Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.497
Filtrar
1.
Genes (Basel) ; 15(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38927667

RESUMO

The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.


Assuntos
Capsicum , Cucumovirus , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Cucumovirus/genética , Cucumovirus/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Capsicum/virologia , Capsicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Etilenos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia
2.
Plant Physiol Biochem ; 212: 108782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850728

RESUMO

Drought is a major environmental stress that limits plant growth, so it's important to identify drought-responsive genes to understand the mechanism of drought response and breed drought-tolerant roses. Protein phosphatase 2C (PP2C) plays a crucial role in plant abiotic stress response. In this study, we identified 412 putative PP2Cs from six Rosaceae species. These genes were divided into twelve clades, with clade A containing the largest number of PP2Cs (14.1%). Clade A PP2Cs are known for their important role in ABA-mediated drought stress response; therefore, the analysis focused on these specific genes. Conserved motif analysis revealed that clade A PP2Cs in these six Rosaceae species shared conserved C-terminal catalytic domains. Collinearity analysis indicated that segmental duplication events played a significant role in the evolution of clade A PP2Cs in Rosaceae. Analysis of the expression of 11 clade A RcPP2Cs showed that approximately 60% of these genes responded to drought, high temperature, and salt stress. Among them, RcPP2C24 exhibited the highest responsiveness to both drought and ABA. Furthermore, overexpression of RcPP2C24 significantly reduced drought tolerance in transgenic tobacco by increasing stomatal aperture after exposure to drought stress. The transient overexpression of RcPP2C24 weakened the dehydration tolerance of rose petal discs, while its silencing increased their dehydration tolerance. In summary, our study identified PP2Cs in six Rosaceae species and highlighted the negative role of RcPP2C24 on rose's drought tolerance by inhibiting stomatal closure. Our findings provide valuable insights into understanding the mechanism behind rose's response to drought.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proteína Fosfatase 2C , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Rosa/genética , Rosa/enzimologia , Rosa/metabolismo , Plantas Geneticamente Modificadas , Rosaceae/genética , Rosaceae/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Filogenia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Estresse Fisiológico/genética , Desidratação/genética , Resistência à Seca
3.
Sci Rep ; 14(1): 13657, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871942

RESUMO

This work aimed to design a synthetic salt-inducible promoter using a cis-engineering approach. The designed promoter (PS) comprises a minimal promoter sequence for basal-level expression and upstream cis-regulatory elements (CREs) from promoters of salinity-stress-induced genes. The copy number, spacer lengths, and locations of CREs were manually determined based on their occurrence within native promoters. The initial activity profile of the synthesized PS promoter in transiently transformed N. tabacum leaves shows a seven-fold, five-fold, and four-fold increase in reporter GUS activity under salt, drought, and abscisic acid stress, respectively, at the 24-h interval, compared to the constitutive CaMV35S promoter. Analysis of gus expression in stable Arabidopsis transformants showed that the PS promoter induces over a two-fold increase in expression under drought or abscisic acid stress and a five-fold increase under salt stress at 24- and 48-h intervals, compared to the CaMV35S promoter. The promoter PS exhibits higher and more sustained activity under salt, drought, and abscisic acid stress compared to the constitutive CaMV35S.


Assuntos
Ácido Abscísico , Arabidopsis , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Arabidopsis/genética , Ácido Abscísico/farmacologia , Plantas Geneticamente Modificadas/genética , Secas , Nicotiana/genética , Estresse Fisiológico/genética , Cloreto de Sódio/farmacologia , Engenharia Genética/métodos , Estresse Salino/genética
4.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892008

RESUMO

The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.


Assuntos
Ácido Abscísico , Arabidopsis , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Phaseolus , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Estresse Fisiológico/genética , Phaseolus/genética , Phaseolus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Álcalis , Regulação para Cima , Regiões Promotoras Genéticas
5.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842600

RESUMO

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Assuntos
Cucumis melo , Ciclopentanos , Frutas , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Folhas de Planta , Proteínas de Plantas , Plantas Geneticamente Modificadas , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Regiões Promotoras Genéticas , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Acetatos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732130

RESUMO

Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.


Assuntos
Ácido Abscísico , Microglia , Doenças Neuroinflamatórias , Doença de Parkinson , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Animais , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732175

RESUMO

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Resistência à Seca
8.
New Phytol ; 243(1): 195-212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708439

RESUMO

Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.


