RESUMO
BACKGROUND: The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. METHODS: We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. RESULTS: The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). CONCLUSIONS: The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.
Assuntos
Aedes , Culex , Mosquitos Vetores , Animais , Aedes/classificação , Aedes/fisiologia , Culex/classificação , Mosquitos Vetores/classificação , Brasil , Feminino , Masculino , Controle de Mosquitos/métodos , Controle de Mosquitos/instrumentaçãoRESUMO
Microplastics (MPs) are increasingly widespread in the environment, which raises questions about their potential effects at different biological levels. It is essential to assess the impacts on biodiversity, and it is also crucial to understand whether the presence of MPs can interfere with the biological traits of species of relevance in public health. Considering that the life-history traits of mosquitoes, such as size and the wingbeat frequency (WBF), are related to its vector competence, here, we study the effects of 106 particles L-1 (as expected concentration of MPs on the environment, using the polyethylene type) on WBF, as well as wing morphology, testing the Culicidae species found across all continents, Aedes aegypti, as an indicator. Results show that larvae survival and development were not affected by the tested concentration of MP. Geometric morphometrics showed some asymmetry in female mosquito wings, which were also smaller for individuals reared in MP suspension. As for WBF, results did not indicate any significant differences between females. Male mosquitoes, however, showed alterations in WBF and wing morphology, suggesting possible sex-specific reactions to microplastic exposure. Also, the combination of morphological parameters analyzed as covariates (wing centroid size and body weight) did not significantly affect WBF for both female and male mosquitoes. Overall, this study shows an inaugural investigation of the effects of MP on wing size and WBF on Ae. aegypti, shedding light on these parameters tested for a current pollution issue and its impact on a virus vector.
Assuntos
Aedes , Microplásticos , Animais , Aedes/efeitos dos fármacos , Aedes/anatomia & histologia , Microplásticos/toxicidade , Feminino , Asas de Animais/anatomia & histologia , Asas de Animais/efeitos dos fármacos , Masculino , Larva/efeitos dos fármacosRESUMO
Prey often rely on multiple defences against predators, such as flight speed, attack deflection from vital body parts, or unpleasant taste, but our understanding on how often and why they are co-exhibited remains limited. Eudaminae skipper butterflies use fast flight and mechanical defences (hindwing tails), but whether they use other defences like unpalatability (consumption deterrence) and how these defences interact have not been assessed. We tested the palatability of 12 abundant Eudaminae species in Peru, using training and feeding experiments with domestic chicks. Further, we approximated the difficulty of capture based on flight speed and quantified it by wing loading. We performed phylogenetic regressions to find any association between multiple defences, body size, and habitat preference. We found a broad range of palatability in Eudaminae, within and among species. Contrary to current understanding, palatability was negatively correlated with wing loading, suggesting that faster butterflies tend to have lower palatability. The relative length of hindwing tails did not explain the level of butterfly palatability, showing that attack deflection and consumption deterrence are not mutually exclusive. Habitat preference (open or forested environments) did not explain the level of palatability either, although butterflies with high wing loading tended to occupy semi-closed or closed habitats. Finally, the level of unpalatability in Eudaminae is size dependent. Larger butterflies are less palatable, perhaps because of higher detectability/preference by predators. Altogether, our findings shed light on the contexts favouring the prevalence of single versus multiple defensive strategies in prey.
Assuntos
Borboletas , Voo Animal , Comportamento Predatório , Animais , Borboletas/fisiologia , Peru , Cauda/fisiologia , Asas de Animais/anatomia & histologia , FilogeniaRESUMO
This research investigates discrimination against suspected Islamic terrorists based on tolerance for the use of torture. This research is justified by the need to identify how intergroup and ideological factors combine to express discrimination. Two experimental studies were conducted with a between-subjects design. Study 1 (N = 282) analysed the terrorist threat against the ingroup and the nationality of torturers with respect to support for torture against suspected Islamic terrorists. Study 2 (N = 165) analysed the interaction among terrorist threat against the ingroup and perceived threat (realistic and symbolic) as moderators in the relationship between RWA and discrimination. Study 1 indicated that support for torture was greater when the victims of terrorist acts and the torturers belonged to the ingroup. Study 2 indicated that the perceived threat encourages support for the use of torture, regardless of the levels of RWA. Taken together, these results elucidate the psychosocial processes that are present in the hostility towards social minorities from predominantly Muslim countries and in the strengthening of xenophobic political positions.
