RESUMO
Given the increasing utilization of forest components in integration systems worldwide, coupled with the growing demand for food in regions facing water restrictions, this study aims to evaluate how physiological and biochemical parameters contribute to the diversification of adaptive mechanisms among native species and eucalyptus genotypes intercropped with soybean or corn. The native tree species Anadenanthera macrocarpa and Dipteryx alata, and the eucalyptus genotypes Urograndis I-144 and Urocam VM01, were grown in soybean and corn intercropping areas and evaluated in fall, winter, spring, and summer. The study evaluated morning water potential, chloroplast pigment concentration, gas exchange, cell damage, and antioxidant enzyme activity. Intercropped with soybean, development the of A. macrocarpa improved through instantaneous water use efficiency, energy use by the electron transport chain, chloroplast pigments, and catalase enzyme activity. On the other hand, A. macrocarpa when, intercropped with corn, despite increasing energy absorption by the reaction center, there is a need for non-photochemical dissipation and in the activity of the enzymes superoxide dismutase and ascorbate peroxidase in response to water and oxidative deficits. In D. alata, the physiological and biochemical responses were not influenced by intercropping but by seasons, with increased chloroplast pigments in fall and electron transport in summer. However, in corn intercropping, the dissipation of excess energy allowed leaf acclimatization. The I-144 and VM01 genotypes also showed no significant differences between intercrops. The results describe photosynthetic and biochemical challenges in the native species A. macrocarpa intercropped with corn, such as a greater need for enzymatic and non-enzymatic defense mechanisms in response to more negative water potential. In D. alata, the challenges are present in both intercrops due to improved mechanisms to protect the photosynthetic apparatus. The survival of the I-144 genotype may be inefficient in both intercrops under prolonged drought conditions, as it modifies the photosystem; in contrast, genotype VM01 was the most adapted to the system for using captured energy, reducing water loss and being resilient.
RESUMO
Predicting how plants respond to drought requires an understanding of how physiological mechanisms and drought response strategies occur, as these strategies underlie rates of gas exchange and productivity. We assessed the response of 11 plant traits to repeated experimental droughts in four co-occurring species of central Australia. The main goals of this study were to: (i) compare the response to drought between species; (ii) evaluate whether plants acclimated to repeated drought; and (iii) examine the degree of recovery in leaf gas exchange after cessation of drought. Our four species of study were two tree species and two shrub species, which field studies have shown to occupy different ecohydrological niches. The two tree species (Eucalyptus camaldulensis Dehnh. and Corymbia opaca (D.J.Carr & S.G.M.Carr) K.D.Hill & L.A.S.Johnson) had large reductions in stomatal conductance (gs) values, declining by 90% in the second drought. By contrast, the shrub species (Acacia aptaneura Maslin & J.E.Reid and Hakea macrocarpa A.Cunn. ex R.Br.) had smaller reductions gs in the second drought of 52 and 65%, respectively. Only A. aptaneura showed a physiological acclimatation to drought due to small declines in gs versus á´ªpd (0.08 slope) during repeated droughts, meaning they maintained higher rates of gs compared with plants that only experienced one final drought (0.19 slope). All species in all treatments rapidly recovered leaf gas exchange and leaf mass per area following drought, displaying physiological plasticity to drought exposure. This research refines our understanding of plant physiological responses to recurrent water stress, which has implications for modelling of vegetation, carbon assimilation and water use in semi-arid environments under drought.
Assuntos
Secas , Folhas de Planta , Árvores , Folhas de Planta/fisiologia , Árvores/fisiologia , Austrália , Transpiração Vegetal/fisiologia , Especificidade da Espécie , Aclimatação/fisiologiaRESUMO
Oil palm (Elaeis guineensis Jacq.) is a highly productive crop economically significant for food, cosmetics, and biofuels. Abiotic stresses such as low water availability, salt accumulation, and high temperatures severely impact oil palm growth, physiology, and yield by restricting water flux among soil, plants, and the environment. While drought stress's physiological and biochemical effects on oil palm have been extensively studied, the molecular mechanisms underlying drought stress tolerance remain unclear. Under water deficit conditions, this study investigates two commercial E. guineensis cultivars, IRHO 7001 and IRHO 2501. Water deficit adversely affected the physiology of both cultivars, with IRHO 2501 being more severely impacted. After several days of water deficit, there was a 40% reduction in photosynthetic rate (A) for IRHO 7001 and a 58% decrease in IRHO 2501. Further into the drought conditions, there was a 75% reduction in A for IRHO 7001 and a 91% drop in IRHO 2501. Both cultivars reacted to the drought stress conditions by closing stomata and reducing the transpiration rate. Despite these differences, no significant variations were observed between the cultivars in stomatal conductance, transpiration, or instantaneous leaf-level water use efficiency. This indicates that IRHO 7001 is more tolerant to drought stress than IRHO 2501. A differential gene expression and network analysis was conducted to elucidate the differential responses of the cultivars. The DESeq2 algorithm identified 502 differentially expressed genes (DEGs). The gene coexpression network for IRHO 7001 comprised 274 DEGs and 46 predicted HUB genes, whereas IRHO 2501's network included 249 DEGs and 3 HUB genes. RT-qPCR validation of 15 DEGs confirmed the RNA-Seq data. The transcriptomic profiles and gene coexpression network analysis revealed a set of DEGs and HUB genes associated with regulatory and transcriptional functions. Notably, the zinc finger protein ZAT11 and linoleate 13S-lipoxygenase 2-1 (LOX2.1) were overexpressed in IRHO 2501 but under-expressed in IRHO 7001. Additionally, phytohormone crosstalk was identified as a central component in the response and adaptation of oil palm to drought stress.
