Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
1.
Heliyon ; 10(11): e31835, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947454

RESUMO

During the measurement of multiphase flow in low yield oil wells, the liquid volume will vary with the operating characteristics of the pumping unit. Using the pulsating characteristics of the up and down strokes of a pumping unit, the flow rate is measured when there is a flow rate on the up stroke, and the water content is measured when the fluid is stationary on the down stroke. In this paper, the heat transfer method is used to measure the water content of the oil water mixture during the down stroke process. At this time, the water content can be expressed as the instantaneous water content of the oil well. Firstly, the feasibility of measuring water content using heat transfer method is demonstrated theoretically, and then the temperature change of the heating probe PT300 is simulated. Finally, the actual temperature of PT300 is measured experimentally. Comparing the experimental value with the simulation value, the calculated measurement error is within 1.27 %, which indicates that the heat transfer method is feasible for measuring water content. Using the same single sensor to measure oil water two-phase flow using the pulsation characteristics of the up and down strokes of a pumping unit is a major innovation in this paper. And lays a foundation for the detection of multiphase flow using heat transfer methods. The successful implementation of the text heat transfer method for measuring water content has broken the previous situation of multiple sensor detection, simplified the structure of multiphase flow instruments, and extended the life of the instrument.

2.
Tree Physiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952005

RESUMO

Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. While Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncertainties in sensor calibration linked to wood properties and species variability, impeding its wider usage. We sampled tropical forest trees and palms in eastern Amazônia, to evaluate how sensor output differences are controlled by wood density, temperature and taxonomic identity. Three individuals per species were felled and cut into segments (total n = 262), within a diverse dataset comprising five dicotyledonous tree-and three monocotyledonous palm species on a wide range of wood densities. Water content was estimated gravimetrically for each segment using a temporally explicit wet-up/dry-down approach, and the relationship with the dielectric permittivity was examined. Woody tissue density had no significant impact on the calibration, but species identity and temperature significantly affected sensor readings. The temperature artefact was quantitatively important at large temperature differences which may have led to significant bias of daily and seasonal water content dynamics in previous studies. We established the first tropical tree and palm calibration equation that performed well for estimating water content. Notably, we demonstrated that the sensitivity remained consistent across species, enabling the creation of a simplified one-slope calibration for accurate, species-independent measurements of relative water content. Our one-slope calibration serves as a general, and species-independent standard calibration for assessing relative water content in woody tissue, offering a valuable tool for quantifying drought responses and stress in trees and forest ecosystems.

3.
J Plant Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977619

RESUMO

Stem water content serves as a pivotal parameter that reflects the plant vitality and maintains their internal water balance. Given the insufficient comprehension regarding the stem water content characteristics and its influencing factors during different stages of the overwintering period, the study focused on Acer truncatum Bunge and developed an Internet of Things (IoT)-based ecological information monitoring system. The system incorporated a proprietary stem water content sensor, allowing non-invasive, in-situ and real time acquisition of stem water content while monitoring diverse environmental parameters. We conducted a detailed elucidation of stem water content variation characteristics and their responses to diverse environmental factors. The results showed: (1) During the overwintering period, stem water content exhibited diurnal variations characterized by " daytime ascent and nighttime descent" across the three stages, exhibiting differences in the moment when the stem water content reaches extremal values and daily fluctuations ranges. Stem water content exhibited minimal fluctuations during deciduous and bud-breaking stages but experienced significant freezing-thawing alternations during the dormant stage, leading to an increased daily fluctuation range. (2) The Pearson correlation coefficients between environmental parameters and stem water content varied dynamically across stages. Path analysis revealed that during the deciduous stage, stem temperature and saturation vapor pressure deficit were dominant factors influencing stem water content; during dormant stage, air temperature and saturation vapor pressure deficit directly impacted stem water content; during the bud-breaking stage, the primary parameters affecting stem water content were saturation vapor pressure deficit and stem temperature. The study provides valuable insights into unveiling the water transport patterns within tree stems tissue and their environmental adaptation mechanisms during the overwintering period, aiding in the scientific development of winter management strategies to protect trees from severe cold and freezing damage, while fostering healthy growth in the subsequent year.