Assuntos
Autoritarismo , Islamismo , Terrorismo , Tortura , Humanos , Tortura/psicologia , Islamismo/psicologia , Masculino , Feminino , Terrorismo/psicologia , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Xenofobia/psicologia , Preconceito , Adolescente , Identificação SocialRESUMO
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi (Chagas, 1909). One of the primary vectors of T. cruzi in South America is Triatoma infestans (Klug, 1834). This triatomine species is distributed across a huge latitudinal gradient, inhabiting domiciliary , peridomiciliary , and wild environments. Its wide geographic distribution provides an excellent opportunity to study the relationships between environmental gradients and intraspecific morphological variation. In this study, we investigated variations in wing size and shape in T. infestans across six ecoregions. We aimed to address the following questions: How do wing size and shape vary on a regional scale, does morphological variation follow specific patterns along an environmental or latitudinal gradient, and what environmental factors might contribute to wing variation? Geometric morphometric methods were applied to the wings of 162 females belonging to 21 T. infestans populations, 13 from Argentina (n = 105), 5 from Bolivia (n = 42), and 3 from Paraguay (n = 15). A comparison of wing centroid size across the 21 populations showed significant differences. Canonical Variate Analysis (CVA) revealed significant differences in wing shape between the populations from Argentina, Bolivia, and Paraguay, although there was a considerable overlap, especially among the Argentinian populations. Well-structured populations were observed for the Bolivian and Paraguayan groups. Two analyses were performed to assess the association between wing size and shape, geographic and climatic variables: multiple linear regression analysis (MRA) for size and Partial Least Squares (PLS) regression for shape. The MRA showed a significant general model fit. Six temperature-related variables, one precipitation-related variable, and the latitude showed significant associations with wing size. The PLS analysis revealed a significant correlation between wing shape with latitude, longitude, temperature-related, and rainfall-related variables. Wing size and shape in T. infestans populations varied across geographic distribution. Our findings demonstrate that geographic and climatic variables significantly influence T. infestans wing morphology.
Assuntos
Triatoma , Asas de Animais , Animais , Triatoma/anatomia & histologia , Triatoma/fisiologia , Triatoma/crescimento & desenvolvimento , Triatoma/classificação , Asas de Animais/anatomia & histologia , Feminino , Argentina , Bolívia , Paraguai , Doença de Chagas/transmissãoRESUMO
BACKGROUND: Triatoma garciabesi and T. guasayana are considered secondary vectors of Trypanosoma cruzi and frequently invade rural houses in central Argentina. Wing and head structures determine the ability of triatomines to disperse. Environmental changes exert selective pressures on populations of both species, promoting changes in these structures that could have consequences for flight dispersal. The aim of this study was to investigate the relationship between a gradient of anthropization and phenotypic plasticity in flight-related traits. METHODS: The research was carried out in Cruz del Eje and Ischilín departments (Córdoba, Argentina) and included 423 individuals of the two species of triatomines. To measure the degree of anthropization, a thematic map was constructed using supervised classification, from which seven landscapes were selected, and nine landscape metrics were extracted and used in a hierarchical analysis. To determine the flight capacity and the invasion of dwellings at different levels of anthropization for both species, entomological indices were calculated. Digital images of the body, head and wings were used to measure linear and geometric morphometric variables related to flight dispersion. One-way ANOVA and canonical variate analysis (CVA) were used to analyze differences in size and shape between levels of anthropization. Procrustes variance of shape was calculated to analyze differences in phenotypic variation in heads and wings. RESULTS: Hierarchical analysis was used to classify the landscapes into three levels of anthropization: high, intermediate and low. The dispersal index for both species yielded similar results across the anthropization gradient. However, in less anthropized landscapes, the density index was higher for T. garciabesi. Additionally, in highly anthropized landscapes, females and males of both species exhibited reduced numbers. Regarding phenotypic changes, the size of body, head and wings of T. garciabesi captured in the most anthropized landscapes was greater than for those captured in less anthropized landscapes. No differences in body size were observed in T. guasayana collected in the different landscapes. However, males from highly anthropized landscapes had smaller heads and wings than those captured in less anthropized landscapes. Both wing and head shapes varied between less and more anthropogenic environments in both species. CONCLUSIONS: Results of the study indicate that the flight-dispersal characteristics of T. garciabesi and T. guasayana changed in response to varying degrees of anthropization.
Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Humanos , Masculino , Animais , Feminino , Triatoma/fisiologia , População Rural , Argentina , Análise de VariânciaRESUMO
The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a pest that reduces the productivity of small fruits. Entomopathogenic nematodes (EPNs) and chemical insecticides can suppress this pest, but the compatibility of the two approaches together requires further examination. This laboratory study evaluated the compatibility of Steinernema brazilense IBCBn 06, S. carpocapsae IBCBn 02, Heterorhabditis amazonensis IBCBn 24, and H. bacteriophora HB with ten chemical insecticides registered for managing D. suzukii pupae. In the first study, most insecticides at the recommended rate did not reduce the viability (% of living infective juveniles (IJs)) of S. braziliense and both Heterorhabditis species. The viability of S. carpocapsae was lowered by exposure to spinetoram, malathion, abamectin, azadirachtin, deltamethrin, lambda-cyhalothrin, malathion, and spinetoram after 48 h. During infectivity bioassays, phosmet was compatible with all the EPNs, causing minimal changes in infectivity (% pupal mortality) and efficiency relative to EPN-only controls, whereas lambda-cyhalothrin generally reduced infectivity of EPNs on D. suzukii pupae the most, with a 53, 75, 57, and 13% reduction in infectivity efficiency among H. bacteriophora, H. amazonensis, S. carpocapsae, and S. brazilense, respectively. The second study compared pupal mortality caused by the two most compatible nematode species and five insecticides in various combinations. Both Heterorhabditis species caused 78-79% mortality among D. suzukii pupae when used alone, and were tested in combination with spinetoram, malathion, azadirachtin, phosmet, or novaluron at a one-quarter rate. Notably, H. bacteriophora caused 79% mortality on D. suzukii pupae when used alone, and 89% mortality when combined with spinetoram, showing an additive effect. Novaluron drastically reduced the number of progeny IJs when combined with H. amazonensis by 270 IJs and H. bacteriophora by 218. Any adult flies that emerged from EPN-insecticide-treated pupae had a shorter lifespan than from untreated pupae. The combined use of Heterorhabditis and compatible chemical insecticides was promising, except for novaluron.
RESUMO
Drosophila suzukii (Matsumura) is an exotic pest of economic importance that affects several soft-skinned fruits in Mexico. Previously, we found that yellow or yellow-green rectangular cards inside a transparent trap baited with attractants improved D. suzukii capture. In this study, we evaluated the influence of rectangular cards with different yellow shades inside a transparent multi-hole trap baited with apple cider vinegar (ACV) on D. suzukii capture in the field. Second, we tested whether ACV-baited traps with cards of other geometric shapes affected D. suzukii catches compared to traps with rectangular cards. Third, we evaluated the effects of commercial lures combined with a more efficient visual stimulus from previous experiments on trapping D. suzukii flies. We found that ACV-baited traps plus a yellow-shaded rectangle card with 67% reflectance at a 549.74 nm dominant wavelength captured more flies than ACV-baited traps with yellow rectangle cards with a higher reflectance. Overall, ACV-baited traps with rectangles and squares caught more flies than did ACV-baited traps without visual stimuli. The traps baited with SuzukiiLURE-Max, ACV and Z-Kinol plus yellow rectangles caught 57, 70 and 101% more flies, respectively, than the traps baited with the lure but without a visual stimulus.
