Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Genes (Basel) ; 15(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39336741

RESUMO

Wheat (Triticum aestivum L.) is a crucial cereal crop, contributing around 20% of global caloric intake. However, challenges such as diminishing arable land, water shortages, and climate change threaten wheat production, making yield enhancement crucial for global food security. The heading date (HD) is a critical factor influencing wheat's growth cycle, harvest timing, climate adaptability, and yield. Understanding the genetic determinants of HD is essential for developing high-yield and stable wheat varieties. This study used a doubled haploid (DH) population from a cross between Jinmai 47 and Jinmai 84. QTL analysis of HD was performed under three phosphorus (P) treatments (low, medium, and normal) across six environments, using Wheat15K high-density SNP technology. The study identified 39 QTLs for HD, distributed across ten chromosomes, accounting for 2.39% to 29.52% of the phenotypic variance. Notably, five stable and major QTLs (Qhd.saw-3A.7, Qhd.saw-3A.8, Qhd.saw-3A.9, Qhd.saw-4A.4, and Qhd.saw-4D.3) were consistently detected across varying P conditions. The additive effects of these major QTLs showed that favorable alleles significantly delayed HD. There was a clear trend of increasing HD delay as the number of favorable alleles increased. Among them, Qhd.saw-3A.8, Qhd.saw-3A.9, and Qhd.saw-4D.3 were identified as novel QTLs with no prior reports of HD QTLs/genes in their respective intervals. Candidate gene analysis highlighted seven highly expressed genes related to Ca2+ transport, hormone signaling, glycosylation, and zinc finger proteins, likely involved in HD regulation. This research elucidates the genetic basis of wheat HD under P stress, providing critical insights for breeding high-yield, stable wheat varieties suited to low-P environments.


Assuntos
Mapeamento Cromossômico , Fósforo , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Fósforo/metabolismo , Mapeamento Cromossômico/métodos , Estresse Fisiológico/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Cromossomos de Plantas/genética
2.
Vavilovskii Zhurnal Genet Selektsii ; 28(5): 536-553, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39280845

RESUMO

Common wheat is one of the most important food crops in the world. Grain harvests can be increased by reducing losses from diseases and environmental stresses. The tertiary gene pool, including Thinopyrum spp., is a valuable resource for increasing genetic diversity and wheat resistance to fungal diseases and abiotic stresses. Distant hybridization between wheat and Thinopyrum spp. began in the 1920s in Russia, and later continued in different countries. The main results were obtained using the species Th. ponticum and Th. intermedium. Additionally, introgression material was created based on Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum. The results of introgression for resistance to diseases (leaf, stem, and stripe rusts; powdery mildew; Fusarium head blight; and Septoria blotch) and abiotic stresses (drought, extreme temperatures, and salinity) to wheat was reviewed. Approaches to improving the agronomic properties of introgression breeding material (the use of irradiation, ph-mutants and compensating Robertsonian translocations) were described. The experience of long-term use in the world of a number of genes from the tertiary gene pool in protecting wheat from leaf and stem rust was observed. Th. ponticum is a nonhost for Puccinia triticina (Ptr) and P. graminis f. sp. tritici (Pgt) and suppresses the development of rust fungi on the plant surface. Wheat samples with the tall wheatgrass genes Lr19, Lr38, Sr24, Sr25 and Sr26 showed defence mechanisms similar to nonhosts resistance. Their influence led to disruption of the development of surface infection structures and fungal death when trying to penetrate the stomata (prehaustorial resistance or stomatal immunity). Obviously, a change in the chemical properties of fungal surface structures of races virulent to Lr19, Lr24, Sr24, Sr25, and Sr26 leads to a decrease in their adaptability to the environment. This possibly determined the durable resistance of cultivars to leaf and stem rusts in different regions. Alien genes with a similar effect are of interest for breeding cultivars with durable resistance to rust diseases and engineering crops with the help of molecular technologies.