4.
mSystems ; : e0009924, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980057

RESUMO

Recent studies have revealed diverse RNA viral communities in soils. Yet, how environmental factors influence soil RNA viruses remains largely unknown. Here, we recovered RNA viral communities from bulk metatranscriptomes sequenced from grassland soils managed for 5 years under multiple environmental conditions including water content, plant presence, cultivar type, and soil depth. More than half of the unique RNA viral contigs (64.6%) were assigned with putative hosts. About 74.7% of these classified RNA viral contigs are known as eukaryotic RNA viruses suggesting eukaryotic RNA viruses may outnumber prokaryotic RNA viruses by nearly three times in this grassland. Of the identified eukaryotic RNA viruses and the associated eukaryotic species, the most dominant taxa were Mitoviridae with an average relative abundance of 72.4%, and their natural hosts, Fungi with an average relative abundance of 56.6%. Network analysis and structural equation modeling support that soil water content, plant presence, and type of cultivar individually demonstrate a significant positive impact on eukaryotic RNA viral richness directly as well as indirectly on eukaryotic RNA viral abundance via influencing the co-existing eukaryotic members. A significant negative influence of soil depth on soil eukaryotic richness and abundance indirectly impacts soil eukaryotic RNA viral communities. These results provide new insights into the collective influence of multiple environmental and community factors that shape soil RNA viral communities and offer a structured perspective of how RNA virus diversity and ecology respond to environmental changes. IMPORTANCE: Climate change has been reshaping the soil environment as well as the residing microbiome. This study provides field-relevant information on how environmental and community factors collectively shape soil RNA communities and contribute to ecological understanding of RNA viral survival under various environmental conditions and virus-host interactions in soil. This knowledge is critical for predicting the viral responses to climate change and the potential emergence of biothreats.

5.
Respir Care ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981654

RESUMO

BACKGROUND: A model system described in International Organization for Standardization 9360 is the standard method for estimating the humidifying performance of heat-and-moisture exchangers (HMEs). However, there are no reliable bedside methods for evaluating the ongoing humidification performance of HMEs. Therefore, this study aimed to develop 2 clinically applicable methods for estimating the ongoing humidifying performance of HMEs and to evaluate their reliability in a model system. METHODS: Physiologically expired gas was simulated using a heated humidifier, and ventilation was delivered using a ventilator with constant flow through 3 different types of HMEs. Relative humidity (RH) was measured using a capacitive-type moisture sensor. Water content lost during expiration was calculated by integrating absolute humidity (AH), instantaneous gas flow measured at the expiratory outlet of the ventilator, and time. We also calculated the water content released and captured by the HMEs during tidal ventilation by integrating the difference in AH across the HMEs, instantaneous gas flow, and time. RESULTS: We found that the RH, temperature, and AH were almost constant on the expiratory outlet of the ventilator but rapidly varied near the HMEs. The water content lost by the 3 HMEs was associated with the manufacturer-reported values and inversely correlated with the calculated values of the water content exchanged by the HMEs. The water content released and captured by HMEs was closely correlated with the difference in HME weight measured at the end of inspiration and expiration; however, the water content captured by HMEs seemed to be overestimated. CONCLUSIONS: Our results demonstrated that our system was able to detect the differences in the performance of 3 models of HMEs and suggest that our method for calculating water loss is reliable for estimating the water retention performance of HMEs during mechanical ventilation, even in the presence of a constant flow.