Assuntos
Drosophila , Controle de Insetos , Animais , Drosophila/fisiologia , Controle de Insetos/instrumentação , Controle de Insetos/métodos , Feromônios/farmacologia , Feminino , Estimulação Luminosa , México , Ácido Acético/farmacologia , MasculinoRESUMO
We report the complete genome sequence of deformed wing virus and black queen cell virus isolated from Argentinean's honeybees. These sequence data will be valuable for future research on the viral variants present in the country and the development of strategies to control the spread of these viruses in apiaries.
RESUMO
Geometric morphometrics was used to determine whether geographic isolation could explain differences in wing size and shape between and within continental (27°S to 41°S) and insular (Rapa Nui) populations of Culex pipiens s.s. Linnaeus and their biotypes (f. pipiens and f. molestus). Molecular protocols based on polymorphisms in the second intron of nuclear locus ace-2 (acetylcholinesterase-2) were used to differentiate Cx. pipiens s.s. from Cx. quinquefasciatus Say, and an assay based on polymorphisms in the flanking region of a microsatellite locus (CQ11) was used to identify biotypes. Culex pipiens f. molestus and hybrids shared larval habitats in all continental sites, while Cx. pipiens f. pipiens was found in 5 of the 10 sites. Only biotype molestus was found in Rapa Nui (Easter Island) Pipiens and molestus biotypes occur sympatrically in aboveground locations, and only molestus was found in the underground site (ME). Biotype molestus was dominant in rural locations and preferably anthropophilic. These results agree with the ecological descriptions previously reported for the biotypes of Cx. pipiens s.s. Procrustes ANOVA only showed differences in centroid size between biotypes in females and males and did not show significant differences in wing shape. However, we found significant differences among the geographic areas in the centroid size and wing shape of both females and males. Particularly, the population of Rapa Nui Island had shorter wings than the continental populations. The results highlight the effects of geographic and environmental processes on morphotypes in vector mosquitoes.
Assuntos
Culex , Culicidae , Masculino , Feminino , Animais , Acetilcolinesterase , Mosquitos Vetores , Culex/genéticaRESUMO
The protection of soft-skinned fruits against Drosophila suzukii has relied primarily on the efficacy of a few synthetic molecules. Despite their short-term efficacy, these molecules can cause environmental pollution, unintendedly affect non-target organisms, and fail to provide sustainable control. The shortfalls of using synthetic pesticides warrant the search for alternatives, such as essential oils extracted from plants, with greater eco-friendlier properties. Here, we chemically characterized and evaluated the toxicity of the essential oil extracted from leaves of Ocotea indecora (Schott) Mez (Lauraceae) against D. suzukii via two exposure pathways (ingestion and contact). We also assessed the selectivity of the essential oil to two predatory natural enemies, Eriopis connexa and Chrysoperla externa and two pollinator bees, Apis mellifera and Partamona helleri. In addition, we conducted in silico predictions to investigate potential interactions between the major compound of the essential oil and the insects' transient receptor potential (TRP) channels. Our chromatographic analysis revealed sesquirosefuran (87%) as the major compound. Higher toxicity to adults of D. suzukii was observed in contact exposure (LC50 = 0.43 µL mL-1) compared to ingestion (LC50 = 0.72 µL mL-1). However, the essential oil did not cause mortality to the non-target organisms tested here, even when applied at 2.20 µL mL-1. Molecular predictions demonstrated that sesquirosefuran binds more stably to the TRP channels of D. suzukii than to those expressed in beneficial arthropods. Collectively, our findings provide the initial framework for the potential use of O. indecora essential oil as a sustainable alternative for managing D. suzukii infestations.