3.
Front Nutr ; 11: 1393076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171116

RESUMO

Introduction: Being one of the "big three" most cultivated cereals in the world, wheat plays a crucial role in ensuring global food/nutrition security, supplying close to 20% of the global needs for calories and proteins. However, the increasingly large fluctuations between years in temperatures and precipitation due to climate change cause important variations in wheat production worldwide. This fact makes wheat breeding programs a tool that, far from going out of fashion, is becoming the most important solution to develop varieties that can provide humanity with the sufficient amount of food it demands without forgetting the objective of quality. Material and methods: The National Institute of Agricultural and Veterinary Research in Portugal has carried out a long-term experiment (9 years) in different locations to test four different bread-making wheat cultivars, each representing important variations in germplasm. Wheat yield and quality traits obtained by official methods were recorded in 18 different environments regarding temperature and precipitation. Results and discussion: According to the ANOVA and PCA, protein content, wet gluten, dough tenacity, and extensibility were found to be highly affected by the environment. Paiva cultivar presented a higher yield in almost all the tested environments, but its quality traits varied enormously. Contrary behavior was recorded for Valbona cultivar. Antequera cultivar, with a production ranging between 4.7 and 9.3 tons/ha and a protein content between 11 and 16.8%, seems to be the most resilient cultivar regarding both productivity and quality of the flour with reference to changes in the main climate traits. The most ancient cultivar, Roxo, released in 1996, showed the worst results in this experiment, supporting the need to continue working in wheat breeding to meet the unavoidable changes in the environment.

4.
Front Plant Sci ; 15: 1388881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119506

RESUMO

Introduction: Wheat grain filling processes under post-anthesis stress scenarios depend mainly on stem traits and remobilization of stem water-soluble carbohydrates (WSC). Methods: A diverse panel of advanced semi-dwarf spring wheat lines, representing a natural variation in stem traits (WSC content, stem diameter, peduncle length, and stem wall width), was used to identify specific traits that reliably reflect the relationship between WSC and grain yield. The panel was phenotyped under various environmental conditions: well-watered, water-limited, and heat stress in Mexico, and terminal-drought in Israel. Results: Environmental stresses reduced grain yield (from 626 g m-2 under well-watered to 213 g m-2 under heat), lower internode diameter, and peduncle length. However, stem-WSC generally peaked 3-4 weeks after heading under all environmental conditions except heat (where it peaked earlier) and expressed the highest values under water-limited and terminal-drought environments. Increased investment in internode diameter and peduncle length was associated with a higher accumulation of stem WSC, which showed a positive association with yield and kernel weight. Across all environments, there were no apparent trade-offs between increased crop investment in internode diameter, peduncle length, and grain yield. Discussion: Our results showed that selecting for genotypes with higher resource investment in stem structural biomass, WSC accumulation, and remobilization could be a valuable strategy to ameliorate grain size reduction under stress without compromising grain yield potential. Furthermore, easy-to-measure proxies for WSC (stem diameter at specific internodes and length of the last internode, i.e., the peduncle) could significantly increase throughput, potentially at the breeding scale.

5.
Methods Mol Biol ; 2830: 175-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977578

RESUMO

Different methodologies have been applied for the selection of preharvest sprouting resistance in cereal breeding programs. We describe here a series of methods used in practical wheat breeding programs in Japan, including phenotyping based on germination score after artificial rain treatments and genotyping using DNA markers. These methods can be modified and applied to breeding programs in which preharvest sprouting is a problem during cereal cultivation.


Assuntos
Germinação , Fenótipo , Melhoramento Vegetal , Triticum , Marcadores Genéticos , Genótipo , Germinação/genética , Japão , Melhoramento Vegetal/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento
6.
Plant Dis ; : PDIS02240297RE, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-38853337

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA sequencing combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 centimorgan, respectively, corresponding to the bread wheat genome of Chinese Spring (International Wheat Genome Sequencing Consortium RefSeq v2.1) 703.8 to 707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease-resistance breeding.

7.
BMC Plant Biol ; 24(1): 271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605289

RESUMO

BACKGROUND: Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS: The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS: A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION: This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.


Assuntos
Agropyron , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Agropyron/genética , Melhoramento Vegetal , Ligação Genética , Triticum/genética , Fenótipo , Grão Comestível/genética
8.
Plant Commun ; 5(5): 100883, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38491771

RESUMO

Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.