Assuntos
Arecaceae , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Transcriptoma , Estresse Fisiológico/genética , Arecaceae/genética , Arecaceae/fisiologia , Arecaceae/metabolismo , Perfilação da Expressão Gênica , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Polylepis trees grow at elevations above the continuous tree line (3000-5000 m a.s.l.) across the Andes. They tolerate extreme environmental conditions, making them sensitive bioindicators of global climate change. Therefore, investigating their ecohydrological role is key to understanding how the water cycle of Andean headwaters could be affected by predicted changes in environmental conditions, as well as ongoing Polylepis reforestation initiatives in the region. We estimate, for the first time, the annual water balance of a mature Polylepis forest (Polylepis reticulata) catchment (3780 m a.s.l.) located in the south Ecuadorian páramo using a unique set of field ecohydrological measurements including gross rainfall, throughfall, streamflow, and xylem sap flow in combination with the characterization of forest and soil features. We also compare the forest water balance with that of a tussock grass (Calamagrostis intermedia) catchment, the dominant páramo vegetation. Annual gross rainfall during the study period (April 2019-March 2020) was 1290.6 mm yr-1. Throughfall in the Polylepis forest represented 61.2 % of annual gross rainfall. Streamflow was the main component of the water balance of the forested site (59.6 %), while its change in soil water storage was negligible (<1 %). Forest evapotranspiration was 54.0 %, with evaporation from canopy interception (38.8 %) more than twice as high as transpiration (15.1 %). The error in the annual water balance of the Polylepis catchment was small (<15 %), providing confidence in the measurements and assumptions used to estimate its components. In comparison, streamflow and evapotranspiration at the grassland site accounted for 63.7 and 36.0 % of the water balance, respectively. Although evapotranspiration was larger in the forest catchment, its water yield was only marginally reduced (<4 %) in relation to the grassland catchment. The substantially higher soil organic matter content in the forest site (47.6 %) compared to the grassland site (31.8 %) suggests that even though Polylepis forests do not impair the hydrological function of high-Andean catchments, their presence contributes to carbon storage in the litter layer of the forest and the underlying soil. These findings provide key insights into the vegetation-watercarbon nexus in high Andean ecosystems, which can serve as a basis for future ecohydrological studies and improved management of páramo natural resources considering changes in land use and global climate.
Assuntos
Monitoramento Ambiental , Florestas , Equador , Clima Tropical , Hidrologia , Mudança Climática , Solo/química , Árvores , Altitude , Ciclo Hidrológico , Chuva , ÁguaRESUMO
Addressing urban water management challenges requires a holistic view. Sustainable approaches such as blue-green infrastructure (BGI) provide several benefits, but assessing their effectiveness demands a systemic approach. Challenges are magnified in informal areas, leading to the combination of integrated urban water management (IUWM) with BGI as a proposed solution by this research. We employed the Urban Water Use (UWU) model to assess the effectiveness index (EI) of BGI measures in view of IUWM after stakeholder consultation. The procedure in this novel assessment includes expert meetings for scenario building and resident interviews to capture the community's vision. To assess the impact of IUWM on the effectiveness of BGI measures, we proposed a simulation with BGI only and then three simulations with improvements to the water and sewage systems. The results of the EI analysis reveal a substantial improvement in the effectiveness of BGI measures through IUWM combination. Moreover, we offer insights into developing strategies for UWU model application in informal settlements, transferrable to diverse urban areas. The findings hold relevance for policymakers and urban planners, aiding informed decisions in urban water management.
