Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Adv Sci (Weinh) ; : e2404558, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965690

RESUMO

Harmonic generation and utilization are significant topics in nonlinear science. Although the progress in the microwave region has been expedited by the development of time-modulated metasurfaces, one major issue of these devices is the strong entanglement of multiple harmonics, leading to criticism of their use in frequency-division multiplexing (FDM) applications. Previous studies have attempted to overcome this limitation, but they suffer from designing complexity or insufficient controlling capability. Here a new space-time-coding metasurface (STCM) is proposed to independently and precisely synthesize not only the phases but also the amplitudes of various harmonics. This promising feature is successfully demonstrated in wireless space- and frequency-division multiplexing experiments, where modulated and unmodulated signals are simultaneously transmitted via different harmonics using a shared STCM. To illustrate the advantages, binary frequency shift keying (BFSK) and quadrature phase shift keying (QPSK) modulation schemes are respectively implemented. Behind the intriguing functionality, the mechanism of the space-time coding strategy and the analytical designing method are elaborated, which are validated numerically and experimentally. It is believed that the achievements can potentially propel the time-vary metasurfaces in the next-generation wireless applications.

2.
Adv Sci (Weinh) ; : e2404163, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962944

RESUMO

In engineered photonic lattices, topological photonic (TP) modes present a promising avenue for designing waveguides with suppressed backscattering. However, the integration of the TP modes in electromagnetic systems has faced longstanding challenges. The primary obstacle is the insufficient development of high-efficiency coupling technologies between the TP modes and the conventional transmission modes. This dilemma leads to significant scattering at waveguide terminals when attempting to connect the TP waveguides with other waveguides. In this study, a topological photonic substrate-integrated waveguide (TPSIW) is proposed that can seamlessly integrate into traditional microstrip line systems. It successfully addresses the matching problem and demonstrates efficient coupling of both even and odd TP modes with the quasi-transverse electromagnetic modes of microstrip lines, resulting in minimal energy losses. In addition, topological leaky states are introduced through designed slots on the TPSIW top surface. These slots enable the creation of TP leaky-wave antennas with beam steering capabilities. A wireless link based on TPSIWs are further established that enables the transmission of distinct signals toward different directions. This work is an important step toward the integration of TP modes in microwave systems, unlocking the possibilities for the development of high-performance wireless devices.

3.
Sci Rep ; 14(1): 12834, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834659

RESUMO

The concept, performance, and analyses of distinctive, miniaturized metamaterial (MTM) unit cell addressing the forthcoming Sub 6 GHz 5G applications are presented in this paper. Two circular split-ring resonators (CSRR) with two parallel rectangular copper elements in front of the design and a slotted square element in the background make up the suggested metamaterial. It has a line segment with tunable features that is positioned in the center of the little ring copper structure. The suggested design offers a significant operating frequency band of 220 MHz together with a resonance of transmission coefficient S21 at 3.5 GHz. Furthermore, in two (z & x) principal axes of wave propagation, wide-range achievement, single/double-negative (S/DNG) refractive index, negative permittivity, and near-zero permeability properties were demonstrated. Through varying central slotted-strip line length, resonance frequencies can be selectively altered. Moreover, the metamaterial has overall dimensions of 9 × 9 mm2 and is composed on a Rogers 5880 RT substrate. In order to create the suggested MTM's equivalent circuit, which shows similar coefficient of transmission (S21), a proposed design's numerical simulation is carried out in the CST micro-wave studio. This simulation is after that put to comparison with manufacturing of the design.

4.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894159

RESUMO

Tension members are key members that maintain stability and improve the strength of structures such as cable-stayed bridges, PSC structures, and slopes. Their application has recently been expanded to new fields such as mooring lines in subsea structures and aerospace fields. However, the tensile strength of the tension members can be abnormal owing to various risk factors that may lead to the collapse of the entire structure. Therefore, continuous tension monitoring is necessary to ensure structural safety. In this study, an improved elasto-magnetic (E/M) sensor was used to monitor tension force using a nondestructive method. General E/M sensors have limitations that make it difficult to apply them to operating tension members owing to their solenoid structure, which requires field winding. To overcome this problem, the magnetization part of the E/M sensor was improved to a yoke-type sensor, which was used in this study. For the development of the sensors, the numerical design and magnetization performance verification of the sensor were performed through eddy current solution-type simulations using ANSYS Maxwell. Using the manufactured yoke-type E/M sensor, the induced voltage signals according to the tension force of the specimen increasing from 0 to 10 tons at 1-ton intervals were repeatedly measured using DAQ with wireless communication. The measured signals were indexed using peak-to-peak value of induced voltages and used to analyze the signal change patterns as the tension increased. Finally, the analyzed results were compared with those of a solenoid-type E/M sensor to confirm the same pattern. Therefore, it was confirmed that the tension force of a tension member can be estimated using the proposed yoke-type E/M sensor. This is expected to become an effective tension monitoring technology through performance optimization and usability verification studies for each target tension member in the future.