Assuntos
Pool Gênico , Genoma de Planta , Melhoramento Vegetal , Triticum , Triticum/genética , Haplótipos , Genômica , Evolução Molecular
9.
J Econ Entomol ; 117(2): 660-665, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254238

RESUMO

The Hessian fly, Mayetiola destructor (Say), is one of the most important insect pest plaguing wheat (Triticum aestivum, L) producers across the United States and around the world. Genetic resistance is the stalwart for control of Hessian fly. However, new genotypes (biotypes) arise in deployment of wheat containing resistance genes, so field populations must be evaluated periodically to provide information on the efficacy of those deployed genes. Louisiana (LA), with its diverse agricultural landscape, is not exempt from the challenges posed by this destructive pest. We previously documented the resistance response of wheat lines harboring Hessian fly resistance (H) genes against field populations collected in 2008 from across the southeastern United States, including Iberville Parish, LA. In the spring of 2023, we reevaluated the resistance response of 27 H genes from the field populations collected from Iberville Parish, LA, and compared the results with those observed in 2008. Sixteen H genes showed comparable resistance to the field populations from both years. While 3 of the H genes, H11, H23, and H24, showed a significant decrease in resistance, 2 genes, H16 and H31, had marked increase in resistance. Furthermore, 6 additional H genes were evaluated in 2023, with 4 showing >70% resistance. Our results clearly identify a total of 20 H genes that are moderate to highly effective against the 2023 Hessian fly population from Iberville Parish, LA. The resistance response documented in this study offers valuable information to wheat breeders in the region for effective management of this insect pest.


Assuntos
Dípteros , Animais , Dípteros/genética , Triticum/genética , Virulência , Sudeste dos Estados Unidos , Louisiana
10.
Plant J ; 116(5): 1385-1400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713270

RESUMO

Bread wheat, one of the keystone crops for global food security, is challenged by climate change and resource shortage. The root system plays a vital role in water and nutrient absorption, making it essential for meeting the growing global demand. Here, using an association-mapping population composed of 406 accessions, we identified QTrl.Rs-5B modulating seminal root development with a genome-wide association study and validated its genetic effects with two F5 segregation populations. Transcriptome-wide association study prioritized TaFMO1-5B, a gene encoding the flavin-containing monooxygenases, as the causal gene for QTrl.Rs-5B, whose expression levels correlate negatively with the phenotyping variations among our population. The lines silenced for TaFMO1-5B consistently showed significantly larger seminal roots in different genetic backgrounds. Additionally, the agriculture traits measured in multiple environments showed that QTrl.Rs-5B also affects yield component traits and plant architecture-related traits, and its favorable haplotype modulates these traits toward that of modern cultivars, suggesting the application potential of QTrl.Rs-5B for wheat breeding. Consistently, the frequency of the favorable haplotype of QTrl.Rs-5B increased with habitat expansion and breeding improvement of bread wheat. In conclusion, our findings identified and demonstrated the effects of QTrl.Rs-5B on seminal root development and illustrated that it is a valuable genetic locus for wheat root improvement.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Triticum/genética , Transcriptoma/genética , Pão , Melhoramento Vegetal , Fenótipo , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética
11.
Front Plant Sci ; 14: 1167221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275257

RESUMO

Historically, end-product quality testing has been costly and required large flour samples; therefore, it was generally implemented in the late phases of variety development, imposing a huge cost on the breeding effort and effectiveness. High genetic correlations of end-product quality traits with higher throughput and nondestructive testing technologies, such as near-infrared (NIR), could enable early-stage testing and effective selection of these highly valuable traits in a multi-trait genomic prediction model. We studied the impact on prediction accuracy in genomic best linear unbiased prediction (GBLUP) of adding NIR-predicted secondary traits for six end-product quality traits (crumb yellowness, water absorption, texture hardness, flour yield, grain protein, flour swelling volume). Bread wheat lines (1,400-1,900) were measured across 8 years (2012-2019) for six end-product quality traits with standard laboratory assays and with NIR, which were combined to generate predicted data for approximately 27,000 lines. All lines were genotyped with the Infinium™ Wheat Barley 40K BeadChip and imputed using exome sequence data. End-product and NIR phenotypes were genetically correlated (0.5-0.83, except for flour swelling volume 0.19). Prediction accuracies of end-product traits ranged between 0.28 and 0.64 and increased by 30% through the inclusion of NIR-predicted data compared to single-trait analysis. There was a high correlation between the multi-trait prediction accuracy and genetic correlations between end-product and NIR-predicted data (0.69-0.77). Our forward prediction validation revealed a gradual increase in prediction accuracy when adding more years to the multi-trait model. Overall, we achieved genomic prediction accuracy at a level that enables selection for end-product quality traits early in the breeding cycle.