6.
Plants (Basel) ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891369

RESUMO

Sufficient soil moisture is required to ensure the successful transplantation of sweet potato seedlings. Thus, reasonable water management is essential for achieving high quality and yield in sweet potato production. We conducted field experiments in northern China, planted on 18 May and harvested on 18 October 2021, at the Nancun Experimental Base of Qingdao Agricultural University. Three water management treatments were tested for sweet potato seedlings after transplanting: hole irrigation (W1), optimized drip irrigation (W2), and traditional drip irrigation (W3). The variation characteristics of soil volumetric water content, soil temperature, and soil CO2 concentration in the root zone were monitored in situ for 0-50 days. The agronomy, root morphology, photosynthetic parameters, 13C accumulation, yield, and yield components of sweet potato were determined. The results showed that soil VWC was maintained at 22-25% and 27-32% in the hole irrigation and combined drip irrigation treatments, respectively, from 0 to 30 days after transplanting. However, there was no significant difference between the traditional (W3) and optimized (W2) drip irrigation systems. From 30 to 50 days after transplanting, the VWC decreased significantly in all treatments, with significant differences among all treatments. Soil CO2 concentrations were positively correlated with VWC from 0 to 30 days after transplanting but gradually increased from 30 to 50 days, with significant differences among treatments. Soil temperature varied with fluctuations in air temperature, with no significant differences among treatments. Sweet potato survival rates were significantly lower in the hole irrigation treatments than in the drip irrigation treatments, with no significant difference between W2 and W3. The aboveground biomass, photosynthetic parameters, and leaf area index were significantly higher under drip irrigation than under hole irrigation, and values were higher in W3 than in W2. However, the total root length, root volume, and 13C partitioning rate were higher in W2 than in W3. These findings suggest that excessive drip irrigation can lead to an imbalance in sweet potato reservoir sources. Compared with W1, the W2 and W3 treatments exhibited significant yield increases of 42.98% and 36.49%, respectively. The W2 treatment had the lowest sweet potato deformity rate.

7.
Plants (Basel) ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891386

RESUMO

This study investigated the thermal properties of potato and hop pollen for cryopreservation and subsequent cross-breeding. Phase transitions and frozen water content in selected pollen samples were measured using a differential scanning calorimeter (DSC). Unlike hop pollen, potato pollen showed high variability in thermal properties and water content. Three specific types of pollen samples based on their thermal characteristics and water content were distinguished by DSC in potato: (1) 'glassy', with a water content lower than 0.21 g water per g dry matter; (2) 'transient', with a water content between 0.27 and 0.34 g of water per g of dry matter; (3) 'frozen', with a water content higher than 0.34 g of water per g of dry matter. Only the 'glassy' pollen samples with a low water content showed suitable properties for its long-term storage using cryopreservation in potato and hops. Cryopreservation of pollen did not significantly reduce its viability, and cryopreserved pollen was successfully used to produce both potato and hop hybrids. The results indicate that cryopreservation is a feasible technique for the preservation and utilization of pollen of these crops in the breeding process.

8.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894320

RESUMO

In this study, a two-port network-based microwave sensor for liquid characterization is presented. The suggested sensor is built as a miniature microwave resonator using the third iteration of Hilbert's fractal architecture. The suggested structure is used with the T-resonator to raise the sensor quality factor. The suggested sensor is printed on a FR4 substrate and has a footprint of 40×60×1.6mm3. Analytically, a theoretical investigation is made to clarify how the suggested sensor might function. The suggested sensor is created and put to the test in an experiment. Later, two pans to contain the urine Sample Under Test (SUT) are printed on the sensor. Before loading the SUT, it is discovered that the suggested structure's frequency resonance is 0.46 GHz. An 18 MHz frequency shift is added to the initial resonance after the pans are printed. They monitor the S-parameters in terms of S12 regarding the change in water content in the urine samples, allowing for the sensing component to be completed. As a result, 10 different samples with varying urine percentages are added to the suggested sensor to evaluate its ability to detect the presence of urine. Finally, it is discovered that the suggested process' measurements and corresponding simulated outcomes agreed quite well.