Assuntos
Abastecimento de Água , Cidades , Conservação dos Recursos Hídricos , Conservação dos Recursos Naturais , EsgotosRESUMO
Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.
Assuntos
Carbono , Eucalyptus , Fotossíntese , Árvores , Água , Madeira , Eucalyptus/fisiologia , Eucalyptus/metabolismo , Carbono/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Água/metabolismo , Madeira/fisiologia , Transpiração Vegetal/fisiologia , Modelos BiológicosRESUMO
In regions where water is a limited resource, lettuce production can be challenging. To address this, water management strategies like deficit irrigation are used to improve water-use efficiency in agriculture. Associating this strategy with silicon (Si) application could help maintain adequate levels of agricultural production even with limited water availability. Two lettuce crop cycles were conducted in a completely randomized design, with a factorial scheme (2 × 3), with three irrigation levels (60%, 80% and 100%) of crop evapotranspiration (ETc), and with and without Si application. To explore their combined effects, morphological, productive, physiological and nutritional parameters were evaluated in the crops. The results showed that deficit irrigation and Si application had a positive interaction: lettuce yield of the treatment with 80% ETc + Si was statistically similar to 100% ETc without Si in the first cycle, and the treatment with 60% ETc + Si was similar to 100% ETc without Si in the second cycle. Photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate and total chlorophyll content increased under water-stress conditions with Si application; in the first cycle, the treatment with 80% ETc + Si increased by 30.1%, 31.3%, 7.8%, 28.46% and 50.3% compared to the same treatment without Si, respectively. Si application in conditions of water deficit was also beneficial to obtain a cooler canopy temperature and leaves with higher relative water content. In conclusion, we found that Si applications attenuate water deficit effects and provide a strategy to ameliorate the yield and water productivity in lettuce crops, contributing to more sustainable practices in agriculture.
RESUMO
Argentina has a relevant international role as a producer of agricultural commodities. Buenos Aires is the province with the largest cultivated area of cereals and oilseeds of the country. Rainfed crops depend exclusively on green water, meaning a comparative advantage for Buenos Aires province. The green virtual water content in the crops produced in Buenos Aires has implications for water allocation at international level. A great amount of countries depends on the Argentinean rainfed agriculture. Therefore, it is important to understand the effects of climate variations on Argentinean crop production at local level and the role of rainfed crops in regional and international trade. We analysed the temporal and territorial variations of crops green water demand in a climatic variability context and their influence on the water footprint. The green water footprint of the main crops of Buenos Aires was assessed, including soybeans, maize, sunflower, wheat and barley, in different climatic conditions: for the period 2008-2018, which include a dry year, a humid year and an ordinary year. A dataset about the green water footprint at municipality level was provided, and the results were presented on maps for each crop and for the different climatic conditions. The relevance of green water of main crops in the world water-dependent supply chains was shown. This comprehensive green water footprint assessment provides a useful database for researchers, companies and policy makers in Argentina and beyond.
Assuntos
Agricultura , Produtos Agrícolas , Argentina , Mudança Climática , Clima , Abastecimento de Água/estatística & dados numéricos , ChuvaRESUMO
The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.
Assuntos
Dióxido de Carbono , Fotossíntese , Fotossíntese/fisiologia , Florestas , Transporte de Elétrons , Folhas de PlantaRESUMO
OBJECTIVE: This study evaluated the independent and combined environmental impacts of the consumption of beef and ultra-processed foods in Brazil. DESIGN: Cross-sectional study. SETTING: Brazil. PARTICIPANTS: We used food purchases data from a national household budget survey conducted between July 2017 and July 2018, representing all Brazilian households. Food purchases were converted into energy, carbon footprints and water footprints. Multiple linear regression models were used to assess the association between quintiles of beef and ultra-processed foods in total energy purchases and the environmental footprints, controlling for sociodemographic variables. RESULTS: Both beef and ultra-processed foods had a significant linear association with carbon and water footprints (P < 0·01) in crude and adjusted models. In the crude upper quintile of beef purchases, carbon and water footprints were 47·7 % and 30·8 % higher, respectively, compared to the lower quintile. The upper quintile of ultra-processed food purchases showed carbon and water footprints 14·4 % and 22·8 % higher, respectively, than the lower quintile. The greatest reduction in environmental footprints would occur when both beef and ultra-processed food purchases are decreased, resulting in a 21·1 % reduction in carbon footprint and a 20·0 % reduction in water footprint. CONCLUSIONS: Although the environmental footprints associated with beef consumption are higher, dietary patterns with lower consumption of beef and ultra-processed foods combined showed the greatest reduction in carbon and water footprints in Brazil. The high consumption of beef and ultra-processed foods is harmful to human health, as well as to the environment; thus, their reduction is beneficial to both.
