Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Trends Biotechnol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39358048

RESUMO

The aging process entails a multifaceted decline in the capacity to restore homeostasis in response to stress. A prevalent characteristic of many age-related diseases is the presence of low-grade chronic inflammation, a risk factor contributing significantly to morbidity and mortality in the elderly population. Specific lifestyle interventions, such as regular physical activity, targeted diet, and supplementation, can delay the accumulation of chronic age-associated conditions by mitigating inflammation processes. Bioengineered yeast-producing compounds with distinctive bioactivities, including anti-inflammatory properties, have the potential to provide rich dietary alternatives for the prevention of age-related diseases. This review highlights recent achievements in engineering effective yeast platforms, namely Saccharomyces cerevisiae and Yarrowia lipolytica, that hold promise in retarding the onset of aging and age-related ailments.

2.
J Sci Food Agric ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360747

RESUMO

BACKGROUND: Ascorbic acid is a water-soluble vitamin and shows weak stability against external factors such as heat, oxygen, light etc. Due to its lower stability, encapsulation is an effective process for the preservation of its activity. Although there are a wide variety of encapsulation methods, the technique of encapsulation with yeast cells has been followed with increasing interest in recent years. In this study, encapsulation possibilities of ascorbic acid by yeast cells were investigated. In this context, Saccharomycess cerevisiae yeast cells in plasmolyzed and non-plasmolyzed forms were used in two different suspension media (water and ethanol) and effect of ascorbic acid concentrations (10, 20 and 50 g per 10 g yeast) were studied. A total of 12 different yeast microcapsule samples were produced and some physicochemical, bioactive and structural characterizations were performed. RESULTS: The ascorbic acid level of yeast microcapsule samples was determined as 206.4-713.9 and 202.8-726.1 mg g-1 for plasmolyzed and non-plasmolyzed yeast cell types, respectively. ABTS radical scavenging activity increased from 27.23 to 233.04 µg TE g-1 by increased ascorbic acid levels. Ascorbic acid capsules were used in soft candy processing against free ascorbic acid and it was found that 47.9% ascorbic acid loss was detected for control sample at the 24-day storage while the ascorbic acid loss was approximately 25% for yeast microcapsules. CONCLUSION: It was concluded that yeast cells are capable of preserving ascorbic acid stability during storage and yeast cells can be used effectively and safely for the manufacturing of the ascorbic acid microcapsules. © 2024 Society of Chemical Industry.

3.
Br Poult Sci ; : 1-9, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212222

RESUMO

1. The purpose of this meta-analysis was to evaluate the effect of mannan oligosaccharide (MOS) as an alternative to antibiotic growth promoters (AGP) on feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) of broilers.2. Data from 75,594 broilers were extracted from 17 articles (19 trials) published between January 2010 and March 2023. The main criteria for the publication selection were as follows, at least three treatments applied (negative control group without MOS or AGP versus MOS or AGP supplementation), presence of performance results, and intra-experimental variation associated with the mean of response (such as standard error). Treatments were classified as control, MOS, or AGP, and adjusted means of treatment were compared. Additionally, the average daily gain (ADG) and average daily feed intake (ADFI) of each type of supplementation were calculated relative (Δ) to the control group (ΔADFI and ΔADG) and expressed as a percentage of the difference.3. Broilers receiving a diet supplemented with MOS had a 3.7% better BWG and 3% better FCR compared to the control diet (P < 0.001), but these variables were similar to the group receiving AGP supplementation. No significant difference was detected in FI among treatments (P > 0.050). The relationship between ΔADG and ΔADFI was linear for the MOS and AGP-supplemented group (P < 0.050). The ΔADG of broilers fed diets supplemented with MOS or AGP was 6.4% and 4.54% when ΔADFI was zero, respectively. The ΔADG of MOS increased by 0.58% for every 1% of increasing observed in ΔADFI. The corresponding value for the increased ΔADG for the AGP group was 0.69%.4. The results of this meta-analysis indicated that MOS supplementation is effective in increasing BWG and reducing FCR, similar to broilers fed a diet supplemented with AGP. Therefore, MOS is a safe and sustainable alternative for AGP-free poultry production.