Assuntos
Artrópodes , Inseticidas , Ocotea , Óleos Voláteis , Animais , Drosophila , Controle de Insetos/métodosRESUMO
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), world-renowned as spotted-wing drosophila, is an invasive pest mainly affecting healthy, soft and stone fruit crops throughout Argentinian fruit-growing regions. Natural environments overgrown by exotic feral host plants apparently favour D. suzukii proliferation. This is common in the subtropical northwestern Argentina's berry-producing region. An assemblage of resident parasitoid species has been associated with D. suzukii in crop and non-crop areas of Tucumán, the Argentina's leading berries producer and exporter. Consequently, the hypothesis that the combined action of two pupal parasitoid species, Pachycrepoideus vindemiae Rondani (Hymenoptera: Pteromalidae) and Trichopria anastrephae Lima (Hymenoptera: Diapriidae), occurring in non-crop fruit areas, has a significant impact on D. suzukii natural regulation in such invaded habitats was tested. A survey of D. suzukii puparia from both feral peach [Prunus persica (L.) Batsch] (Rosaceae) and guava (Psydium guajava L.) (Myrtaceae) fallen fruits and soil surrounding them was performed in a wilderness area of Tucumán. Abundance of D. suzukii and associated parasitoids, and parasitism levels were assessed. Whole of 3437 D. suzukii puparia were recovered; 78% and 22% were surveyed from fruits and soil underneath the fruit, respectively. Tested fruits are important D. suzukii multiplying hosts. Both P. vindemiae and T. anastrephae accounted for 99.8% of total parasitoid individuals. Pupal parasitoids contribute to the D. suzukii natural mortality, as they killed a quarter of all puparia. Mostly T. anastrephae foraged on host puparia located in the fruit and P. vindemiae in both microhabitats. This information supports an augmentative biological control strategy in non-crop areas.
Assuntos
Drosophila , Himenópteros , Humanos , Animais , Frutas , Pupa , Incidência , Solo , Controle de InsetosRESUMO
In South America, the resident pupal parasitoid Trichopria anastrephae Costa Lima (Hymenoptera: Diapriidae) is a potential biological control agent of the pest Drosophila suzukii Matsumura (Diptera: Drosophilidae). In the present study, we (1) examined the behavior of T. anastrephae towards different host (D. suzukii) and host-substrate (strawberry) cues in choice and non-choice bioassays in laboratory, and (2) examined the density-dependent parasitism of T. anastrephae in D. suzukii-infested strawberries in a greenhouse. When given a choice, female parasitoids walked longer over chambers with fruits infested with eggs, larvae, or pupae of D. suzukii, when compared to healthy uninfested strawberries, and over overripe fruits when compared to unripe or ripe fruits. In the greenhouse assay, we observed an increase in parasitism and a decrease in the number of D. suzukii emerging per fruit with an increase in the number of parasitoids released. Our results allow a better understanding of the behavior and parasitism of T. anastrephae in D. suzukii-infested strawberries and provide useful data for potential biological control programs using this parasitoid.
Assuntos
Fragaria , Himenópteros , Feminino , Animais , Agentes de Controle Biológico , Drosophila , América do Sul , Pupa , Frutas , Controle de InsetosRESUMO
The Southeast Asian-native Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), also known as "spotted-wing Drosophila," is one of the most globally invasive agricultural species. Although D. suzukii is a pest spread throughout all the Argentinian fruit-growing regions, few information has been published on its impact on local fruit production. Parasitoid species associated with D. suzukii in Argentina belong to Pteromalidae (Chalcidoidea), Diapriidae (Diaprioidea), both attacking host pupae, and Figitidae (Cynipoidea), which attack host larvae. Nine Eucoilinae (Figitidae) species, belonging to Dicerataspis, Dieucoila, Euxestophaga, Ganaspis, Hexacola, and Leptopilina genera, have been associated with D. suzukii in Argentina. Ceratitis capitata (Wiedemann), commonly known as "medfly," is native to Africa and has a worldwide distribution, covering many tropical, subtropical, and temperate regions. In Argentina, C. capitata has been associated with several native hymenopterous parasitoids belonging to Braconidae (Ichneumonioidea), Eulophidae (Chalcidoidea), Pteromalidae, Diapriidae, and Figitidae families. Only two eucoline species, Ganaspis pelleranoi (Brèthes) and Leptopilina haywardi (Blanchard) have been related to medfly in Argentina. We report new trophic associations between the parasitoids Dicerataspis grenadensis Ashmead and Leptopilina boulardi (Barbotin, Carton and Kelner-Pillault) and D. suzukii, and between the parasitoid Odontosema albinerve Kieffer and C. capitata, after surveys conducted in Tucumán, northwestern Argentina. An annotated checklist and a taxonomic key of Eucoilinae associated with both invasive pests, in Argentina, are also provided.