12.
BMC Genomics ; 24(1): 170, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016302

RESUMO

BACKGROUND: The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS: The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS: We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Reprodução , Polinização/genética , Transcriptoma , Flores
13.
BMC Plant Biol ; 23(1): 119, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855097

RESUMO

BACKGROUND: Owing to successful cloning of wheat functional genes in recent years, more traits can be selected by diagnostic markers, and consequently, effective molecular markers will be powerful tools in wheat breeding programs. RESULTS: The present study proposed a cost-effective duplex Kompetitive Allele Specific PCR (dKASP) marker system that combined multiplex PCR and KASP™ technology to yield twice the efficiency at half the cost compared with the common KASP™ markers and provide great assistance in breeding selection. Three dKASP markers for the major genes controlling plant height (Rht-B1/Rht-D1), grain hardness (Pina-D1/Pinb-D1), and high-molecular-weight glutenin subunits (Glu-A1/Glu-D1) were successfully developed and applied in approved wheat varieties growing in the middle and lower reaches of the Yangtze River and advanced lines from our breeding program. Three markers were used to test six loci with high efficiency. In the approved wheat varieties, Rht-B1b was the most important dwarfing allele, and the number of accessions carrying Pinb-D1b was much greater than that of the accessions carrying Pina-D1b. Moreover, the number of accessions carrying favorable alleles for weak-gluten wheat (Null/Dx2) was much greater than that of the accessions carrying favorable alleles for strong-gluten wheat (Ax1 or Ax2*/Dx5). In the advanced lines, Rht-B1b and Pinb-D1b showed a significant increase compared with the approved varieties, and the strong-gluten (Ax1 or Ax2*/Dx5) and weak-gluten (Null/Dx2) types also increased. CONCLUSION: A cost-effective dKASP marker system that combined multiplex PCR and KASP™ technology was proposed to achieve double the efficiency at half the cost compared with the common KASP™ markers. Three dKASP markers for the major genes controlling PH (Rht-B1/Rht-D1), GH (Pina-D1/Pinb-D1), and HMW-GS (Glu-A1/Glu-D1) were successfully developed, which would greatly improve the efficiency of marker-assisted selection of wheat.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Triticum/genética , Análise Custo-Benefício , Reação em Cadeia da Polimerase , Glutens/genética
14.
Plant J ; 114(6): 1475-1489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919201

RESUMO

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum) around the world. FHB causes significant yield losses and reduces grain quality. The lack of resistance resources is a major bottleneck for wheat FHB resistance breeding. As a wheat relative, Thinopyrum elongatum contains many genes that can be used for wheat improvement. Although the novel gene Fhb-7EL was mapped on chromosome 7EL of Th. elongatum, successful transfer of the FHB resistance gene into commercial wheat varieties has not been reported. In this study, we developed 836 wheat-Th. elongatum translocation lines of various types by irradiating the pollen of the wheat-Th. elongatum addition line CS-7EL at the flowering stage, among which 81 were identified as resistant to FHB. By backcrossing the FHB-resistant lines with the main cultivar Jimai 22, three wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, were successfully applied in wheat breeding without yield penalty. Combining karyotype and phenotype analyses, we mapped the Fhb-7EL gene to the distal end of chromosome 7EL. Five molecular markers linked with the FHB resistance interval were developed, which facilitates molecular marker-assisted breeding. Altogether, we successfully applied alien chromatin with FHB resistance from Th. elongatum in wheat breeding without yield penalty. These newly developed FHB-resistant wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, can be used as novel resistance resources for wheat breeding.


Assuntos
Fusarium , Triticum , Triticum/genética , Melhoramento Vegetal , Marcadores Genéticos , Poaceae/genética , Doenças das Plantas/genética , Resistência à Doença/genética
15.
Glob Chang Biol ; 29(5): 1296-1313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36482280

RESUMO

Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050-2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype-environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.