5.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894280

RESUMO

Underwater optical wireless communication (UOWC) has gained interest in recent years with the introduction of autonomous and remotely operated mobile systems in blue economic ventures such as offshore food production and energy generation. Here, we devised a model for estimating the received power distribution of diffused line-of-sight mobile optical links, accommodating irregular intensity distributions beyond the beam-spread angle of the emitter. We then used this model to conduct a spatial analysis investigating the parametric influence of the placement, orientation, and angular spread of photodiodes in array-based receivers on the mobile UOWC links in different Jerlov seawater types. It revealed that flat arrays were best for links where strict alignment could be maintained, whereas curved arrays performed better spatially but were not always optimal. Furthermore, utilizing two or more spectrally distinct wavelengths and more bandwidth-efficient modulation may be preferred for received-signal intensity-based localization and improving link range in clearer oceans, respectively. Considering the geometric implications of the array of receiver photodiodes for mobile UOWCs, we recommend the use of dynamically shape-shifting array geometries.

6.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732888

RESUMO

In today's health-monitoring applications, there is a growing demand for wireless and wearable acquisition platforms capable of simultaneously gathering multiple bio-signals from multiple body areas. These systems require well-structured software architectures, both to keep different wireless sensing nodes synchronized each other and to flush collected data towards an external gateway. This paper presents a quantitative analysis aimed at validating both the wireless synchronization task (implemented with a custom protocol) and the data transmission task (implemented with the BLE protocol) in a prototype wearable monitoring platform. We evaluated seven frequencies for exchanging synchronization packets (10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz) as well as two different BLE configurations (with and without the implementation of a dynamic adaptation of the BLE Connection Interval parameter). Additionally, we tested BLE data transmission performance in five different use case scenarios. As a result, we achieved the optimal performance in the synchronization task (1.18 ticks as median synchronization delay with a Min-Max range of 1.60 ticks and an Interquartile range (IQR) of 0.42 ticks) when exploiting a synchronization frequency of 40 Hz and the dynamic adaptation of the Connection Interval. Moreover, BLE data transmission proved to be significantly more efficient with shorter distances between the communicating nodes, growing worse by 30.5% beyond 8 m. In summary, this study suggests the best-performing network configurations to enhance the synchronization task of the prototype platform under analysis, as well as quantitative details on the best placement of data collectors.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Tecnologia sem Fio/instrumentação , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Redes de Comunicação de Computadores/instrumentação , Software
7.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676072

RESUMO

The Internet of Things (IoT) is what we have as a great breakthrough in the 5G network. Although the 5G network can support several Internet of Everything (IoE) services, 6G is the network to fully support that. This paper is a survey research presenting the 5G and IoT technology and the challenges coming, with the 6G network being the new alternative network coming to solve these issues and limitations we are facing with 5G. A reference to the Control Plane and User Plane Separation (CUPS) is made with IPv4 and IPv6, addressing which is the foundation of the network slicing for the 5G core network. In comparison to other related papers, we provide in-depth information on how the IoT is going to affect our lives and how this technology is handled as the IoE in the 6G network. Finally, a full reference is made to the 6G network, with its challenges compared to the 5G network.

8.
ACS Sens ; 9(4): 1866-1876, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38499997

RESUMO

Electromagnetic sensors with flexible antennas as sensing elements have attracted increasing attention in noninvasive continuous glucose monitoring for diabetic patients. The significant radiation performance loss of flexible antennas during mechanical deformation impairs the reliability of glucose monitoring. Here, we present flexible ultrawideband monopole antennas composed of Ti3C2 MXene and cellulose nanofibril (CNF) composite films for continuous glucose monitoring. The flexible MXene/CNF antenna with 20% CNF content can obtain a gain of up to 3.33 dBi and a radiation efficiency of up to 65.40% at a frequency range from 2.3 to 6.0 GHz. Compared with the pure MXene antenna, this antenna offers a comparable radiation performance and a lower performance loss in mechanical bending deformation. Moreover, the MXene/CNF antenna shows a stable response to fetal bovine serum/glucose, with a correlation of >0.9 at the reference glucose levels, and responds sensitively to the variations in blood glucose levels during human trials. The proposed strategy enhancing the mechanical robustness of MXene-based flexible antennas makes metallic two-dimensional nanomaterials more promising in wearable electromagnetic sensors.