4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828876

RESUMO

The objective was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Single-sourced Charolais × Red Angus steers (n = 256; body weight = 246 ±â€…1.68 kg) were used in a randomized complete block design and blocked by location into one of four treatments: 1) fed no DFM and no YCW (Control); 2) fed only the DFM (DFM; Certillus CP B1801 Dry, 28 g/steer d-1 ); 3) fed only the YCW (YCW; Celmanax; 18 g/steer d-1 ); and 4) fed the DFM and the YCW (DFM+YCW). Steers were vaccinated for respiratory and clostridial diseases and treated for internal and external parasites at processing and individually weighed on days 1, 14, 42, 77, 105, 133, 161, 182, 230, and 258. To determine bacterial prevalence, fecal samples were collected on days 1, 14, 77, 133, 182, and 230 and environmental (pen area, feed, and water) samples were collected at the beginning of the week when cattle were weighed. No treatment × day interactions or treatment effects (P > 0.05) were observed between treatment groups at any sampling days for the bacterial populations. Samples on days 1, 133, and 182 had greater (P < 0.05) Clostridia levels compared to the other sampling points but were not different from each other. Clostridia levels were also greater (P < 0.05) on day 77 compared to days 14 and 230. Samples on days 77 and 230 had greater (P < 0.05) Clostridium perfringens levels compared to the other sampling points but were not different (P > 0.05) from each other. Samples on days 1 and 14 had lower (P < 0.05) total Escherichia coli levels compared to the other sampling points but were not different (P > 0.05) from each other. Escherichia coli levels on day 77 were higher (P < 0.05) compared to days 133, 182, and 230. Little Salmonella prevalence (1.5%) was observed throughout the study. This study had greater levels of Clostridia compared to small and large commercial feedlots in the Church and Dwight research database, but C. perfringens, total and pathogenic E. coli, and Salmonella prevalence were notably lower. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could partially explain the lack of differences with DFM or YCW supplementation. The DFM and YCW used alone or in combination cannot be expected to show additional benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


The objective of this research was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could further explain the reasons for little differences. The DFM and YCW used alone or in combination cannot be expected to show productive benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


Assuntos
Ração Animal , Bacillus subtilis , Clostridium perfringens , Dieta , Suplementos Nutricionais , Probióticos , Animais , Bovinos , Masculino , Ração Animal/análise , Dieta/veterinária , Clostridium perfringens/fisiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Suplementos Nutricionais/análise , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Salmonella , Escherichia coli , Fezes/microbiologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/microbiologia , Clostridium , Distribuição Aleatória
5.
J Fungi (Basel) ; 10(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38786680

RESUMO

Taphrina deformans is the causal agent of leaf curl, a serious peach disease which causes significant losses in peach production worldwide. Nowadays, in order to control plant diseases, it is necessary to adopt novel and low-cost alternatives to conventional chemical fungicides. These promising strategies are targeted at eliciting host defense mechanisms via priming the host through the consecutive application of plant immunity inducers prior to pathogen challenge. In this study, we investigated whether chitosan or yeast cell wall extracts could provide enhanced tolerance against leaf curl in two-season field trials. Furthermore, we addressed the possible molecular mechanisms involved beyond the priming of immune responses by monitoring the induction of key defense-related genes. The efficacy of spraying treatments against peach leaf curl with both inducers was significantly higher compared to the untreated control, showing efficacy in reducing disease severity of up to 62.6% and 73.9% for chitosan and yeast cell wall extracts, respectively. The application of chitosan in combination with copper hydroxide was more efficient in reducing disease incidence and severity, showing efficacy values in the range of 79.5-93.18%. Peach plantlets were also spray-treated with immunity inducers three times prior to leaf inoculation with T. deformans blastospores in their yeast phase. The relative expression levels of nine key defense and priming genes, including those encoding members of pathogenesis-related (PR) proteins and hub genes associated with hormone biosynthesis, were monitored by RT-qPCR across three days after inoculation (dai). The results indicate that pre-treatments with these plant immunity inducers activated the induction of genes involved in salicylic acid (SA) and jasmonate (JA) defense signaling pathways that may offer systemic resistance, coupled with the upregulation of genes conferring direct antimicrobial effects. Our experiments suggest that these two plant immunity inducers could constitute useful components towards the effective control of T. deformans in peach crops.

6.
Heliyon ; 10(9): e29440, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699041

RESUMO

Hypothesis: Yeast cell walls are a sustainable biomass source containing carbon and other elements like phosphorus. Converting cell walls into valuable nanomaterials like carbon quantum dots (CQDs) is of interest. Experiments: Cell walls from Saccharomyces cerevisiae were hydrothermally treated in 0.5 M H2SO4 to produce CQDs. Multiple analytical techniques were utilized to confirm phosphorus-doping (P-CQDs), characterize the fluorescence properties, determine quantum yield, and evaluate the sensing, antimicrobial, photocatalytic, and antioxidant capacities. Findings: A successful synthesis of P-CQDs was achieved with strong blue fluorescence under UV excitation, 19 % quantum yield, and excellent stability. The P-CQDs showed sensitive fluorescence quenching in response to ferric ions with a 201 nM detection limit. Antibacterial effects against Escherichia coli and Staphylococcus aureus were demonstrated. P-CQDs also exhibited dye degradation under sunlight and antioxidant activity. So, the prepared P-CQDs displayed promising multifunctional capabilities for metal ion detection, disinfection, and environmental remediation. Further research is required to fully realize and implement the multifunctional potential of P-CQDs in real-world applications.

7.
Toxins (Basel) ; 16(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668596

RESUMO

A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from a literature search, and data were extracted from 8 of these that met inclusion criteria, for a total of 12 treatments and 1774 birds. Laying hens fed MT had lower (p < 0.05) body weight (BW) by -50 g, egg production by -6.3 percentage points, and egg weight by -1.95 g than control fed hens (CTRL). Inclusion of YCWE during the mycotoxin challenges (YCWE + MT) resulted in numerically greater (p = 0.441) BW by 12.5 g, while egg production and egg weight were significantly (p < 0.0001) higher by 4.2 percentage points and 1.37 g, respectively. Furthermore, economic assessment calculations indicated that YCWE may not only support hen performance but also resulted in a positive return on investment. In conclusion, mycotoxins can play a role in negatively impacting laying hen performance and profitability. Inclusion of YCWE in feed with mycotoxin challenges provided benefits to egg production and egg weight and may support profitability. As such, the inclusion of YCWE could play an important role in minimizing mycotoxin effects and in turn aid farm efficiency and profitability.


Assuntos
Ração Animal , Parede Celular , Galinhas , Micotoxinas , Animais , Micotoxinas/toxicidade , Parede Celular/efeitos dos fármacos , Feminino , Leveduras , Reprodução/efeitos dos fármacos , Suplementos Nutricionais
8.
Food Chem ; 448: 139062, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531297

RESUMO

Avenanthramide-C (AVN-C) is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. Avenanthramide-C is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. This study evaluated the potential of yeast cell (YC) and yeast cell wall (YCW) capsules as delivery systems for stabilizing AVN-C. It was observed that these yeast capsules possessed the ellipsoidal morphology and intact structure without visual pores. Additionally, the YCW capsules exhibited higher encapsulation and loading capacity due to the large internal space. The interaction of yeast capsules with AVN-C involved the hydrophobic interactions and hydrogen bonding. Moreover, the loading of AVN-C induced high hydrophobicity inside the yeast capsules, which helped to protect AVN-C against degradation and release AVN-C in a slow and sustained manner in the simulated gastrointestinal tract. The YCW capsules have potential as controlled delivery system for AVN-C, which could be further used as a nutraceutical and added to functional foods.


Assuntos
Avena , Cápsulas , Parede Celular , Saccharomyces cerevisiae , ortoaminobenzoatos , Avena/química , ortoaminobenzoatos/química , Cápsulas/química , Parede Celular/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Biomarcadores , Interações Hidrofóbicas e Hidrofílicas
9.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544322

RESUMO

Data makes the world go round-and high quality data is a prerequisite for precise models, especially for whole-cell models (WCM). Data for WCM must be reusable, contain information about the exact experimental background, and should-in its entirety-cover all relevant processes in the cell. Here, we review basic requirements to data for WCM and strategies how to combine them. As a species-specific resource, we introduce the Yeast Cell Model Data Base (YCMDB) to illustrate requirements and solutions. We discuss recent standards for data as well as for computational models including the modeling process as data to be reported. We outline strategies for constructions of WCM despite their inherent complexity.


Assuntos
Modelos Biológicos , Saccharomyces cerevisiae , Biologia Computacional/métodos , Bases de Dados Factuais
10.
Br Poult Sci ; 65(2): 129-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416108

RESUMO

1. This study evaluated the effectiveness of yeast (Saccharomyces cerevisiae) cell wall (YCW) supplementation on the growth performance, carcase characteristics, serum biomarkers, liver function, ileal histology and microbiota of broiler chickens challenged with Clostridium perfringens (C. perfringens).2. In a 35-d trial, 240 chicks aged 1-d-old were randomly assigned to one of four treatment groups, each with 10 replicates: control (CON) with no challenge or additives, challenged with C. perfringens (CHAL), CHAL and supplemented with YCW at either 0.25 g/kg (YCW0.25) or 0.5 g/kg (YCW0.5).3. In comparison to CON, the CHAL birds had reduced growth performance, survival rate, dressing percentage, breast meat yield, levels of total protein (TP), globulin (GLO), glucose (GLU), total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD), as well as a decreased Lactobacillus population (P < 0.01). Additionally, this group showed elevated levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and C. perfringens count (P < 0.01). Compared to CHAL, the YCW0.25 or YCW0.5 groups had improved growth performance, survival rate, dressing percentage, breast meat yield, levels of TP, GLO, GLU, and T-AOC, as well as the activities of T-SOD, GOT, and GPT, villus height, villus surface area, villus height to crypt depth ratio, and the populations of both Lactobacillus and C. perfringens; (P < 0.01).4. The data suggested that YCW supplementation at either 0.25 or 0.50 g/kg can restore the growth performance of broiler chickens during a C. perfringens challenge.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Saccharomyces cerevisiae , Galinhas , Prebióticos , Infecções por Clostridium/veterinária , Infecções por Clostridium/patologia , Suplementos Nutricionais , Antioxidantes , Parede Celular , Superóxido Dismutase , Ração Animal/análise , Dieta/veterinária
11.
J Proteome Res ; 23(4): 1399-1407, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417052

RESUMO

Mass spectrometry (MS)-based top-down proteomics (TDP) has revolutionized biological research by measuring intact proteoforms in cells, tissues, and biofluids. Capillary zone electrophoresis-tandem MS (CZE-MS/MS) is a valuable technique for TDP, offering a high peak capacity and sensitivity for proteoform separation and detection. However, the long-term reproducibility of CZE-MS/MS in TDP remains unstudied, which is a crucial aspect for large-scale studies. This work investigated the long-term qualitative and quantitative reproducibility of CZE-MS/MS for TDP for the first time, focusing on a yeast cell lysate. Over 1000 proteoforms were identified per run across 62 runs using one linear polyacrylamide (LPA)-coated separation capillary, highlighting the robustness of the CZE-MS/MS technique. However, substantial decreases in proteoform intensity and identification were observed after some initial runs due to proteoform adsorption onto the capillary inner wall. To address this issue, we developed an efficient capillary cleanup procedure using diluted ammonium hydroxide, achieving high qualitative and quantitative reproducibility for the yeast sample across at least 23 runs. The data underscore the capability of CZE-MS/MS for large-scale quantitative TDP of complex samples, signaling its readiness for deployment in broad biological applications. The MS RAW files were deposited in ProteomeXchange Consortium with the data set identifier of PXD046651.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Saccharomyces cerevisiae/química , Proteômica/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Eletroforese Capilar/métodos , Proteínas de Ligação a DNA
12.
J Food Sci ; 89(2): 900-912, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193157

RESUMO

In the global food industry, plant-based protein isolates are gaining prominence as an alternative to animal-based counterparts. However, their nutritional value often falters due to insufficient essential amino acids. To address this issue, our study introduces a sustainable protein isolate derived from yeast cells, achieved through high-pressure homogenization (HPH) and alkali pH-shifting treatment. Subjected to HPH pressures ranging from 60 to 120 MPa and 1 to 10 cycles, higher pressure and cycle numbers resulted in enhanced disruption of yeast cells. Combining HPH with alkali pH-shifting treatment significantly augmented protein extraction. Four cycles of HPH at 100 MPa yielded the optimized protein content, resulting in a yeast protein isolate (YPI) with 75.3 g protein per 100 g powder, including 30.0 g of essential amino acids and 18.4 g of branched-chain amino acids per 100 g protein. YPI exhibited superior water and oil-holding capacities compared to pea protein isolate, whey protein isolate (WPI), and soy protein isolate. Although YPI exhibited lower emulsifying ability than WPI, it excelled in stabilizing protein-stabilized emulsions. For foaming, YPI outperformed others in both foaming ability and stabilizing protein-based foam. In conclusion, YPI surpasses numerous plant-based protein alternatives in essential amino acids and branched-chain amino acids contents, positioning it as an excellent candidate for widespread utilization as a sustainable protein source in the food industry, owing to its exceptional nutritional advantages, as well as emulsifying and foaming properties. PRACTICAL APPLICATION: This study introduces a sustainable protein isolate derived from yeast cells. YPI exhibited considerable promise as a protein source. Nutritionally, YPI notably surpassed plant-based protein isolates in EAA and BCAA contents. Functionally, YPI demonstrated superior water-holding and oil-holding capacities, as well as an effective emulsion and foam stabilizer.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos Essenciais , Animais , Saccharomyces cerevisiae , Proteínas de Plantas/química , Emulsões/química , Proteínas Fúngicas , Proteínas de Ligação ao GTP , Água , Concentração de Íons de Hidrogênio , Álcalis
13.
Animals (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254407

RESUMO

In piglets, it is observed that early weaning can lead to poor weight gain due to an underdeveloped gastrointestinal (GI) tract, which is unsuitable for an efficient absorption of nutrients. Short-chain fatty acids (SCFAs) such as butyrate have demonstrated their ability to improve intestinal development by increasing cell proliferation, which is vital during this transition period when the small and large intestinal tracts are rapidly growing. Previous reports on butyrate inclusion in feed demonstrated significantly increased feed intakes (FIs) and average daily gains (ADGs) during piglet weaning. Similar benefits in piglet performance have been observed with the inclusion of yeast cell wall in diets. A proprietary mix of yeast cell wall, SCFAs, and zinc proteinate (YSM) was assessed here in vitro to determine its impact on cellular growth, metabolism and appetite-associated hormones in ex vivo small intestinal pig cells and STC-1 mouse intestinal neuroendocrine cells. Intestinal cells demonstrated greater cell densities with the addition of YSM (150 ppm) compared to the control and butyrate (150 ppm) at 24 h. This coincided with the higher utilisation of both protein and glucose from the media of intestinal cells receiving YSM. Ghrelin (an appetite-inducing hormone) demonstrated elevated levels in the YSM-treated cells on a protein and gene expression level compared to the cells receiving butyrate and the control, while satiety hormone peptide YY protein levels were lower in the cells receiving YSM compared to the control and butyrate-treated cells across each time point. Higher levels of ghrelin and lower PYY secretion in cells receiving YSM may drive the uptake of protein and glucose, which is potentially facilitated by elevated gene transporters for protein and glucose. Greater ghrelin levels observed with the inclusion of YSM may contribute to higher cell densities that could support pig performance to a greater extent than butyrate alone.