Assuntos
Mudança Climática , Triticum , Humanos , Triticum/genética , Melhoramento Vegetal , Aclimatação , Reino Unido
16.
Plant Dis ; 107(2): 422-430, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35881872

RESUMO

Fusarium head blight (FHB) is a destructive wheat disease worldwide and significantly affects grain yield and quality in wheat. To understand the genetic basis underlying type II FHB resistance in two elite wheat cultivars-Yangmai 4 (YM4) and Yangmai 5 (YM5)-quantitative trait loci (QTL) mapping was conducted in two recombinant inbred line (RIL) populations derived from the crosses of YM4 and YM5 with susceptible cultivar Yanzhan 1 (YZ1), respectively. A survey with markers linked to Fhb1, Fhb2, Fhb4, and Fhb5 in landrace Wangshuibai indicated the nonexistence of these known FHB resistance genes or QTL in YM4, YM5, and YZ1. One overlapped resistance QTL was identified in both RIL populations (namely, QFhb.Y4.2D/QFhb.Y5.2D) with a large effect on FHB resistance. One novel resistance QTL (QFhb.Y4.5A) mapped on chromosome 5A was detected only in the YM4/YZ1 population. The resistance alleles of both QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A did not increase the plant height and did not significantly affect the heading date and flowering date. Kompetitive allele-specific PCR markers for QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A had been developed to verify in an additional set of 244 geographically diverse cultivars or lines. Pyramiding of the two resistance alleles decreased the percentage of symptomatic spikelets by 51.77% relative to the cultivars or lines without these two resistance alleles. QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A were shown to be useful alternatives in FHB resistance breeding programs. The results will facilitate marker-assisted selection for introgression of the favorable alleles for improving FHB resistance in breeding programs.


Assuntos
Fusarium , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Triticum/genética , Fusarium/genética , Doenças das Plantas/genética , Melhoramento Vegetal
17.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454213

RESUMO

Linking high-throughput environmental data (enviromics) to genomic prediction (GP) is a cost-effective strategy for increasing selection intensity under genotype-by-environment interactions (G × E). This study developed a data-driven approach based on Environment-Phenotype Association (EPA) aimed at recycling important G × E information from historical breeding data. EPA was developed in two applications: (1) scanning a secondary source of genetic variation, weighted from the shared reaction-norms of past-evaluated genotypes and (2) pinpointing weights of the similarity among trial-sites (locations), given the historical impact of each envirotyping data variable for a given site. These results were then used as a dimensionality reduction strategy, integrating historical data to feed multi-environment GP models, which led to the development of four new G × E kernels considering genomics, enviromics, and EPA outcomes. The wheat trial data used included 36 locations, 8 years, and three target populations of environments (TPEs) in India. Four prediction scenarios and six kernel models within/across TPEs were tested. Our results suggest that the conventional GBLUP, without enviromic data or when omitting EPA, is inefficient in predicting the performance of wheat lines in future years. Nevertheless, when EPA was introduced as an intermediary learning step to reduce the dimensionality of the G × E kernels while connecting phenotypic and environmental-wide variation, a significant enhancement of G × E prediction accuracy was evident. EPA revealed that the effect of seasonality makes strategies such as "covariable selection" unfeasible because G × E is year-germplasm specific. We propose that the EPA effectively serves as a "reinforcement learner" algorithm capable of uncovering the effect of seasonality over the reaction-norms, with the benefits of better forecasting the similarities between past and future trialing sites. EPA combines the benefits of dimensionality reduction while reducing the uncertainty of genotype-by-year predictions and increasing the resolution of GP for the genotype-specific level.