Assuntos
Ceratitis capitata , Himenópteros , Tephritidae , Humanos , Animais , Drosophila , Himenópteros/fisiologia , Argentina , Espécies IntroduzidasRESUMO
In the search for insects as biological control agents for the water primrose, the delphacid Pissonotusparaguayensis (Delphacidae) was found on Ludwigiagrandiflorasubsp.hexapetala (Onagraceae) in a wetland of Central East Argentina. The morphology of the unknown females (brachypterous and macropterous) and immature stages are described and illustrated. Adults and nymphs were collected in wetlands of Del Plata River Basin, from Buenos Aires to the northeastern part of Argentina. A rearing methodology was developed to perform biological studies. Both winged forms and structural features of the female genitalia are described for the first time at the genus level. Eggs and immature stages are described and keyed; fifth nymphal instars may be easily recognised by the yellowish colouration, blackish on dorsal of head, thorax and abdomen with conspicuous yellowish pits, ventrally only darkened on base of frons extended to lower level of eyes and dorsal surface of antennomeres I and II, and legs with distinctive black marks at femoro-tibial joint and apex. The geographical distribution is updated, expanding its range into Argentina, making Buenos Aires the southernmost limit of the genus in America. Biological information of the species is also reported here: life cycle, fecundity, oviposition behaviour, and host plant. Field observations showed that P.paraguayensis breeds, feeds, and causes damage to L.g.subsp.hexapetala. This delphacid presents a certain degree of specificity to the Ludwigia species in the Jussiaea section in host specificity tests. More studies are required to test this species as a potential biological control agent.
RESUMO
Understanding the seasonal dynamics inherent to non-crop host-fruit fly-parasitoid interactions is vitally important for implementing eco-friendly pest control strategies. This study assessed the abundance and seasonal infestation levels of three pest fly species, Ceratitis capitata (Wiedemann), Anastrepha fraterculus (Wiedemann), Drosophila suzukii (Matsumura), as well as the related saprophytic drosophilids, and their natural parasitism in a disturbed wild habitat characterized by non-crop hosts in northwestern Argentina over 40 months. Juglans australis Griseb (walnut), Citrus aurantium L. (sour orange), Eriobotrya japonica (Thunb.) Lindley (loquat), Prunus persica (L.) Batsch (peach), and Psydium guajava L. (guava) were sampled throughout their fruiting seasons. Fruits were collected from both the tree canopies and the ground. The most abundant puparia was A. fraterculus, followed by C. capitata and D. suzukii. Drosophila species from the D. melanogaster group were highly abundant only in fallen fruits. Spatiotemporal overlaps of different host fruit availability provided suitable sources for pest proliferation throughout the year. The populations of both invasive pests peaked from December to January, and were related to the highest ripe peach availability, whereas the A. fraterculus population peaked from February to April, overlapping with the guava fruiting period. The three pest fly species were parasitized mainly by three generalist resident parasitoids, which are potential biocontrol agents to use within an integrated pest management approach.
RESUMO
Hox genes encode transcription factors that play an important role in establishing the basic body plan of animals. In Drosophila, Antennapedia is one of the five genes that make up the Antennapedia complex (ANT-C). Antennapedia determines the identity of the second thoracic segment, known as the mesothorax. Misexpression of Antennapedia at different developmental stages changes the identity of the mesothorax, including the muscles, nervous system, and cuticle. In Drosophila, Antennapedia has two distinct promoters highly regulated throughout development by several transcription factors. Antennapedia proteins are found with other transcription factors in different ANTENNAPEDIA transcriptional complexes to regulate multiple subsets of target genes. In this review, we describe the different mechanisms that regulate the expression and function of Antennapedia and the role of this Hox gene in the development of Drosophila.
Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genéticaRESUMO
Drosophila suzukii Matsumura, known as spotted wing drosophila (SWD), is an Asiatic invasive fruit pest that has spread over the world in the last 15 years, due to its high reproductive rate, its tolerance to different environmental conditions, the international fruit trade, and its wide range of host plants. In Buenos Aires, Argentina, blueberry is a major susceptible crop, although other cultivated and non-cultivated fruit species are frequent. The aim of this study was to evaluate the host suitability of commercial and non-cultivated fruit species (blueberries, plums, mulberries, and cherries) at two stages of maturity by estimating an index that takes into account biological and biometric parameters. The development and survival of SWD cohorts reared on different fruits were followed from egg to adult emergence. Then, adults were sexed and some biometric traits were measured. The indices: Wing loading, Wing aspect, and the Relative Performance Index (RPI) were estimated. The shortest developmental time and the maximum egg to adult survival were observed in the specimens developed in mulberry, in both stages of maturity. Only the length of the thorax showed significant differences between treatments in both sexes, and the largest adults were those reared in the ripe mulberries. The RPI, which relates performance and biometric variables, was the best index to evaluate the host suitability of SWD. So, it could be used as an indicator of the nutritional quality of fruits available in a region and to evaluate the importance of alternative hosts in the population dynamic of SWD.
Assuntos
Mirtilos Azuis (Planta) , Drosophila , Feminino , Masculino , Animais , Frutas , Oviposição , Reprodução , Argentina , Controle de InsetosRESUMO
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly known as spotted-wing drosophila or SWD, is an invasive, severe, and damaging pest, which is able to inflict huge economic losses on soft thin-skinned fruits worldwide. Argentina was not excluded from the rapid invasion of this new and aggressive pest. Berries and cherries are among the most economically important fruits, showing an increasing demand from both domestic and export markets, which make necessary the application of effective and early protection measures. Although SWD is currently established almost everywhere in Argentina, the scarcity of research on and rapid regulatory actions against this pest have probably contributed to its fast spread throughout the country. In view of that, the article reviews first the current threat status of SWD in Argentina, provides summarized information on crop and non-crop host fruits, seasonal variation and population dynamics, resident natural enemy assemblages, and describes control actions implemented to date. Finally, the need to focus local control actions within an integrated national SWD management program is emphasized. The development and application of complementary eco-friendly strategies, such as Sterile Insect Technique, biological control, mass trapping, and the use of innovative lactone-derived synthetic insecticides with extremely low toxicity for SWD parasitoids, in environmentally distinguishable Argentinian regions is also highlighted.
Assuntos
Drosophila , Inseticidas , Animais , Controle de Insetos/métodos , Argentina , Dinâmica Populacional , FrutasRESUMO
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is an invasive species that causes serious damage to soft-skinned fruits. The use of plant-based biorational insecticides (plant extracts and essential oils) to control this pest has grown extensively. We conducted a systematic review and meta-analysis to examine the current status, trends, and perspectives of these studies, with a focus on the plant families and major compounds used as insecticides to control D. suzukii. The first article in this research field was published in 2015, and there has been exponential growth in subsequent years. Thirty-six botanical families were studied in these articles, with a prevalent interest in Myrtaceae and Lamiaceae plant species. The major constituents of these plant-based biorational molecules belong to monoterpenoids, followed by monoterpenes, benzene derivatives, and others. Geranial was the most frequent major constituent of these plant-based compounds. Our analysis revealed a few crucial consequences of the bias provided by the investigations using plant-based biorational insecticides for controlling D. suzukii. Firstly, there is a major focus on the pest species, with little or no attention paid to undesired effects on non-target beneficial organisms (e.g., pollinator bees, predators; parasitoids) and non-target pests. Secondly, the poor knowledge of how these plant-based biorational insecticides act on target and non-target organisms. Finally, there is a need to assess the efficacy of these substances under field conditions. Thus, attention is needed to address these gaps so that plant-based biorational insecticides can become a viable pest management tool for controlling D. suzukii.