Assuntos
Glicemia , Celulose , Titânio , Celulose/química , Titânio/química , Humanos , Glicemia/análise , Nanocompostos/química , Técnicas Biossensoriais/métodos , Dispositivos Eletrônicos Vestíveis , Animais , Nanofibras/química , Glucose/análise
9.
Heliyon ; 10(4): e26231, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434041

RESUMO

With the development of underground rail transit, the concept of intelligent tunnel construction has been proposed and promoted. High-quality networking during tunnel construction is a prerequisite for this, making it highly urgent to establish networking during tunnel construction. When studying intra-tunnel networking, it is necessary to consider the propagation characteristics of radio waves in the tunnel. In this paper, according to the actual needs of engineering in tunnel construction and the characteristics of tunnel scenes, an improved ray tracing method is proposed, which considers the type and installation position of antennas, transceiver frequency band and power in channel modeling, and proposes a field strength calculation method under different coordinate systems according to the characteristics of straight and curved segments during tunnel construction. In addition, the propagation characteristics of radio waves in dynamic tunnel construction scenarios are quantitatively analyzed. In this paper, by establishing antenna diagram, two-dimensional and three-dimensional models of tunnels, the computer simulation method is applied to compare with the improved algorithm, and the results have good consistency, in addition, the improved algorithm does not require a lot of modeling work in the early stage, and has high applicability and portability. Not only that, this paper also makes actual measurements of the subway under construction in Zhengzhou, China in different scenarios, and verifies the effectiveness of the method.

10.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474941

RESUMO

This study presents a theoretical framework for defining the performance level of wireless safety functions within industrial environments. While acknowledging the simplifications inherent in our approach-primarily based on packet loss rates as a measure of system performance-the study underscores the dynamic challenges posed by real-world warehouses. Through an in situ measurement study of a forklift truck safety system, we validate the proposed method and emphasize the need for a more nuanced examination of wireless communication in complex settings. The study advocates for an expanded theoretical framework that considers fluctuations in warehouse dynamics, accounting for their impact on packet loss rates and, consequently, the precision of performance-level assessments. Furthermore, the research highlights the complexity introduced by wireless system characteristics not addressed in the simplified model, urging future investigations to incorporate these factors for a comprehensive understanding of wireless safety systems. The absence of specific criteria for wireless systems within existing standards emphasizes the necessity for a specialized framework in addressing safety aspects unique to wireless applications.

11.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475016

RESUMO

The proliferation of radio frequency (RF) devices in contemporary society, especially in the fields of smart homes, Internet of Things (IoT) gadgets, and smartphones, underscores the urgent need for robust identification methods to strengthen cybersecurity. This paper delves into the realms of RF fingerprint (RFF) based on applying the Jensen-Shannon divergence (JSD) to the statistical distribution of noise in RF signals to identify Bluetooth devices. Thus, through a detailed case study, Bluetooth RF noise taken at 5 Gsps from different devices is explored. A noise model is considered to extract a unique, universal, permanent, permanent, collectable, and robust statistical RFF that identifies each Bluetooth device. Then, the different JSD noise signals provided by Bluetooth devices are contrasted with the statistical RFF of all devices and a membership resolution is declared. The study shows that this way of identifying Bluetooth devices based on RFF allows one to discern between devices of the same make and model, achieving 99.5% identification effectiveness. By leveraging statistical RFFs extracted from noise in RF signals emitted by devices, this research not only contributes to the advancement of the field of implicit device authentication systems based on wireless communication but also provides valuable insights into the practical implementation of RF identification techniques, which could be useful in forensic processes.