Assuntos
Ingestão de Energia , Alimento Processado , Humanos , Bovinos , Animais , Brasil , Estudos Transversais , Manipulação de Alimentos/métodos , Pegada de Carbono , Carbono , Água , Fast Foods , DietaRESUMO
Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.
Assuntos
Árvores , Água , Árvores/fisiologia , Secas , Clima Tropical , Florestas , Folhas de Planta/fisiologiaRESUMO
Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars.
RESUMO
Inoculation with Bacillus subtilis is a promising approach to increase plant yield and nutrient acquisition. In this context, this study aimed to estimate the B. subtilis concentration that increases yield, gas exchange, and nutrition of lettuce plants in a hydroponic system. The research was carried out in a greenhouse in Ilha Solteira, Brazil. A randomized block design with five replications was adopted. The treatments consisted of B. subtilis concentrations in nutrient solution [0 mL "non-inoculated", 7.8 × 103, 15.6 × 103, 31.2 × 103, and 62.4 × 103 colony forming units (CFU) mL-1 of nutrient solution]. There was an increase of 20% and 19% in number of leaves and 22% and 25% in shoot fresh mass with B. subtilis concentrations of 15.6 × 103 and 31.2 × 103 CFU mL-1 as compared to the non-inoculated plants, respectively. Also, B. subtilis concentration at 31.2 × 103 CFU mL-1 increased net photosynthesis rate by 95%, intercellular CO2 concentration by 30%, and water use efficiency by 67% as compared to the non-inoculated treatments. The concentration of 7.8 × 103 CFU mL-1 improved shoot accumulation of Ca, Mg, and S by 109%, 74%, and 69%, when compared with non-inoculated plants, respectively. Inoculation with B. subtilis at 15.6 × 103 CFU mL-1 provided the highest fresh leaves yield while inoculation at 15.6 × 103 and 31.2 × 103 CFU mL-1 increased shoot fresh mass and number of leaves. Concentrations of 7.8 × 103 and 15.6 × 103 increased shoot K accumulation. The concentrations of 7.8 × 103, 15.6 × 103, and 31.2 × 103 CFU mL-1 increased shoot N accumulation in hydroponic lettuce plants.
RESUMO
Adequate management of N supply, plant density, row spacing, and soil cover has proved useful for increasing grain yields and/or grain yield stability of rainfed crops over the years. We review the impact of these management practices on grain yield water-related determinants: seasonal crop evapotranspiration (ET) and water use efficiency for grain production per unit of evapotranspired water during the growing season (WUEG,ET,s). We highlight a large number of conflicting results for the impact of management on ET and expose the complexity of the ET response to environmental factors. We analyse the influence of management practices on WUEG,ET,s in terms of the three main processes controlling it: (i) the proportion of transpiration in ET (T/ET), (ii) transpiration efficiency for shoot biomass production (TEB), and (iii) the harvest index. We directly relate the impact of management practices on T/ET to their effect on crop light interception and provide evidence that management practices significantly influence TEB. To optimize WUEG,ET,s, management practices should favor soil water availability during critical periods for seed set, thereby improving the harvest index. The need to improve the performance of existing crop growth models for the prediction of water-related grain yield determinants under different management practices is also discussed.
Assuntos
Solo , Água , Água/fisiologia , Grão Comestível , Produtos Agrícolas , SementesRESUMO
Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.
RESUMO
Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.
RESUMO
BACKGROUND AND AIMS: The vulnerability and responsiveness of forests to drought are immensely variable across biomes. Intraspecific tree responses to drought in species with wide niche breadths that grow across contrasting climatically environments might provide key information regarding forest resistance and changes in species distribution under climate change. Using a species with an exceptionally wide niche breath, we tested the hypothesis that tree populations thriving in dry environments are more resistant to drought than those growing in moist locations. METHODS: We determined temporal trends in tree radial growth of 12 tree populations of Nothofagus antarctica (Nothofagaceae) located across a sharp precipitation gradient (annual precipitation of 500-2000 mm) in Chile and Argentina. Using dendrochronological methods, we fitted generalized additive mixed-effect models to predict the annual basal area increment as a function of year and dryness (De Martonne aridity index). We also measured carbon and oxygen isotope signals (and estimated intrinsic water-use efficiency) to provide potential physiological causes for tree growth responses to drought. KEY RESULTS: We found unexpected improvements in growth during 1980-1998 in moist sites, while growth responses in dry sites were mixed. All populations, independent of site moisture, showed an increase in their intrinsic water-use efficiency in recent decades, a tendency that seemed to be explained by an increase in the photosynthetic rate instead of drought-induced stomatal closure, given that δ18O did not change with time. CONCLUSIONS: The absence of drought-induced negative effects on tree growth in a tree species with a wide niche breadth is promising because it might relate to the causal mechanisms tree species possess to face ongoing drought events. We suggest that the drought resistance of N. antarctica might be attributable to its low stature and relatively low growth rate.