Assuntos
Aquaporinas , Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Plantas Geneticamente Modificadas , Água , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Água/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Aquaporinas/metabolismo , Aquaporinas/genética , Transporte Biológico , Poaceae/genética , Poaceae/fisiologia , Modelos Biológicos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Tolerância ao Sal/genética , Fosforilação , Ligação Proteica/efeitos dos fármacos , Estresse Fisiológico
9.
Gene ; 921: 148532, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38705423

RESUMO

Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) is crucial for the phosphatidylinositol (PI) signaling pathway. It plays a significant role in plant growth and development, as well as stress response. However, its effects on cotton are unknown. This study identified PIP5K genes from four cotton species and conducted bioinformatic analyses, with a particular emphasis on the functions of GhPIP5K9a in primary roots. The results showed that cotton PIP5Ks were classified into four subgroups. Analysis of gene structure and motif composition showed obvious conservation within each subgroup. Synteny analysis suggested that the PIP5K gene family experienced significant expansion due to both whole-genome duplication (WGD) and segmental duplication. Transcriptomic data analysis revealed that the majority of GhPIP5K genes had the either low or undetectable levels of expression. Moreover, GhPIP5K9a is highly expressed in the root and was located in plasmalemma. Suppression of GhPIP5K9a transcripts resulted in longer primary roots, longer primary root cells and increased auxin polar transport-related genes expression, and decreased abscisic acid (ABA) content, indicating that GhPIP5K9a negatively regulates cotton primary root growth. This study lays the foundation for further exploration of the role of the PIP5K genes in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas de Plantas , Raízes de Plantas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Família Multigênica
10.
Plant Physiol Biochem ; 212: 108761, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805756

RESUMO

Abnormal pollination from chance events or hybridization between species leads to unusual embryo development, resulting in fruit abortion. To elucidate the mechanism underlying fruit abortion, we conducted a comprehensive analysis of the transcriptome and hormone profiles in aborting fruits (AF) derived from an interspecific cross between the peach cultivar 'Huangjinmi 3' and the Prunus mume cultivar 'Jiangmei', as well as in normal-seeded fruits (NF) resulting from an intraspecific cross of 'Huangjinmi 3' with the 'Manyuanhong' peach cultivars. Growth of AF was inhibited during the exponential growth phase, with up-regulation of oxidative stress related genes and down-regulation of DNA replication and cell cycle genes. Accumulation of the tissue growth-related hormones auxin and cytokinin was reduced in AF, while levels of the growth inhibiting hormone abscisic acid (ABA) were higher compared to NF. The increased ABA concentration aligned with down-regulation of the ABA catabolism gene CYP707A2, which encodes abscisic acid 8'-hydroxylase. Correlation analysis showed ABA could explain the maximum proportion of differently expressed genes between NF and AF. We also showed that expression of KIRA1-LIKE1 (PpeKIL1), a peach ortholog of the Arabidopsis KIRA1 gene, was up-regulated in AF. PpeKIL1 promotes senescence or delays normal growth in tobacco and Arabidopsis, and its promoter activity increases with exogenous ABA treatment. Our study demonstrates a candidate mechanism where ABA induces expression of PpeKIL1, which further blocks normal fruit growth and triggers fruit abscission.


Assuntos
Ácido Abscísico , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus persica , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo
11.
Genetica ; 152(2-3): 83-100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743131

RESUMO

Xylanase inhibitor proteins (XIP) are widely distributed in the plant kingdom, and also exist in rice. However, a systematic bioinformatics analysis of this gene family in rice (OsXIP) has not been conducted to date. In this study, we identified 32 members of the OsXIP gene family and analyzed their physicochemical properties, chromosomal localization, gene structure, protein structure, expression profiles, and interaction networks. Our results indicated that OsXIP genes exhibit an uneven distribution across eight rice chromosomes. These genes generally feature a low number of introns or are intronless, all family members, except for OsXIP20, contain two highly conserved motifs, namely Motif 8 and Motif 9. In addition, it is worth noting that the promoter regions of OsXIP gene family members feature a widespread presence of abscisic acid response elements (ABRE) and gibberellin response elements (GARE-motif and TATC-box). Quantitative Real-time PCR (qRT-PCR) analysis unveiled that the expression of OsXIP genes exhibited higher levels in leaves and roots, with considerable variation in the expression of each gene in these tissues both prior to and following treatments with abscisic acid (ABA) and gibberellin (GA3). Protein interaction studies and microRNA (miRNA) target prediction showed that OsXIP engages with key elements within the hormone-responsive and drought signaling pathways. The qRT-PCR suggested osa-miR2927 as a potential key regulator in the rice responding to drought stress, functioning as tissue-specific and temporally regulation. This study provides a theoretical foundation for further analysis of the functions within the OsXIP gene family.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , MicroRNAs/genética , Filogenia , Giberelinas/metabolismo , Giberelinas/farmacologia , Cromossomos de Plantas/genética
12.
Gene ; 926: 148621, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821326

RESUMO

Drought stress has become an important limiting factor in mung bean production, and NAC(NAM/ATAF/CUC) transcription factors are crucial for plant growth under stress conditions, so it is important to study the regulatory role of NAC transcription factors in mung bean under drought stress. In this investigation, VrNAC15, along with its promoter, was cloned, and its structure was meticulously analyzed. Using qPCR, we examined the tissue-specific expression patterns of VrNAC15, particularly under drought stress and ABA exposure. Additionally, We performed ectopic expression of VrNAC15 in Arabidopsis to assess its function.. Gene sequence analysis revealed that VrNAC15 has a total length of 1014 bp, encoding 337 amino acids. It contains a NAM domain, localizes within the nucleus, and exhibits transcriptional activation. Promoter analysis of VrNAC15 identified essential core promoter elements and cis-acting elements related to abscisic acid, methyl jasmonate, gibberellin, adversity stress, light, and metabolism. Expression analysis demonstrated the concentration of VrNAC15 in leaves, with significant alterations following ABA and drought treatments in mung beans. Cluster analysis revealed that VrNAC15 may enhanced drought tolerance in transgenic plants through its expression. Transgenic experiments supported these findings, showing that heterologous expression of VrNAC15 led to enhanced antioxidant and osmotic adjustment capabilities in Arabidopsis plants. This resulted in the maintenance of cell membrane structural integrity during drought stress and normal physiological and biochemical metabolic reactions within cells. This research provides valuable insights into the structural and functional characteristics of the VrNAC15, setting the stage for future endeavors in molecular breeding for improved drought resistance in mung beans.


Assuntos
Ácido Abscísico , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico , Vigna , Vigna/genética , Vigna/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Resistência à Seca
13.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791294

RESUMO

With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth's surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance.


Assuntos
Ácido Abscísico , Flavonoides , Regulação da Expressão Gênica de Plantas , Rhododendron , Raios Ultravioleta , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Flavonoides/metabolismo , Rhododendron/metabolismo , Rhododendron/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Clorofila/metabolismo
14.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731930

RESUMO

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Assuntos
Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo
15.
Physiol Plant ; 176(3): e14348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769068

RESUMO

Climate change has become increasingly intertwined with the occurrence and severity of droughts. As global temperatures rise due to greenhouse gas emissions, weather patterns are altered, leading to shifts in precipitation levels and distribution. These exacerbate the risk of drought in many regions, with potentially devastating consequences. A comprehensive transcriptome analysis was performed on Keteki Joha, an aromatic rice from North East India, with the aim of elucidating molecular responses to drought. Numerous genes linked to drought were activated, with both ABA-dependent and ABA-independent pathways playing crucial roles. Upregulated genes were enriched with gene ontology terms with response to abscisic acid and abscisic acid-activated signalling pathway, suggesting the existence of an ABA-dependent pathway for drought mitigation. The upregulated genes were also enriched with responses to stress, water, heat, jasmonic acid, and hydrogen peroxide, indicating the presence of an ABA-independent pathway alongside the ABA-dependent mechanism. Weighted Correlation Network Analysis (WGCNA) identified 267 genes that specifically govern drought mitigation in Keteki Joha. The late embryogenesis abundant (LEA) gene family emerges as the most overrepresented in both RNA sequencing data and WGCNA analysis, suggesting their dominant role in mitigating drought. Notably, 31 LEA genes were induced in seedlings and 32 in mature stages under drought stress. The LEA3-1, LEA14/WSI18, RAB16A, RAB16B, DHN1, DHN6, LEA1, LEA3, LEA17, and LEA33 exhibited and established co-expression with numerous other drought stress-related genes, indicating their inseparable role in alleviating drought. Consequently, LEA genes have been proposed to be primary and crucial responders to drought in Keteki Joha.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza , Oryza/genética , Oryza/fisiologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genes de Plantas , Transcriptoma/genética
16.
BMC Plant Biol ; 24(1): 351, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684962

RESUMO

BACKGROUND: Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS: In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION: Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Vírus de Plantas , Rosa , Rosa/genética , Rosa/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Acetatos/farmacologia , Plantas Geneticamente Modificadas
17.
Bioresour Technol ; 402: 130729, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657826

RESUMO

Low efficiency of the cultivation process is a major obstacle in the commercial production of Haematococcus pluvialis. Germination of red, non-motile cells is an efficient strategy for rapid acquisition of zoospores. However, the regulatory mechanisms associated with germination remain unexplored. In the present study, it was confirmed that the mitochondrial alternative oxidase (AOX) pathway accelerates H. pluvialis cell germination, and the regulatory mechanisms were clarified. When the AOX pathway was inhibited, the transcriptomic and metabonomic data revealed a downregulation in respiratory carbon metabolism and nucleotide synthesis due to NADH accumulation. This observation suggested that AOX promoted the rapid consumption of NADH, which accelerated carbohydrate and lipid catabolism, thereby producing carbon skeletons for DNA replication through respiratory metabolism. Moreover, AOX could potentially enhance germination by disturbing the abscisic acid signaling pathway. These findings provide novel insights for developing industrial cultivation models based on red-cell-germination for achieving rapid proliferation of H. pluvialis.


Assuntos
Carbono , Mitocôndrias , Proteínas Mitocondriais , Oxirredução , Oxirredutases , Proteínas de Plantas , Oxirredutases/metabolismo , Carbono/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Clorófitas/metabolismo , Clorofíceas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , NAD/metabolismo , Respiração Celular/fisiologia
18.
Plant Sci ; 344: 112086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599246

RESUMO

Low-temperature storage can facilitate to the preservation of postharvest fruits. However, tomato fruit are vulnerable to chilling injury (CI) throughout refrigerated storage, resulting in economic losses. Abscisic acid (ABA) treatment weakened the CI progression in tomato fruit. Protein phosphatase 2 C 29 (SlPP2C29) acted as the negative regulator in the ABA-enhanced chilling tolerance. The gene expression of SlPP2C29 and activity of PP2C were down regulated by ABA treatment. Furthermore, SlPP2C29 was shown to be the negative downstream messenger in the ABA-alleviated oxidative damage. Moreover, basic helix-loop-helix 1 (SlbHLH1) bound to the E-box element within SlPP2C29 promoter, and negatively modulated its expression. SlbHLH1 mediated the ABA-boosted chilling tolerance. It turned out that SlbHLH1 was the positive modulator involved in the ABA-inhibited SlPP2C29 expression and PP2C activity. SlbHLH1 was furtherly found to work as the positive regulator in the ABA-lowered oxidative damage. Thus, SlbHLH1 alleviated the CI severity by repressing SlPP2C29 under ABA treatment in tomato fruit.


Assuntos
Ácido Abscísico , Temperatura Baixa , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/fisiologia , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
19.
Gene ; 920: 148495, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663690

RESUMO

DEAD-box RNA helicases, a prominent subfamily within the RNA helicase superfamily 2 (SF2), play crucial roles in the growth, development, and abiotic stress responses of plants. This study identifies 146 DEAD-box RNA helicase genes (GhDEADs) and categorizes them into four Clades (Clade A-D) through phylogenetic analysis. Promoter analysis reveals cis-acting elements linked to plant responses to light, methyl jasmonate (MeJA), abscisic acid (ABA), low temperature, and drought. RNA-seq data demonstrate that Clade C GhDEADs exhibit elevated and ubiquitous expression across different tissues, validating their connection to leaf development through real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Notably, over half of GhDEADs display up-regulation in the leaves of virus-induced gene silencing (VIGS) plants of GhVIR-A/D (members of m6A methyltransferase complex, which regulate leaf morphogenesis). In conclusion, this study offers a comprehensive insight into GhDEADs, emphasizing their potential involvement in leaf development.


Assuntos
RNA Helicases DEAD-box , Regulação da Expressão Gênica de Plantas , Gossypium , Filogenia , Proteínas de Plantas , Gossypium/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia
20.
Angew Chem Int Ed Engl ; 63(26): e202320029, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38591694

RESUMO

N1-methyladenosine (m1A) modification is one of the most prevalent epigenetic modifications on RNA. Given the vital role of m1A modification in RNA processing such as splicing, stability and translation, developing a precise and controllable m1A editing tool is pivotal for in-depth investigating the biological functions of m1A. In this study, we developed an abscisic acid (ABA)-inducible and reversible m1A demethylation tool (termed AI-dm1A), which targets specific transcripts by combining the chemical proximity-induction techniques with the CRISPR/dCas13b system and ALKBH3. We successfully employed AI-dm1A to selectively demethylate the m1A modifications at A8422 of MALAT1 RNA, and this demethylation process could be reversed by removing ABA. Furthermore, we validated its demethylation function on various types of cellular RNAs including mRNA, rRNA and lncRNA. Additionally, we used AI-dm1A to specifically demethylate m1A on ATP5D mRNA, which promoted ATP5D expression and enhanced the glycolysis activity of tumor cells. Conversely, by replacing the demethylase ALKBH3 with methyltransferase TRMT61A, we also developed a controllable m1A methylation tool, namely AI-m1A. Finally, we caged ABA by 4,5-dimethoxy-2-nitrobenzyl (DMNB) to achieve light-inducible m1A methylation or demethylation on specific transcripts. Collectively, our m1A editing tool enables us to flexibly study how m1A modifications on specific transcript influence biological functions and phenotypes.


Assuntos
Adenosina , Edição de RNA , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Humanos , Ácido Abscísico/farmacologia , Ácido Abscísico/química , Ácido Abscísico/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , RNA/metabolismo , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...