14.
Int J Biol Macromol ; 260(Pt 2): 128818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103669

RESUMO

Herein, a ß-1,3-D-glucan based yeast cell wall loaded with co-loaded nanoparticles of Rhein (RH) and Emodin (EMO), was developed for the combined treatment of ulcerative colitis (UC) by modulating gut microbiota and the Th17/Treg cell balance. This was achieved through an oral "nano-in-micro" advanced drug delivery system. Specifically, RH was grafted onto the HA chain via disulfide bonds to synthesize a reduction-sensitive carrier material and then used to encapsulate EMO to form nanoparticles with a specific drug ratio (denoted as HA-RH/EMO NPs). As anticipated, HA-RH/EMO NPs were encased within the "nests"-yeast cell wall microparticles (YPs), efficiently reach the colon and then released gradually, this occurs mainly due to the degradation of ß-1,3-D-glucan by ß-glucanase. Additionally, HA-RH/EMO NPs demonstrated a significant reduction-sensitive effect in GSH stimulation evaluations and a remarkable ability to target macrophages in in vitro cell uptake studies. Notably, HA-RH/EMO NYPs reduced inflammatory responses by inhibiting the PI3K/Akt signaling pathway. Even more crucially, the oral delivery and drug combination methods significantly enhanced the regulatory effects of HA-RH/EMO NYPs on gut microbiota and the Th17/Treg balance. Overall, this research marks the first use of YPs to encapsulate two components, RH and EMO, presenting a promising therapeutic strategy for UC.


Assuntos
Antraquinonas , Colite Ulcerativa , Emodina , Microbiota , Nanopartículas , Proteoglicanas , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Emodina/farmacologia , Emodina/química , Glucanos/uso terapêutico , Saccharomyces cerevisiae , Fosfatidilinositol 3-Quinases , Nanopartículas/química
15.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138557

RESUMO

ß-glucans are widely known for their biological activities. However, the choice of extraction method can significantly influence their structural characteristics, thereby potentially impacting their biological functions. In this paper, three fractions of ß-glucans were obtained from Candida lusitaniae yeast via alkali and hot-water extraction methods and were analyzed using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Solid-state NMR spectroscopy was used as a nondestructive technique that preserves the structure of the analyzed molecules. The results suggest that differences in the ß-glucan structure are affected by the choice of extraction method. The main difference occurred in the 82-92 ppm region with signal presence suggesting that ß-glucans have a linear structure when hot-water-extracted, which is absent in alkali-extracted fractions resulting in the acquisition of ß-glucans with an ordered, possibly helical structure. A hot-water extracted water-insoluble (HWN) fraction consists of linear ß-1,3-glucans with other signals indicating the presence of ß-1,6-linked side chains, chitin and small amounts of α-glucan impurities. For those that are alkali-extracted, alkali-insoluble (AN) and water-soluble (AWS) fractions are structurally similar and consist of an ordered ß-1,3-glucan structure with ß-1,6-linked side chains and a significant amount of α-glucan and chitin in both fractions.