12.
ACS Sens ; 9(2): 631-637, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38323985

RESUMO

Wireless communication technologies, particularly radio frequency (RF), have been widely explored for wearable electronics with secure and user-friendly information transmission. By exploiting the operational principle of chemically actuated resonant devices (CARDs) and the electrical response observed in chemiresistive materials, we propose a simple and hands-on alternative to design and manufacture RF tags that function as CARDs for wireless sensing of meat freshness. Specifically, the RF antennas were meticulously designed and fabricated by lithography onto a flexible substrate with conductive tape, and the RF signal was characterized in terms of amplitude and peak resonant frequency. Subsequently, a single-walled carbon nanotube (SWCNT)/MoS2/In2O3 chemiresistive composite was incorporated into the RF tag to convey it as CARDs. The RF signal was then utilized to establish a correlation between the sensor's electrical response and the RF attenuation signal (reflection coefficient) in the presence of volatile amines and seafood (shrimp) samples. The freshness of the seafood samples was systematically assessed throughout the storage time by utilizing the CARDs, thereby underscoring their effective potential for monitoring food quality. Specifically, the developed wireless tags provide cumulative amine exposure data within the food package, demonstrating a gradual decrease in radio frequency signals. This study illustrates the versatility of RF tags integrated with chemiresistors as a promising pathway toward scalable, affordable, and portable wireless chemical sensors.


Assuntos
Qualidade dos Alimentos , Carne , Carne/análise , Aminas
13.
Small ; 20(27): e2309050, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312107

RESUMO

With the growing global energy demand and environmental issues, energy saving technologies are becoming increasingly important in the building sector. Conventional windows lack energy saving and thermal insulation capabilities, while Low emissivity glass (Low-e glass) attenuates mobile communication signals while reflecting infrared. Therefore, this paper aims to design a type of windows for the "Sub 6GHz" frequency band of 5G. These windows combine the inherent transparency of traditional glass windows with the energy saving properties of Low-e glass, while also ensuring optimal communication performance within the 5G (Sub 6G) band. The metasurface glass is fabricated and subjected to simulation-guided experiments to evaluate their reliability and practicality. The metasurface glass is rigorously assessed in terms of microwave transmission performance, infrared low emissivity performance, and energy saving and thermal insulation capabilities.

14.
Adv Sci (Weinh) ; 11(15): e2304879, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342632

RESUMO

In the current prevalent complex electromagnetic (EM) environment, intelligent methods for versatile and integrated control of EM waves using compact devices are both essential and challenging. These varied wave control objectives can at times conflict with one another, such as the need for broad absorption to remain inconspicuous, while also requiring enhanced backward scattering for highly reliable tracing and secure communication. To address these sophisticated challenges, a microwave-frequency reconfigurable tri-mode metasurface (RTMM) is introduced. The proposed innovation enables three distinct operational modes: broadband low observation, enhanced EM wave tracing, and backscatter communication over a wide-angle range by simple control of the PIN diodes embedded in each meta-atom. The proof-of-concept demonstration of the fabricated prototype verified the switchable tri-mode performance of the RTMM. This proposed RTMM can be adapted to various applications, including EM shielding, target detection, and secure communication in complex and threatening EM environments, paving the way for environmentally-adaptive EM wave manipulation.

15.
Nanotechnology ; 35(21)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38320326

RESUMO

High-sensitivity and fast-response photodetectors (PDs) are vital part of optical wireless communication (OWC) system. In this work, we develop an organic-inorganic hybrid perovskite material (MAPbI3) based p-i-n structured PD. By optimizing the precursor solution concertation, the PD showed a high responsivity of 0.98 A W-1, a fast response timetrise/tfallof 12/12.5 µs, a specific detectivity of 2.62 × 1013Jones, and the f-3dBof 24 kHz under the 532 nm laser and -0.2 V bias voltage. Furthermore, we designed an OWC system based on the prepared PD. With the baud rate of 19200 bps, the system exhibits a bit error rate less than 10-6, and it can realize 9.63 m long-distance communication and quick transmission applications such as strings, texts, photos, and audios. Our work demonstrates the great application potential of perovskite PDs in the field of optical communication.

16.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400210

RESUMO

In this paper, we explore several widely available software-defined radio (SDR) platforms that could be used for locating with the signal Doppler frequency (SDF) method. In the SDF, location error is closely related to the accuracy of determining the Doppler frequency shift. Therefore, ensuring high frequency stability of the SDR, which is utilized in the location sensor, plays a crucial role. So, we define three device classes based on the measured frequency stability of selected SDRs without and with an external rubidium clock. We estimate the localization accuracy for these classes for two scenarios, i.e., short- and long-range. Using an external frequency standard reduces the location error from 20 km to 30 m or 15 km to 2 m for long- and short-range scenarios, respectively. The obtained simulation results allowed us to choose an SDR with appropriate stability. The studies showed that using an external frequency standard is necessary for minimizing SDR frequency instability in the Doppler effect-based location sensor. Additionally, we review small-size frequency oscillators. For further research, we propose two location sensor systems with small size and weight, low power consumption, and appropriate frequency stability. In our opinion, the SDF location sensor should be based on the bladeRF 2.0 micro xA4 or USRP B200mini-i SDR platform, both with the chip-scale atomic clock CSAC SA.45s, which will allow for minor positioning errors in the radio emitters.

17.
ACS Nano ; 18(4): 2649-2684, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230863

RESUMO

The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.

18.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257669

RESUMO

The ability to sense propagating electromagnetic plane waves based on their directions of arrival (DOAs) is fundamental to a range of radio frequency (RF) sensing, communications, and imaging applications. This paper introduces an algorithm for the wideband true time delay digital delay Vandermonde matrix (DVM), utilizing Thiran fractional delays that are useful for realizing RF sensors having multiple look DOA support. The digital DVM algorithm leverages sparse matrix factorization to yield multiple simultaneous RF beams for low-complexity sensing applications. Consequently, the proposed algorithm offers a reduction in circuit complexity for multi-beam digital wideband beamforming systems employing Thiran fractional delays. Unlike finite impulse response filter-based approaches which are wideband but of a high filter order, the Thiran filters trade usable bandwidth in favor of low-complexity circuits. The phase and group delay responses of Thiran filters with delays of a fractional sampling period will be demonstrated. Thiran filters show favorable results for sample delay blocks with a temporal oversampling factor of three. Thiran fractional delays of orders three and four are mapped to Xilinx FPGA RF-SoC technologies for evaluation. The preliminary results of the APF-based Thiran fractional delays on FPGA can potentially be used to realize DVM factorizations using application-specific integrated circuit (ASIC) technology.

19.
Adv Sci (Weinh) ; 11(5): e2305152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044308

RESUMO

Hand gesture plays an important role in many circumstances, which is one of the most common interactive methods in daily life, especially for disabled people. Human-machine interaction is another popular research topic to realize direct and efficient control, making machines intelligent and maneuverable. Here, a special human-machine interaction system is proposed and namedas computer-vision (CV) based gesture-metasurface interaction (GMI) system, which can be used for both direct beam manipulations and real-time wireless communications. The GMI system first needs to select its working mode according to the gesture command to determine whether to perform beam manipulations or wireless communications, and then validate the permission for further operation by recognizing unlocking gesture to ensure security. Both beam manipulation and wireless communication functions are validated experimentally, which show that the GMI system can not only realize real-time switching and remote control of different beams through gesture command, but also communicate with a remote computer in real time by translating the gesture language to text message. The proposed non-contact GMI system has the advantages of good interactivity, high flexibility, and multiple functions, which can find potential applications in community security, gesture-command smart home, barrier-free communications, and so on.

20.
Technol Health Care ; 32(1): 423-439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37694324

RESUMO

BACKGROUND: The monitoring of fetal heart rate (FHR) before intrapartum has been crucial in modern obstetrics. FHR has been used for about 300 years to determine fetal status, leading to the development of monitoring devices to prevent fetal death during gestation. While medical devices like fetal electrocardiograms exist for disease detection, their size and cost limit individual use. OBJECTIVE: To address cardiovascular issues during pregnancy, a mobile system is developed to display heart rates and blood pressure on mobile devices. The system is generated from a medical device with Bluetooth communication, supplementing traditional monitoring. METHOD: The study focuses on creating a mobile system that connects to mobile operating systems, enhancing treatment, diagnosis, and patient monitoring. The mobile system displays cardiovascular data obtained from the medical device. RESULTS: The results are expected to have an immediate impact on cases where abnormal measurement parameters of the monitoring system occur during pregnancy. The use of mobile systems or applications on smartphones is seen as beneficial in distributing processing and census of embedded health systems. CONCLUSION: The study highlights the potential benefits of mobile systems in distributing processing for health systems, particularly in addressing cardiovascular problems during pregnancy. The creation of a mobile system for displaying cardiovascular data could significantly improve monitoring and early detection.


Assuntos
Mães , Dispositivos Eletrônicos Vestíveis , Gravidez , Feminino , Humanos , Monitorização Fisiológica , Feto , Frequência Cardíaca Fetal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...