Assuntos
Mudança Climática , Árvores , Árvores/fisiologia , Florestas , Carbono , Secas , ÁguaRESUMO
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
RESUMO
It has been established that climate change has a direct impact on water availability, an essential resource for agricultural development. As a result, controlling, mitigating, and adapting to water deficit requires the advancement of research on promising wild flora species. As recent studies have shown, wild relatives of certain cultivars are tolerant to adverse factors, enabling the development of sustainable and resilient agriculture. The present study evaluated the morpho-physiology and productivity of tomato scions grafted on wild Solanaceae (Datura stramonium, Solanum sisymbriifolium, Solanum quitoense, and Cyphomandra betacea) grown under water deficit conditions (100% ETc - high level, 75% ETc - moderate level, 50% ETc - medium level, and 25% ETc - low level). The results showed that tomato plants grafted on Datura stramonium rootstocks performed better morpho-physiologically under deficit irrigation. The improved osmoregulation caused by a higher relative water content (98.49%) allowed the scion to be more tolerant to water stress. In addition, these scions showed high water potential during their phenological stages (vegetative -0.47 MPa, flowering -0.59 MPa, and production -0.64 MPa), as well as improved photosynthetic efficiency. The overall tolerance of the scion resulted in better yield (8.14 kg/plant) with higher number of commercially valuable fruits. The D. stramonium rootstock allowed better management and use of irrigation water, increasing productivity (54.95 kg/m3); that is, it is presented as a species with potential for establishing tomato production areas in scenarios of water scarcity or cultivation under deficit irrigation.
RESUMO
This research evaluated the yield, water productivity, and economic water productivity for the oil content of three soybean cultivars under different water conditions. The experiments were conducted in the 2017/2018 and 2018/2019 harvests. The experimental design consisted of a two-factor randomized block, with the first factor of 5 irrigation depths, based on the reference evapotranspiration (ETO), plus the treatment without irrigation and the second factor was 3 soybean cultivars. Results reported oil yield and productivity were higher for the depths of 75% (crop 1) and 100% of ETO (crop 2). For the evaluations of water productivity and economic water productivity, the highest results were obtained at the level of 50% in crop 1 and 25% and 50% in crop 2. Cultivar BRASMAX Ponta had the highest values for oil production and BRASMAX Valente for oil yield, in both crops. In Crop 1, the BRASMAX Valente cultivar had the highest results in water productivity and economic water productivity, and in Crop 2, the BRASMAX Ponta cultivar had the highest values. Supplemental irrigation favored the increase in oil production and oil productivity. For a more efficient and economical use of water, it is necessary to use smaller irrigation depths.
O presente trabalho teve como objetivo avaliar o rendimento, produtividade da água e produtividade econômica da água para o teor de óleo de três cultivares de soja sob diferentes condições hídricas. Os experimentos foram conduzidos nas safras 2017/2018 e 2018/2019. O delineamento experimental constou de um bifatorial em blocos ao acaso, com o primeiro fator de cinco lâminas de irrigação, com base na evapotranspiração de referência (ETO), mais o tratamento sem irrigação e o segundo fator foram três cultivares de soja. Os resultados para o rendimento e produtividade de óleo foram maiores para as lâminas de 75% (safra 1) e 100% da ETO (safra 2). Nas avaliações de produtividade da água e produtividade econômica da água os maiores resultados foram obtidos na lâmina de 50% na safra 1 e 25% e 50% na safra 2. A cultivar BRASMAX Ponta apresentou os maiores valores para produção de óleo e a BRASMAX Valente para produtividade de óleo, em ambas as safras. Na safra 1, a BRASMAX Valente obteve os maiores resultados na produtividade de água e produtividade econômica da água e, na Safra 2, foi a BRASMAX Ponta que apresentou maiores valores. A irrigação suplementar favoreceu o incremento na produção de óleo e a produtividade de óleo. Para o uso mais eficiente e econômico da água é necessário a utilização de menores lâminas.