Assuntos
Micro-Ondas , Água , Água/química , Humanos , Urina/química
9.
Sci Rep ; 14(1): 14672, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918471

RESUMO

Investigating differences in resistance to alkaline stress among three willow species can provide a theoretical basis for planting willow in saline soils. Therefore we tested three willow species (Salix matsudana, Salix gordejevii and Salix linearistipularis), already known for their high stress tolerance, to alkaline stress environment at different pH values under hydroponics. Root and leaf dry weight, root water content, leaf water content, chlorophyll content, photosynthesis and chlorophyll fluorescence of three willow cuttings were monitored six times over 15 days under alkaline stress. With the increase in alkaline stress, the water retention capacity of leaves of the three species of willow cuttings was as follows: S. matsudana > S. gordejevii > S. linearistipularis and the water retention capacity of the root system was as follows: S. gordejevii > S. linearistipularis > S. matsudana. The chlorophyll content was significantly reduced, damage symptoms were apparent. The net photosynthetic rate (Pn), rate of transpiration (E), and stomatal conductance (Gs) of the leaves showed a general trend of decreasing, and the intercellular CO2 concentration (Ci) of S. matsudana and S. gordejevii first declined and then tended to level off, while the intercellular CO2 concentration of S. linearistipularis first declined and then increased. The quantum yield and energy allocation ratio of the leaf photosystem II (PSII) reaction centre changed significantly (φPo, Ψo and φEo were obviously suppressed and φDo was promoted). The photosystem II (PSII) reaction centre quantum performance index and driving force showed a clear downwards trend. Based on the results it can be concluded that alkaline stress tolerance of three willow was as follows: S. matsudana > S. gordejevii > S. linearistipularis. However, since the experiment was done on young seedlings, further study at saplings stage is required to revalidate the results.


Assuntos
Clorofila , Fotossíntese , Folhas de Planta , Salix , Estresse Fisiológico , Salix/metabolismo , Salix/fisiologia , Salix/crescimento & desenvolvimento , Clorofila/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Concentração de Íons de Hidrogênio , Água/metabolismo , Transpiração Vegetal/fisiologia
10.
Sci Rep ; 14(1): 14434, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910171

RESUMO

Off-line leachate collection from agricultural landscapes cannot guarantee precise evaluation of agricultural non-point source (ANPS) due to geospatial variations, time, and transportation from the field to the laboratory. Implementing an in-situ nitrogen and phosphorous monitoring system with a robust photochemical flow analysis is imperative for precision agriculture, enabling real-time intervention to minimize non-point source pollution and overcome the limitations posed by conventional analysis in laboratory. A reliable, robust and in-situ approach was proposed to monitor nitrogen and phosphorous for determining ANPS pollution. In this study, a home-made porous ceramic probe and the frequency domain reflectometer (FDR) based water content sensors were strategically placed at different soil depths to facilitate the collection of leachates. These solutions were subsequently analyzed by in-situ photochemical flow analysis monitoring system built across the field to estimate the concentrations of phosphorus and nitrogen. After applying both natural and artificial irrigation to the agricultural landscape, at least 10 mL of soil leachates was consistently collected using the porous ceramic probe within 20 min, regardless of the depth of the soil layers when the volumetric soil water contents are greater than 19%. The experimental results showed that under different weather conditions and irrigation conditions, the soil water content of 50 cm and 90 cm below the soil surface was 19.58% and 26.08%, respectively. The average concentrations of NH4+-N, NO3--N, PO43- are 0.584 mg/L, 15.7 mg/L, 0.844 mg/L, and 0.562 mg/L, 16.828 mg/L and 0.878 mg/L at depths of 50 cm and 90 cm below the soil surface, respectively. Moreover, the comparison with conventional laboratory spectroscopic analysis confirmed R2 values of 0.9951, 0.9943, 0.9947 average concentration ranges of NH4+-N, NO3--N, and PO43-, showcasing the accuracy and reliability of robust photochemical flow analysis in-situ monitoring system. The suggested monitoring system can be helpful in the assessment of soil nutrition for precision agriculture.

11.
Plant Methods ; 20(1): 97, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909230

RESUMO

Leaf water content (LWC) is a vital indicator of crop growth and development. While visible and near-infrared (VIS-NIR) spectroscopy makes it possible to estimate crop leaf moisture, spectral preprocessing and multiband spectral indices have important significance in the quantitative analysis of LWC. In this work, the fractional order derivative (FOD) was used for leaf spectral processing, and multiband spectral indices were constructed based on the band-optimization algorithm. Eventually, an integrated index, namely, the multiband spectral index (MBSI) and moisture index (MI), is proposed to estimate the LWC in spring wheat around Fu-Kang City, Xinjiang, China. The MBSIs for LWC were calculated from two types of spectral data: raw reflectance (RR) and the spectrum based on FOD. The LWC was estimated by combining machine learning (K-nearest neighbor, KNN; support vector machine, SVM; and artificial neural network, ANN). The results showed that the fractional derivative pretreatment of spectral data enhances the implied information of the spectrum (the maximum correlation coefficient appeared using a 0.8-order differential) and increases the number of sensitive bands, especially in the near-infrared bands (700-1100 nm). The correlations between LWC and the two-band index (RVI1156, 1628 nm), three-band indices (3BI-3(766, 478, 1042 nm), 3BI-4(1129, 1175, 471 nm), 3BI-5(814, 929, 525 nm), 3BI-6(1156, 1214, 802 nm), 3BI-7(929, 851, 446 nm)) based on FOD were higher than that of moisture indices and single-band spectrum, with r of - 0.71**, 0.74**, 0.73**, - 0.72**, 0.75** and - 0.76** for the correlation. The prediction accuracy of the two-band spectral indices (DVI(698, 1274 nm) DVI(698, 1274 nm) DVI(698, 1274 nm)) was higher than that of the moisture spectral index, with R2 of 0.81 and R2 of 0.79 for the calibration and validation, respectively. Due to a large amount of spectral indices, the correlation coefficient method was used to select the characteristic spectral index from full three-band indices. Among twenty seven models, the FWBI-3BI- 0.8 order model performed the best predictive ability (with an R2 of 0.86, RMSE of 2.11%, and RPD of 2.65). These findings confirm that combining spectral index optimization with machine learning is a highly effective method for inverting the leaf water content in spring wheat.

12.
Environ Pollut ; 358: 124472, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945190

RESUMO

In recent years, there has been a growing concern about air pollution and its impact on the air quality and human health, especially for fine particulate matter (PM2.5) and its associated secondary aerosols in urban areas. This study conducted a year-long field campaign to collect PM2.5 samples day and night in an urban area of central Taiwan. Higher PM2.5 mass concentrations were observed in winter (27.7 ± 9.7 µg/m3), followed by autumn (22.5 ± 8.3 µg/m3), spring (19.2 ± 6.4 µg/m3), and summer (11.0 ± 3.1 µg/m3). The dominant formation mechanism of secondary inorganic aerosols was heterogeneous reactions of NO3- at night and homogeneous reactions of SO42- during the day. Additionally, significant correlations were observed between aerosol liquid water content (ALWC) and NO3- during nighttime, indicating the importance of aqueous-phase NO3- formation. The role of aerosol acidity was explored and a unique alkaline condition was found in spring and summer, which showed lower PM2.5 concentrations than the neutralized condition. Under the neutralized condition, higher PM2.5 concentrations were commonly found when combining the ammonium-rich regime with molar ratios of [NO3-]/[SO42-] exceeding 1.6, suggesting the importance of reducing both NH3 and NOx. Furthermore, the results showed that reducing NH3 should be prioritized under high temperature conditions, while reducing NOx became important under low temperature conditions. Clustering of backward trajectories showed that long-range transport could enhance the formation of secondary aerosols, but local emissions emerged as the main factor driving high PM2.5 concentrations. This study provides insights for policymakers to improve air quality, suggesting that different mitigation strategies should be formulated based on meteorological variables and that using clean energy for vehicles and electricity generation is important to alleviate air pollution.

13.
Plant Cell Environ ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874284

RESUMO

Being poikilohydric, lichens are inherently exposed to alternating desiccation and hydration cycles. They can exhibit extraordinary resistance to extreme temperatures in a dehydrated state but thermal thresholds for hydrated lichens are lower. The ability of the lichen Cetraria aculeata to recovery after high temperature treatment (40°C, 60°C) at different air humidity levels (relative humidity [RH]: <15%, 25%, 50%, 75%, ≅100%) was examined to find a linkage between passive dehydration of the lichen and its physiological resistance to heat stress. The response to heating was determined by measuring parameters related to photosynthesis and respiration after 2- and 24-h recovery. A higher RH level resulted in a slower decline in relative water content (RWC) in hydrated thalli. In turn, the stress resistance of active thalli depended on the ambient humidity and associated RWC reduction. Elevated temperature had a negative impact on bioenergetic processes, but only an unnatural state of permanent full hydration during heat stress resulted in a lethal effect. Hydrated lichen thalli heated at 40°C and 50% relative humidity (RH) tended to be least susceptible to stress-induced damage. Although atypical climatic conditions may lead lichens to lethal thresholds, the actual likelihood of deadly threat to lichens due to heat events per se is debatable.

14.
Ann Bot ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833416

RESUMO

BACKGROUND AND SCOPE: Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow similar trait correlations as non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment - referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. CONCLUSION: Both SWC and WMA at a given SLA were approximately 10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis revealed that succulent-taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) and sclerophyllous taxa (P < 0.0001) along the first PCA axis, that explained 63% of mean trait expression among species. However, aridity only explained 12% of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. Results show that trait coordination in succulent leaf taxa may not follow similar patterns as widely studied non-succulent taxa.

15.
Heliyon ; 10(11): e31544, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882271

RESUMO

Drought stress poses a significant threat to Brassica napus (L.), impacting its growth, yield, and profitability. This study investigates the effects of foliar application of individual and interactive pharmaceutical (Paracetamol; 0 and 250 mg L-1) and amino acid (0 and 4 ml/L) on the growth, physiology, and yield of B. napus under drought stress. Seedlings were subjected to varying levels of drought stress (100% field capacity (FC; control) and 50% FC). Sole amino acid application significantly improved chlorophyll content, proline content, and relative water contents, as well as the activities of antioxidative enzymes (such as superoxide dismutase and catalase) while potentially decreased malondialdehyde and hydrogen peroxide contents under drought stress conditions. Pearson correlation analysis revealed strong positive correlations between these parameters and seed yield (R2 = 0.8-1), indicating their potential to enhance seed yield. On the contrary, sole application of paracetamol exhibited toxic effects on seedling growth and physiological aspects of B. napus. Furthermore, the combined application of paracetamol and amino acids disrupted physio-biochemical functions, leading to reduced yield. Overall, sole application of amino acids proves to be more effective in ameliorating the negative effects of drought on B. napus.

16.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892245

RESUMO

Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Tolerância ao Sal , Solanum , Tolerância ao Sal/genética , Solanum/genética , Solanum/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Ligação Genética , Genes de Plantas
17.
Front Neurol ; 15: 1402129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938782

RESUMO

Objective: There is currently a lack of evidence in evidence-based medicine regarding acupuncture treatment for experimental intracerebral hemorrhage (ICH). The aim of this study was to systematically evaluate the efficacy of acupuncture treatment for experimental ICH based on neurological function scores and brain water content (BWC). Methods: Eight mainstream Chinese and English databases were searched. Outcome measures included neurological function scores and BWC, and subgroup analysis was conducted based on study characteristics. Results: A total of 32 studies were included. Meta-analysis results indicated that compared to the control group, the acupuncture group showed significant reductions in mNSS (MD = -3.16, p < 0.00001), Bederson score (MD = -0.99, p < 0.00001), Longa score (MD = -0.54, p < 0.0001), and brain water content (MD = -5.39, p < 0.00001). Subgroup analysis revealed that for mNSS, the autologous blood model (MD = -3.36) yielded better results than the collagenase model (MD = -0.92, p < 0.00001), and simple fixation (MD = -3.38) or no fixation (MD = -3.39) was superior to sham acupuncture (MD = -0.92, p < 0.00001). For BWC, the autologous blood model (MD = -7.73) outperformed the collagenase model (MD = -2.76, p < 0.00001), and GV20-GB7 (MD = -7.27) was more effective than other acupuncture points (MD = -2.92, p = 0.0006). Conclusion: Acupuncture significantly improves neurological deficits and brain edema in experimental ICH. Acupuncture at GV20 - GB7 is more effective than at other points. These findings support further studies to translate acupuncture into clinical treatment for human ICH. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023435584.

18.
J Hazard Mater ; 476: 134905, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941827

RESUMO

Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.

19.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930324

RESUMO

The aim of this study was to evaluate the mobility of copper (Cu) and zinc (Zn) and their impact on the properties of bentonites and unfrozen water content. Limited research in this area necessitates further analysis to prevent the negative effects of metal interactions on bentonite effectiveness. Tests involved American (SWy-3, Stx-1b) and Slovak (BSvk) bentonite samples with Zn or Cu ion exchange. Sequential extraction was performed using the Community Bureau of Reference (BCR) method. Elemental content was analyzed via inductively coupled plasma optical emission spectrometry (ICP-OES). Unfrozen water content was measured using nuclear magnetic resonance (1H-NMR) and differential scanning calorimetry (DSC). Results showed a significant influence of the main cation (Zn or Cu) on ion mobility, with toxic metal concentrations increasing mobility and decreasing residual fractions. Mobile Zn fractions increased with larger particle diameters, lower clay content, and shorter interplanar spacing, while the opposite was observed for Cu. Zn likely accumulated in larger clay pores, while Cu was immobilized in the bentonite complex. The stability of Zn or Cu ions increased with higher clay content or specific surface area. Residual Zn or Cu fractions were highest in uncontaminated bentonites with higher unfrozen water content, suggesting the potential formation of concentrated solutions in sub-zero temperatures, posing a threat to the clay-water environment, especially in cold regions.

20.
Nutrients ; 16(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931252

RESUMO

Breast milk contains numerous factors that are involved in the maturation of the immune system and development of the gut microbiota in infants. These factors include transforming growth factor-ß1 and 2, immunoglobin A, and lactoferrin. Breast milk factors may also affect epidermal differentiation and the stratum corneum (SC) barrier in infants, but no studies examining these associations over time during infancy have been reported. In this single-center exploratory study, we measured the molecular components of the SC using confocal Raman spectroscopy at 0, 1, 2, 6, and 12 months of age in 39 infants born at our hospital. Breast milk factor concentrations from their mothers' breast milk were determined. Correlation coefficients for the two datasets were estimated for each molecular component of the SC and breast milk factor at each age and SC depth. The results showed that breast milk factors and molecular components of the SC during infancy were partly correlated with infant age in months and SC depth, suggesting that breast milk factors influence the maturation of the SC components. These findings may improve understanding of the pathogenesis of skin diseases associated with skin barrier abnormalities.


Assuntos
Epiderme , Leite Humano , Humanos , Leite Humano/química , Lactente , Feminino , Estudos Prospectivos , Recém-Nascido , Masculino , Epiderme/metabolismo , Epiderme/química , Estudos Longitudinais , Lactoferrina/análise , Lactoferrina/metabolismo , Análise Espectral Raman , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...