Assuntos
beta-Glucanas , Glucanos/química , Espectroscopia de Ressonância Magnética/métodos , Quitina , Água , Álcalis
16.
J Fungi (Basel) ; 9(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37998878

RESUMO

The presence of toxic compounds in lignocellulosic hydrolysates (LCH) is among the main barriers affecting the efficiency of lignocellulose-based fermentation processes, in particular, to produce biofuels, hindering the production of intracellular lipids by oleaginous yeasts. These microbial oils are promising sustainable alternatives to vegetable oils for biodiesel production. In this study, we explored adaptive laboratory evolution (ALE), under methanol- and high glycerol concentration-induced selective pressures, to improve the robustness of a Rhodotorula toruloides strain, previously selected to produce lipids from sugar beet hydrolysates by completely using the major C (carbon) sources present. An evolved strain, multi-tolerant not only to methanol but to four major inhibitors present in LCH (acetic acid, formic acid, hydroxymethylfurfural, and furfural) was isolated and the mechanisms underlying such multi-tolerance were examined, at the cellular envelope level. Results indicate that the evolved multi-tolerant strain has a cell wall that is less susceptible to zymolyase and a decreased permeability, based on the propidium iodide fluorescent probe, in the absence or presence of those inhibitors. The improved performance of this multi-tolerant strain for lipid production from a synthetic lignocellulosic hydrolysate medium, supplemented with those inhibitors, was confirmed.

17.
Anim Microbiome ; 5(1): 47, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789427

RESUMO

BACKGROUND: The importance of the gut microbiota for physiological processes in mammals is well established, but the knowledge of their functional roles in fish is still limited. The aims of this study were to investigate associations between variation in taxonomical composition of the gut microbiota and gut health status in Atlantic salmon and to explore possible modulatory effects of dietary prebiotics in one net-pen farm in open water. The fish with initial mean body weight of around 240 g were fed diets based on the same basal composition, either without (Ref diet) or with (Test diet) yeast cell wall based-prebiotics, during the marine production phase from December to September the following year. Sampling was conducted at three sampling time points: January, April, and September, with average water temperature of 3.9 ℃, 3.4 ℃ and 9.6 ℃, respectively. RESULTS: As the fish progressed towards September, growth, brush border membrane enzyme activities, and the expression in the gut of most of the observed genes involved in immune (e.g., il8, cd4a, myd88, il1b, gilt, tgfb, cd8b and cd3), barrier (e.g., zo1, occludin, ecad, claudin25b and claudin15), and metabolism increased significantly. Lipid accumulation in pyloric enterocytes decreased remarkably, suggesting improvement of gut health condition. The growth of the fish did not differ between dietary treatments. Further, dietary prebiotics affected the gut health only marginally regardless of duration of administration. Regarding gut microbiota composition, a decrease in alpha diversity (Observed species, Pielou and Shannon) over time was observed, which was significantly associated with an increase in the relative abundance of genus Mycoplasma and decrease in 32 different taxa in genus level including lactic acid bacteria (LAB), such as Lactobacillus, Leuconostoc, and Lactococcus. This indicates that developmental stage of Atlantic salmon is a determinant for microbial composition. Multivariate association analysis revealed that the relative abundance of Mycoplasma was positively correlated with gut barrier gene expression, negatively correlated with plasma glucose levels, and that its relative abundance slightly increased by exposure to prebiotics. Furthermore, certain LAB (e.g., Leuconostoc), belonging to the core microbiota, showed a negative development with time, and significant associations with plasma nutrients levels (e.g., triglyceride and cholesterol) and gene expression related to gut immune and barrier function. CONCLUSIONS: As Atlantic salmon grew older under large-scale, commercial farm settings, the Mycoplasma became more prominent with a concomitant decline in LAB. Mycoplasma abundance correlated positively with time and gut barrier genes, while LAB abundance negatively correlated to time. Dietary prebiotics affected gut health status only marginally.

18.
Appl Microbiol Biotechnol ; 107(24): 7647-7655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815615

RESUMO

Immotile yeast cells were transiently moved in nonuniform sinusoidal electric fields using multiple pairs of micro-parallel cylindrical electrodes equipped with a sequential signal generator (SSG) to analyze cell viability at a clinical scale for the brewery/fermentation industry. Living yeast cells of Saccharomyces cerevisiae during the exponential-stationary phase, with a cell density of 1.15 × 105 cells mL-1 were suspended in sucrose medium. The conductivity (σs) was adjusted to 0.01 S m-1 with added KCl. Cells exposed in electric field strengths ranging from 32.89 to 40.98 kV m-1, exhibited positive dielectrophoresis (pDEP) with the lower critical frequencies (LCF) at 85.72 ± 3.59 kHz. The optimized value of LCF was shifted upwards to 780.00 ± 83.67 kHz when σswas increased to 0.10 S m-1. Dielectrophoretic and LCF spectra (translational speed of cells vs. electric field frequencies) of yeast suspensions during positive dielectrophoresis were analyzed in terms of the dielectric properties of the cell membrane and cytoplasm which reflect yeast cell viability and metabolic health status. The dielectrophoretic collection yield of cells using positive dielectrophoresis was reported on the monitor of sequential signal generator software to evaluate the number of living and dead cells through a real-time image processing analyzer. The spectra of both positive dielectrophoresis of the living and dead cells had distinguishable dielectric properties. The conductivity of the yeast cytoplasm (σc) of the dead cells was significantly less (≈ ≤ 0.05 S m-1) than that of the living yeast cells which typically had a cytoplasmic conductivity of ≈ 0.2 S m-1. This difference between viable and non-viable cells is sufficient for cell separation procedures. KEY POINTS: • Dielectrophoresis can be used to separate viable and non-viable yeast cells, • Cellular dielectric properties can be derived from the analysis of their dielectric spectra, • Cytoplasmic conductivity of viable cells is ≈ 0.2 S m-1 while that of non-viable cells ≈ ≤ 0.05 S m-1.


Assuntos
Eletricidade , Saccharomyces cerevisiae , Citoplasma , Condutividade Elétrica , Membrana Celular , Eletroforese/métodos
19.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894990

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Edição de Genes/métodos , Biotecnologia , Bioengenharia
20.
Toxins (Basel) ; 15(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37888627

RESUMO

Using a random-effects meta-analysis, the performance of growing pigs under a mycotoxin challenge (MT) with or without supplementation of yeast cell wall extract (YCWE, Mycosorb®, Alltech Inc.) was evaluated. Both MT and YCWE were also compared to animal controls not receiving mycotoxins (CTRL). Meta-regression was used to further explore the impacts of MT at/below (category 1) or above (category 2) global regulatory guidelines. Following the screening, 23 suitable references (30 mycotoxin treatments) were used. Overall, MT lowered average daily gain (ADG, p < 0.001) and average daily feed intake (ADFI, p < 0.0001) from CTRL by -84 and -165 g, respectively. Inclusion of YCWE during mycotoxin challenges (YCWE+MT, average 2.1 kg/ton) tended to result in greater ADG (+17 g, p = 0.068) compared to MT treatments. The gain-to-feed ratio (G:F) was not impacted by MT or YCWE+MT. Further investigation by meta-regression revealed that pigs fed MT in category 1 had lower ADG (-78.5 g, p < 0.001) versus CTRL, while YCWE+MT had higher ADG (+48 g, p < 0.001) over MT and was similar to CTRL. The ADFI was not impacted, although YCWE+MT had ADFI values similar to the CTRL. In category 2, ADG and ADFI of pigs fed MT were lower than CTRL (-85.1 and -166 g, respectively, p < 0.0001), with a tendency for YCWE+MT to result in higher ADFI (+25.3 g, p = 0.062). In summary, the inclusion of YCWE provided benefits to performance during common mycotoxin challenge levels (at or below regulatory guidelines).


Assuntos
Micotoxinas , Animais , Suínos , Micotoxinas/toxicidade , Micotoxinas/análise , Saccharomyces cerevisiae , Ingestão de Alimentos , Ração Animal/análise , Parede Celular/química , Extratos Vegetais , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA