780

RESUMO

The number of buildings experiencing humidity problems and fungal growth appears to be increasing as energy-saving measures and changes in construction practices and climate become more common. Determining the cause of the problem and documenting the type and extent of fungal growth are complex processes involving both building physics and indoor mycology. New detection and identification methods have been introduced, and new fungal species have been added to the list of building-related fungi. However, the lack of standardised procedures and general knowledge hampers the effort to resolve the problems and advocate for an effective renovation plan. This review provides a framework for building inspections on current sampling methods and detection techniques for building-related fungi. The review also contains tables with fungal species that have been identified on commonly used building materials in Europe and North America (e.g., gypsum wallboard, oriented strand board (OSB), concrete and mineral wool). The most reported building-associated fungi across all materials are Penicillium chrysogenum and Aspergillus versicolor. Chaetomium globosum is common on all organic materials, whereas Aspergillus niger is common on all inorganic materials.

14.
Chemphyschem ; 25(10): e202300789, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38363084

RESUMO

The influence of acetazolamide (ACT) on the kinetics and the mechanism of electroreduction of In(III) ions as a function of changes of the water activity was investigated using electrochemical methods (DC, SWV, CV and EIS, CV). The multi-step mechanism of the electroreduction process should take into account the dehydration step of indium ions and the presence of In-ACT (,,cap-pair" effect) active complexes, mediating electron transfer, located in the adsorption layer. Differences in the electrode mechanism in the presence of ACT were observed for higher chlorates(VII) concentrations (above 4 mol ⋅ dm-3 chlorates(VII)) reflected by a lack of step wise nature of the electrode process. The highest catalytic activity was observed in 4 mol ⋅ dm-3 chlorates(VII).

15.
Foods ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254530

RESUMO

The effects of water content and water activity on the lipid stability of air-dried hairtail (Trichiurus haumela) were investigated during chilled storage. Air-dried hairtail samples with high and low water contents were comparatively analyzed over 8 days of storage at 4 °C. The results indicated that the decreases in water activity and increases in the NaCl content significantly inhibited lipid oxidation in the air-dried hairtail samples. The peroxidation value (PV), conjugated diene value (CD), thiobarbituric acid reactive substance (TBARS) value, and p-anisidine value (p-AnV) of the air-dried hairtail significantly increased with the extension of storage time. The low water content significantly inhibited the activity of neutral and alkaline lipase, in addition to lipoxygenase, and retarded the rapid increases in the non-esterified fatty acid (NEFA) content in the hairtail samples. The correlation analysis results showed that the TBARS, p-AnV, and lipase activity were positively correlated in the air-dried hairtail samples, and the lower water content significantly inhibited the progress of lipid oxidation. This study offers a theoretical framework for the industrial processing and storage of air-dried hairtail products.

16.
J Food Sci ; 89(2): 1143-1153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193188

RESUMO

The use of air jet impingement to remove residues from surfaces in food manufacturing operations offers an alternative to the use of water and liquid cleaning agents. During this investigation, air impingement was used to remove nonfat dry milk (NFDM) residues from a stainless-steel surface. The influence of the water activity (aw ) of the residue, the time after the residue reached an equilibrium water activity, and the thickness of residue at the time of removal from the surface have been investigated. All three factors had a significant effect on the time for removal. An increase in the water activity, the time at equilibrium, the sample thickness, or a combination of all three resulted in an increase in the time required to remove the deposits. Visible changes in the structure of deposits were observed as NFDM samples equilibrated to water activities above 0.43. NFDM residues with water activities less than 0.33 were removed within 1 s of using air impingement regardless of wall shear stress. When the water activities were greater than 0.50, the thickness of deposit was greater than 1 mm, and the time after reaching an equilibrium water activity was over 7 days, more than 5 min of air impingement with wall shear stress over 9.48 Pa was required to remove the residue. The results from these experiments indicated that air impingement has the potential to provide effective cleaning in manufacturing facilities for low-moisture foods. PRACTICAL APPLICATION: The introduction of water in low-moisture food environments is often undesirable due to the possibility of pathogenic microorganism growth. The normal cleaning operations in the food industry use water as a cleaning agent. This study evaluates the application of air impingement technology as a dry-cleaning method.


Assuntos
Leite , Aço Inoxidável , Animais , Leite/química , Aço Inoxidável/análise , Indústria de Processamento de Alimentos , Água/análise , Alérgenos/análise
17.
J Food Sci ; 89(2): 793-810, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221802

RESUMO

Food is one of the basic needs of human life. With the increasing population, the production and supply of safe and quality foods are critical. Foods can be classified into different categories including low moisture, intermediate moisture, and high moisture content. Historically, low-moisture foods have been considered safe for human consumption due to the limited amount of moisture for microbial activity. Recalls of these foods due to pathogens such as Salmonella and undeclared allergens have brought attention to the need for improved cleaning and sanitization in dry food manufacturing facilities. In the food industry, cleaning and sanitation activities are the most efficient methods to prevent microbial contamination; however, water is most often required to deliver cleaning and sanitation agents. A well-written and properly implemented sanitation standard operating procedure can take care of microbial and allergen cross-contamination. Nevertheless, there are unique challenges to cleaning and sanitation processes for low-moisture food manufacturing facilities. The introduction of moisture into a low-moisture food environment increases the likelihood of cross-contamination by microbial pathogens. Hence, the use of water during cleaning and sanitation of dry food manufacturing facilities should be limited. However, much less research has been done on these dry methods compared to wet sanitation methods. This review discusses recent foodborne outbreaks and recalls associated with low-moisture foods the accepted methods for cleaning and sanitation in dry food manufacturing facilities and the limitations of these methods. The potential for air impingement as a dry-cleaning method is also detailed.


Assuntos
Microbiologia de Alimentos , Salmonella , Humanos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Alérgenos/análise , Água
18.
ACS Appl Mater Interfaces ; 16(4): 4540-4549, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227931

RESUMO

A proton exchange ionomer is one of the most important components in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFCs). It acts as both a proton conductor and a binder for nanocatalysts and carbon supports. The structure and the wetting conditions of the MEAs have a great impact on the microenvironment at the three-phase interphases in the MEAs, which can significantly influence the electrode kinetics such as the oxygen reduction reaction (ORR) at the cathode. Herein, by using the Pt(111)|X ionomer interface as a model system (X = Nafion, Aciplex, D72), we find that higher drying temperature lowers the onset potential for sulfonate adsorption and reduces apparent ORR current, while the current wave for OHad formation drops and shifts positively. Surprisingly, the intrinsic ORR activity is higher after properly correcting the blocking effect of Pt active sites by sulfonate adsorption and the poly(tetrafluoroethylene) (PTFE) skeleton. These results are well explained by the reduced water activity at the interfaces induced by the ionomer/PTFE, according to the mixed potential effect. Implications for how to prepare MEAs with improved ORR activity are provided.

19.
Food Sci Biotechnol ; 33(2): 485-490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222922

RESUMO

In this study, the effect of environmental aw on microbial inactivation by intense pulsed light (IPL) was investigated. Three different microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast) were used as test organisms. The effect of environmental aw was assessed by irradiating each microbial suspension in sodium chloride solutions with different environmental aw levels (0.99-0.80). As the aw decreased, the aggregation of intracellular material of cell interior was changed and the cell number was increased. However, there was no significant difference in microbial reduction according to the aw after the 0.23-3.05 J/cm2 of IPL treatment. It was confirmed that yeast had the highest resistance to IPL because of the differences in cell structure and cell wall components between yeast and bacteria. Additional research is needed to clearly understand the inactivation mechanism according to the type of microorganism by controlling aw using various solutes.

20.
Molecules ; 29(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257219

RESUMO

In the literature, there are few reports indicating hydrocolloids as a factor capable of reducing the amount of acrylamide formed in food. Therefore, the aim of the study was to examine the ability of soluble oat fiber to reduce the amount of acrylamide formed in the process of obtaining rusks. The effect of the concentration of ß-glucans in oat fiber preparations at 20% and 30% and the amount of preparations used at 10%, 15%, and 20% was investigated. On the basis of the obtained test results, it was shown that the most optimal concentration of oat fiber preparation in rusks recipe is at 15%, regardless of the content of ß-glucan in it. This concentration makes it possible to reduce the amount of acrylamide formed in baked goods and rusks by ~70% and ~60%, respectively, while maintaining the desired physical and chemical properties of the product. In addition, it was shown that the browning index and water activity strongly correlate with the content of acrylamide in rusks, which makes them good markers of this compound in rusks. The use of hydrocolloids in the form of oat fiber preparations with different contents of ß-glucan as a tool for reducing the amount of acrylamide in rusks, at the same time, offers the possibility of enriching these products with a soluble dietary fiber with health properties.


Assuntos
Pão , beta-Glucanas , Acrilamida , Avena , Coloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...