Assuntos
Interação Gene-Ambiente , Triticum , Triticum/genética , Melhoramento Vegetal , Genoma de Planta , Fenótipo , Genótipo , Modelos Genéticos
18.
Glob Chang Biol ; 29(4): 926-934, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416581

RESUMO

Wheat is a globally important crop and one of the "big three" US field crops. But unlike the other two (maize and soybean), in the United States its development is commercially unattractive, and so its breeding takes place primarily in public universities. Troublingly, the incentive structures within these universities may be hindering genetic improvement just as climate change is complicating breeding efforts. "Business as usual" in the US public wheat-breeding infrastructure may not sustain productivity increases. To address this concern, we held a multidisciplinary conference in which researchers from 12 US (public) universities and one European university shared the current state of knowledge in their disciplines, aired concerns, and proposed initiatives that could facilitate maintaining genetic improvement of wheat in the face of climate change. We discovered that climate-change-oriented breeding efforts are currently considered too risky and/or costly for most university wheat breeders to undertake, leading to a relative lack of breeding efforts that focus on abiotic stressors such as drought and heat. We hypothesize that this risk/cost burden can be reduced through the development of appropriate germplasm, relevant screening mechanisms, consistent germplasm characterization, and innovative models predicting the performance of germplasm under projected future climate conditions. However, doing so will require coordinated, longer-term, inter-regional efforts to generate phenotype data, and the modification of incentive structures to consistently reward such efforts.


Assuntos
Mudança Climática , Triticum , Triticum/genética , Melhoramento Vegetal , Temperatura Alta , Secas
19.
Plant Dis ; 107(7): 2104-2111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36541876

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a serious fungal wheat disease of wheat worldwide. Host resistance is considered to be the most environmentally friendly and efficient approach against this disease. Wheat breeding line GR18-1 showed resistance to powdery mildew at both seedling and adult stages for several years. Genetic analysis indicated that a single dominant gene, tentatively designated as PmGR-18, conferred powdery mildew resistance in GR18-1. Bulked segregant analysis and marker analysis showed that PmGR-18 was located in the Pm4 interval on chromosome arm 2AL and was flanked by the markers Xwgrc763 and Xwgrc872, respectively, with genetic distances of 0.5 and 1.0 cM corresponding to a physical interval of 1.13 Mb based on the Chinese Spring reference genome sequence v2.1. Using homology-based cloning and Sanger sequencing, we found that the sequence of PmGR-18 was totally consistent with that of Pm4d. qRT-PCR analysis showed that the expression levels of two splicing variants Pm4d_V1 and Pm4d_V2 in GR18-1 were significantly upregulated after inoculating with Bgt isolate E09, and the level of Pm4d_V2 was significantly lower than that of Pm4d_V1 at most of the time points, suggesting a different resistance pattern may be involved in the genotype. To facilitate the transfer of PmGR-18 in marker-assisted selection (MAS) breeding, the flanked markers Xwgrc763 and Xwgrc872 and the functional marker JS717/JS718 were tested and confirmed to enable the tracking of PmGR-18 when it transferred into those susceptible cultivars.


Assuntos
Resistência à Doença , Triticum , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Marcadores Genéticos , Resistência à Doença/genética , Alelos , Melhoramento Vegetal , Erysiphe/genética
20.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559621

RESUMO

The multi-parent-advanced-generation-intercross (MAGIC) population WM-800 was developed by intercrossing eight modern winter wheat cultivars to enhance the genetic diversity present in breeding populations. We cultivated WM-800 during two seasons in seven environments under two contrasting nitrogen fertilization treatments. WM-800 lines exhibited highly significant differences between treatments, as well as high heritabilities among the seven agronomic traits studied. The highest-yielding WM-line achieved an average yield increase of 4.40 dt/ha (5.2%) compared to the best founder cultivar Tobak. The subsequent genome-wide-association-study (GWAS), which was based on haplotypes, located QTL for seven agronomic traits including grain yield. In total, 40, 51, and 46 QTL were detected under low, high, and across nitrogen treatments, respectively. For example, the effect of QYLD_3A could be associated with the haplotype allele of cultivar Julius increasing yield by an average of 4.47 dt/ha (5.2%). A novel QTL on chromosome 2B exhibited pleiotropic effects, acting simultaneously on three-grain yield components (ears-per-square-meter, grains-per-ear, and thousand-grain-weight) and plant-height. These effects may be explained by a member of the nitrate-transporter-1 (NRT1)/peptide-family, TaNPF5.34, located 1.05 Mb apart. The WM-800 lines and favorable QTL haplotypes, associated with yield improvements, are currently implemented in wheat breeding programs to develop advanced nitrogen-use efficient wheat cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA